src/HOL/Library/Convex_Euclidean_Space.thy
author himmelma
Thu, 28 May 2009 16:19:34 +0200
changeset 31281 b4d4dbc5b04f
parent 31279 4ae81233cf69
child 31286 424874813840
permissions -rw-r--r--
Corrected definition of is_interval
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     1
(* Title:      Convex
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     2
   ID:         $Id: 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     3
   Author:     Robert Himmelmann, TU Muenchen*)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     4
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     5
header {* Convex sets, functions and related things. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     6
31278
60a53b5af39c Added Convex_Euclidean_Space to Library.thy and Library/IsaMakefile
himmelma
parents: 31276
diff changeset
     7
theory Convex_Euclidean_Space
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     8
  imports Topology_Euclidean_Space
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
     9
begin
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    10
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    11
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    12
(* ------------------------------------------------------------------------- *)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    13
(* To be moved elsewhere                                                     *)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    14
(* ------------------------------------------------------------------------- *)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    15
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    16
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    17
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    18
declare dot_ladd[simp] dot_radd[simp] dot_lsub[simp] dot_rsub[simp]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    19
declare dot_lmult[simp] dot_rmult[simp] dot_lneg[simp] dot_rneg[simp]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    20
declare UNIV_1[simp]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    21
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    22
term "(x::real^'n \<Rightarrow> real) 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    23
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    24
lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    25
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    26
lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_less_eq_def Cart_lambda_beta dest_vec1_def basis_component vector_uminus_component
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    27
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    28
lemmas continuous_intros = continuous_add continuous_vmul continuous_cmul continuous_const continuous_sub continuous_at_id continuous_within_id
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    29
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    30
lemmas continuous_on_intros = continuous_on_add continuous_on_const continuous_on_id continuous_on_compose continuous_on_cmul continuous_on_neg continuous_on_sub
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    31
  uniformly_continuous_on_add uniformly_continuous_on_const uniformly_continuous_on_id uniformly_continuous_on_compose uniformly_continuous_on_cmul uniformly_continuous_on_neg uniformly_continuous_on_sub
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    32
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    33
lemma dest_vec1_simps[simp]: fixes a::"real^1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    34
  shows "a$1 = 0 \<longleftrightarrow> a = 0" (*"a \<le> 1 \<longleftrightarrow> dest_vec1 a \<le> 1" "0 \<le> a \<longleftrightarrow> 0 \<le> dest_vec1 a"*)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    35
  "a \<le> b \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 b" "dest_vec1 (1::real^1) = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    36
  by(auto simp add:vector_component_simps all_1 Cart_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    37
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    38
lemma nequals0I:"x\<in>A \<Longrightarrow> A \<noteq> {}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    39
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    40
lemma norm_not_0:"(x::real^'n::finite)\<noteq>0 \<Longrightarrow> norm x \<noteq> 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    41
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    42
lemma vector_unminus_smult[simp]: "(-1::real) *s x = -x" unfolding pth_3[symmetric] by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    43
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    44
lemma setsum_delta_notmem: assumes "x\<notin>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    45
  shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    46
        "setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    47
        "setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    48
        "setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    49
  apply(rule_tac [!] setsum_cong2) using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    50
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    51
lemma setsum_diff1'':assumes "finite A" "a \<in> A"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    52
  shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)" unfolding setsum_diff1'[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    53
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    54
lemma setsum_delta'': fixes s::"(real^'n) set" assumes "finite s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    55
  shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *s x) = (if y\<in>s then (f y) *s y else 0)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    56
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    57
  have *:"\<And>x y. (if y = x then f x else (0::real)) *s x = (if x=y then (f x) *s x else 0)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    58
  show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *s x"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    59
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    60
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    61
lemma not_disjointI:"x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A \<inter> B \<noteq> {}" by blast
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    62
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    63
lemma if_smult:"(if P then x else (y::real)) *s v = (if P then x *s v else y *s v)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    64
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    65
lemma ex_bij_betw_nat_finite_1:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    66
  assumes "finite M"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    67
  shows "\<exists>h. bij_betw h {1 .. card M} M"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    68
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    69
  obtain h where h:"bij_betw h {0..<card M} M" using ex_bij_betw_nat_finite[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    70
  let ?h = "h \<circ> (\<lambda>i. i - 1)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    71
  have *:"(\<lambda>i. i - 1) ` {1..card M} = {0..<card M}" apply auto  unfolding image_iff apply(rule_tac x="Suc x" in bexI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    72
  hence "?h ` {1..card M} = h ` {0..<card M}" unfolding image_compose by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    73
  hence "?h ` {1..card M} = M" unfolding image_compose using h unfolding * unfolding bij_betw_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    74
  moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    75
  have "inj_on (\<lambda>i. i - Suc 0) {Suc 0..card M}" unfolding inj_on_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    76
  hence "inj_on ?h {1..card M}" apply(rule_tac comp_inj_on) unfolding * using h[unfolded bij_betw_def] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    77
  ultimately show ?thesis apply(rule_tac x="h \<circ> (\<lambda>i. i - 1)" in exI) unfolding o_def and bij_betw_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    78
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    79
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    80
lemma finite_subset_image:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    81
  assumes "B \<subseteq> f ` A" "finite B"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    82
  shows "\<exists>C\<subseteq>A. finite C \<and> B = f ` C"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    83
proof- from assms(1) have "\<forall>x\<in>B. \<exists>y\<in>A. x = f y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    84
  then obtain c where "\<forall>x\<in>B. c x \<in> A \<and> x = f (c x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    85
    using bchoice[of B "\<lambda>x y. y\<in>A \<and> x = f y"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    86
  thus ?thesis apply(rule_tac x="c ` B" in exI) using assms(2) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    87
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    88
lemma inj_on_image_eq_iff: assumes "inj_on f (A \<union> B)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    89
  shows "f ` A = f ` B \<longleftrightarrow> A = B"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    90
  using assms by(blast dest: inj_onD)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    91
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    92
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    93
lemma mem_interval_1: fixes x :: "real^1" shows
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    94
 "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    95
 "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    96
by(simp_all add: Cart_eq vector_less_def vector_less_eq_def dest_vec1_def all_1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    97
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    98
lemma image_smult_interval:"(\<lambda>x. m *s (x::real^'n::finite)) ` {a..b} =
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
    99
  (if {a..b} = {} then {} else if 0 \<le> m then {m *s a..m *s b} else {m *s b..m *s a})"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   100
  using image_affinity_interval[of m 0 a b] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   101
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   102
lemma dest_vec1_inverval:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   103
  "dest_vec1 ` {a .. b} = {dest_vec1 a .. dest_vec1 b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   104
  "dest_vec1 ` {a<.. b} = {dest_vec1 a<.. dest_vec1 b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   105
  "dest_vec1 ` {a ..<b} = {dest_vec1 a ..<dest_vec1 b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   106
  "dest_vec1 ` {a<..<b} = {dest_vec1 a<..<dest_vec1 b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   107
  apply(rule_tac [!] equalityI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   108
  unfolding subset_eq Ball_def Bex_def mem_interval_1 image_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   109
  apply(rule_tac [!] allI)apply(rule_tac [!] impI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   110
  apply(rule_tac[2] x="vec1 x" in exI)apply(rule_tac[4] x="vec1 x" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   111
  apply(rule_tac[6] x="vec1 x" in exI)apply(rule_tac[8] x="vec1 x" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   112
  by (auto simp add: vector_less_def vector_less_eq_def all_1 dest_vec1_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   113
    vec1_dest_vec1[unfolded dest_vec1_def One_nat_def])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   114
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   115
lemma dest_vec1_setsum: assumes "finite S"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   116
  shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   117
  using dest_vec1_sum[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   118
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   119
lemma dist_triangle_eq:"dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *s (y - z) = norm (y - z) *s (x - y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   120
proof- have *:"x - y + (y - z) = x - z" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   121
  show ?thesis unfolding dist_def norm_triangle_eq[of "x - y" "y - z", unfolded *] 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   122
    by(auto simp add:norm_minus_commute) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   123
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   124
lemma norm_eqI:"x = y \<Longrightarrow> norm x = norm y" by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   125
lemma norm_minus_eqI:"(x::real^'n::finite) = - y \<Longrightarrow> norm x = norm y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   126
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   127
lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   128
  unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   129
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   130
lemma dimindex_ge_1:"CARD(_::finite) \<ge> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   131
  using one_le_card_finite by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   132
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   133
lemma real_dimindex_ge_1:"real (CARD('n::finite)) \<ge> 1" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   134
  by(metis dimindex_ge_1 linorder_not_less real_eq_of_nat real_le_trans real_of_nat_1 real_of_nat_le_iff) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   135
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   136
lemma real_dimindex_gt_0:"real (CARD('n::finite)) > 0" apply(rule less_le_trans[OF _ real_dimindex_ge_1]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   137
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   138
subsection {* Affine set and affine hull.*}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   139
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   140
definition "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v::real. u + v = 1 \<longrightarrow> (u *s x + v *s y) \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   141
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   142
lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *s x + u *s y \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   143
proof- have *:"\<And>u v ::real. u + v = 1 \<longleftrightarrow> v = 1 - u" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   144
  { fix x y assume "x\<in>s" "y\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   145
    hence "(\<forall>u v::real. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s) \<longleftrightarrow> (\<forall>u::real. (1 - u) *s x + u *s y \<in> s)" apply auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   146
      apply(erule_tac[!] x="1 - u" in allE) unfolding * by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   147
  thus ?thesis unfolding affine_def by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   148
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   149
lemma affine_empty[intro]: "affine {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   150
  unfolding affine_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   151
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   152
lemma affine_sing[intro]: "affine {x}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   153
  unfolding affine_alt by (auto simp add: vector_sadd_rdistrib[THEN sym]) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   154
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   155
lemma affine_UNIV[intro]: "affine UNIV"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   156
  unfolding affine_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   157
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   158
lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   159
  unfolding affine_def by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   160
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   161
lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   162
  unfolding affine_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   163
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   164
lemma affine_affine_hull: "affine(affine hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   165
  unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   166
  unfolding mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   167
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   168
lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   169
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   170
  { fix f assume "f \<subseteq> affine"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   171
    hence "affine (\<Inter>f)" using affine_Inter[of f] unfolding subset_eq mem_def by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   172
  thus ?thesis using hull_eq[unfolded mem_def, of affine s] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   173
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   174
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   175
lemma setsum_restrict_set'': assumes "finite A"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   176
  shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   177
  unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   178
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   179
subsection {* Some explicit formulations (from Lars Schewe). *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   180
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   181
lemma affine: fixes V::"(real^'n) set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   182
  shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *s x)) s \<in> V)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   183
unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   184
defer apply(rule, rule, rule, rule, rule) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   185
  fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   186
    "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> V"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   187
  thus "u *s x + v *s y \<in> V" apply(cases "x=y")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   188
    using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   189
    by(auto simp add: vector_sadd_rdistrib[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   190
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   191
  fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   192
    "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   193
  def n \<equiv> "card s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   194
  have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   195
  thus "(\<Sum>x\<in>s. u x *s x) \<in> V" proof(auto simp only: disjE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   196
    assume "card s = 2" hence "card s = Suc (Suc 0)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   197
    then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   198
    thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   199
      by(auto simp add: setsum_clauses(2))
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   200
  next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   201
      case (Suc n) fix s::"(real^'n) set" and u::"real^'n\<Rightarrow> real"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   202
      assume IA:"\<And>u s.  \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V; finite s;
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   203
               s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n \<equiv> card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> V" and
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   204
	as:"Suc n \<equiv> card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   205
           "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   206
      have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   207
	assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   208
	thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   209
	  less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   210
      then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   211
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   212
      have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   213
      have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   214
      have **:"setsum u (s - {x}) = 1 - u x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   215
	using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   216
      have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   217
      have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *s xa) \<in> V" proof(cases "card (s - {x}) > 2")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   218
	case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   219
	  assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   220
	  thus False using True by auto qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   221
	thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   222
	unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   223
      next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   224
	then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   225
	thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   226
	  using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   227
      thus "(\<Sum>x\<in>s. u x *s x) \<in> V" unfolding vector_smult_assoc[THEN sym] and setsum_cmul
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   228
 	 apply(subst *) unfolding setsum_clauses(2)[OF *(2)]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   229
	 using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *s (\<Sum>xa\<in>s - {x}. u xa *s xa)"], 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   230
	 THEN spec[where x="u x"], THEN spec[where x="1 - u x"]] and rev_subsetD[OF `x\<in>s` `s\<subseteq>V`] and `u x \<noteq> 1` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   231
    qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   232
  next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   233
    thus ?thesis using as(4,5) by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   234
  qed(insert `s\<noteq>{}` `finite s`, auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   235
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   236
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   237
lemma affine_hull_explicit:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   238
  "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *s v) s = y}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   239
  apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   240
  apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   241
  fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   242
    apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   243
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   244
  fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   245
  thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   246
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   247
  show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y}" unfolding affine_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   248
    apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   249
    fix u v ::real assume uv:"u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   250
    fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   251
    then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *s v) = x" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   252
    fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   253
    then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *s v) = y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   254
    have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   255
    have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   256
    show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *s v) = u *s x + v *s y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   257
      apply(rule_tac x="sx \<union> sy" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   258
      apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   259
      unfolding vector_sadd_rdistrib setsum_addf if_smult vector_smult_lzero  ** setsum_restrict_set[OF xy, THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   260
      unfolding vector_smult_assoc[THEN sym] setsum_cmul and setsum_right_distrib[THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   261
      unfolding x y using x(1-3) y(1-3) uv by simp qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   262
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   263
lemma affine_hull_finite:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   264
  assumes "finite s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   265
  shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   266
  unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   267
  apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   268
  fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   269
  thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   270
    apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   271
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   272
  fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   273
  assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   274
  thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   275
    unfolding if_smult vector_smult_lzero and setsum_restrict_set[OF assms, THEN sym] and * by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   277
subsection {* Stepping theorems and hence small special cases. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   278
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   279
lemma affine_hull_empty[simp]: "affine hull {} = {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   280
  apply(rule hull_unique) unfolding mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   281
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   282
lemma affine_hull_finite_step:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   283
  shows "(\<exists>u::real^'n=>real. setsum u {} = w \<and> setsum (\<lambda>x. u x *s x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   284
  "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *s x) (insert a s) = y) \<longleftrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   285
                (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *s x) s = y - v *s a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   286
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   287
  show ?th1 by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   288
  assume ?as 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   289
  { assume ?lhs
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   290
    then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *s x) = y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   291
    have ?rhs proof(cases "a\<in>s")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   292
      case True hence *:"insert a s = s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   293
      show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   294
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   295
      case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   296
    qed  } moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   297
  { assume ?rhs
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   298
    then obtain v u where vu:"setsum u s = w - v"  "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   299
    have *:"\<And>x M. (if x = a then v else M) *s x = (if x = a then v *s x else M *s x)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   300
    have ?lhs proof(cases "a\<in>s")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   301
      case True thus ?thesis
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   302
	apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   303
	unfolding setsum_clauses(2)[OF `?as`]  apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   304
	unfolding vector_sadd_rdistrib and setsum_addf 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   305
	unfolding vu and * and pth_4(1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   306
	by (auto simp add: setsum_delta[OF `?as`])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   307
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   308
      case False 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   309
      hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   310
               "\<And>x. x \<in> s \<Longrightarrow> u x *s x = (if x = a then v *s x else u x *s x)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   311
      from False show ?thesis
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   312
	apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   313
	unfolding setsum_clauses(2)[OF `?as`] and * using vu
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   314
	using setsum_cong2[of s "\<lambda>x. u x *s x" "\<lambda>x. if x = a then v *s x else u x *s x", OF **(2)]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   315
	using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto  
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   316
    qed }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   317
  ultimately show "?lhs = ?rhs" by blast
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   318
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   319
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   320
lemma affine_hull_2: "affine hull {a,b::real^'n} = {u *s a + v *s b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   321
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   322
  have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   323
         "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real^'n)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   324
  have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *s v) = y}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   325
    using affine_hull_finite[of "{a,b}"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   326
  also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *s b = y - v *s a}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   327
    by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   328
  also have "\<dots> = ?rhs" unfolding * by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   329
  finally show ?thesis by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   330
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   331
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   332
lemma affine_hull_3: "affine hull {a,b,c::real^'n} = { u *s a + v *s b + w *s c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   333
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   334
  have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   335
         "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real^'n)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   336
  show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   337
    unfolding * apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   338
    apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   339
    apply(rule_tac x=u in exI) by(auto intro!: exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   340
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   341
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   342
subsection {* Some relations between affine hull and subspaces. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   343
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   344
lemma affine_hull_insert_subset_span:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   345
  "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   346
  unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   347
  apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   348
  fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   349
  have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   350
  thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *s v) = v)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   351
    apply(rule_tac x="x - a" in exI) apply rule defer apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   352
    apply(rule_tac x="\<lambda>x. u (x + a)" in exI) using as(1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   353
    apply(simp add: setsum_reindex[unfolded inj_on_def] setsum_subtractf setsum_diff1 setsum_vmul[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   354
    unfolding as by simp_all qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   355
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   356
lemma affine_hull_insert_span:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   357
  assumes "a \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   358
  shows "affine hull (insert a s) =
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   359
            {a + v | v . v \<in> span {x - a | x.  x \<in> s}}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   360
  apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   361
  unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   362
  fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   363
  then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *s v) = y" unfolding span_explicit by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   364
  def f \<equiv> "(\<lambda>x. x + a) ` t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   365
  have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *s (v - a)) = y - a" unfolding f_def using obt 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   366
    by(auto simp add: setsum_reindex[unfolded inj_on_def])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   367
  have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   368
  show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   369
    apply(rule_tac x="insert a f" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   370
    apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   371
    using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   372
    unfolding setsum_cases[OF f(1), of "{a}", unfolded singleton_iff] and *
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   373
    by (auto simp add: setsum_subtractf setsum_vmul field_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   374
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   375
lemma affine_hull_span:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   376
  assumes "a \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   377
  shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   378
  using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   379
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   380
subsection {* Convexity. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   381
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   382
definition "convex (s::(real^'n) set) \<longleftrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   383
        (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. (u + v = 1) \<longrightarrow> (u *s x + v *s y) \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   384
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   385
lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *s x + u *s y) \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   386
proof- have *:"\<And>u v::real. u + v = 1 \<longleftrightarrow> u = 1 - v" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   387
  show ?thesis unfolding convex_def apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   388
    apply(erule_tac x=x in ballE) apply(erule_tac x=y in ballE) apply(erule_tac x="1 - u" in allE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   389
    by (auto simp add: *) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   390
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   391
lemma mem_convex:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   392
  assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   393
  shows "((1 - u) *s a + u *s b) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   394
  using assms unfolding convex_alt by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   395
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   396
lemma convex_empty[intro]: "convex {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   397
  unfolding convex_def by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   398
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   399
lemma convex_singleton[intro]: "convex {a}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   400
  unfolding convex_def by (auto simp add:vector_sadd_rdistrib[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   401
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   402
lemma convex_UNIV[intro]: "convex UNIV"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   403
  unfolding convex_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   404
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   405
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   406
  unfolding convex_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   407
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   408
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   409
  unfolding convex_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   410
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   411
lemma convex_halfspace_le: "convex {x. a \<bullet> x \<le> b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   412
  unfolding convex_def apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   413
  unfolding dot_radd dot_rmult by (metis real_convex_bound_le) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   414
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   415
lemma convex_halfspace_ge: "convex {x. a \<bullet> x \<ge> b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   416
proof- have *:"{x. a \<bullet> x \<ge> b} = {x. -a \<bullet> x \<le> -b}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   417
  show ?thesis apply(unfold *) using convex_halfspace_le[of "-a" "-b"] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   418
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   419
lemma convex_hyperplane: "convex {x. a \<bullet> x = b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   420
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   421
  have *:"{x. a \<bullet> x = b} = {x. a \<bullet> x \<le> b} \<inter> {x. a \<bullet> x \<ge> b}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   422
  show ?thesis unfolding * apply(rule convex_Int)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   423
    using convex_halfspace_le convex_halfspace_ge by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   424
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   425
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   426
lemma convex_halfspace_lt: "convex {x. a \<bullet> x < b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   427
  unfolding convex_def by(auto simp add: real_convex_bound_lt dot_radd dot_rmult)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   428
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   429
lemma convex_halfspace_gt: "convex {x. a \<bullet> x > b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   430
   using convex_halfspace_lt[of "-a" "-b"] by(auto simp add: dot_lneg neg_less_iff_less)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   431
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   432
lemma convex_positive_orthant: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   433
  unfolding convex_def apply auto apply(erule_tac x=i in allE)+
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   434
  apply(rule add_nonneg_nonneg) by(auto simp add: mult_nonneg_nonneg)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   435
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   436
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   437
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   438
lemma convex: "convex s \<longleftrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   439
  (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   440
           \<longrightarrow> setsum (\<lambda>i. u i *s x i) {1..k} \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   441
  unfolding convex_def apply rule apply(rule allI)+ defer apply(rule ballI)+ apply(rule allI)+ proof(rule,rule,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   442
  fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *s x i) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   443
    "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   444
  show "u *s x + v *s y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   445
    by (auto simp add: setsum_head_Suc) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   446
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   447
  fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   448
  show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *s x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   449
  case (Suc k) show ?case proof(cases "u (Suc k) = 1")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   450
    case True hence "(\<Sum>i = Suc 0..k. u i *s x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   451
      fix i assume i:"i \<in> {Suc 0..k}" "u i *s x i \<noteq> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   452
      hence ui:"u i \<noteq> 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   453
      hence "setsum (\<lambda>k. if k=i then u i else 0) {1 .. k} \<le> setsum u {1 .. k}" apply(rule_tac setsum_mono) using Suc(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   454
      hence "setsum u {1 .. k} \<ge> u i" using i(1) by(auto simp add: setsum_delta) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   455
      hence "setsum u {1 .. k} > 0"  using ui apply(rule_tac less_le_trans[of _ "u i"]) using Suc(2)[THEN spec[where x=i]] and i(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   456
      thus False using Suc(3) unfolding setsum_cl_ivl_Suc and True by simp qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   457
    thus ?thesis unfolding setsum_cl_ivl_Suc using True and Suc(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   458
  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   459
    have *:"setsum u {1..k} = 1 - u (Suc k)" using Suc(3)[unfolded setsum_cl_ivl_Suc] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   460
    have **:"u (Suc k) \<le> 1" apply(rule ccontr) unfolding not_le using Suc(3) using setsum_nonneg[of "{1..k}" u] using Suc(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   461
    have ***:"\<And>i k. (u i / (1 - u (Suc k))) *s x i = (inverse (1 - u (Suc k))) *s (u i *s x i)" unfolding real_divide_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   462
    case False hence nn:"1 - u (Suc k) \<noteq> 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   463
    have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *s x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and *
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   464
      apply(rule_tac allI) apply(rule,rule) apply(rule divide_nonneg_pos) using nn Suc(2) ** by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   465
    hence "(1 - u (Suc k)) *s (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *s x i) + u (Suc k) *s x (Suc k) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   466
      apply(rule as[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using Suc(2)[THEN spec[where x="Suc k"]] and ** by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   467
    thus ?thesis unfolding setsum_cl_ivl_Suc and *** and setsum_cmul using nn by auto qed qed auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   468
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   469
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   470
lemma convex_explicit: "convex (s::(real^'n) set) \<longleftrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   471
  (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *s x) t \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   472
  unfolding convex_def apply(rule,rule,rule) apply(subst imp_conjL,rule) defer apply(rule,rule,rule,rule,rule,rule,rule) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   473
  fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   474
  show "u *s x + v *s y \<in> s" proof(cases "x=y")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   475
    case True show ?thesis unfolding True and vector_sadd_rdistrib[THEN sym] using as(3,6) by auto next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   476
    case False thus ?thesis using as(1)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>z. if z=x then u else v"]] and as(2-) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   477
next 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   478
  fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s" "finite (t::(real^'n) set)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   479
  (*"finite t" "t \<subseteq> s" "\<forall>x\<in>t. (0::real) \<le> u x" "setsum u t = 1"*)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   480
  from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" apply(induct_tac t rule:finite_induct)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   481
    prefer 3 apply (rule,rule) apply(erule conjE)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   482
    fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *s x) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   483
    assume as:"finite f" "x \<notin> f" "insert x f \<subseteq> s" "\<forall>x\<in>insert x f. 0 \<le> u x" "setsum u (insert x f) = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   484
    show "(\<Sum>x\<in>insert x f. u x *s x) \<in> s" proof(cases "u x = 1")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   485
      case True hence "setsum (\<lambda>x. u x *s x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   486
	fix y assume y:"y \<in> f" "u y *s y \<noteq> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   487
	hence uy:"u y \<noteq> 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   488
	hence "setsum (\<lambda>k. if k=y then u y else 0) f \<le> setsum u f" apply(rule_tac setsum_mono) using as(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   489
	hence "setsum u f \<ge> u y" using y(1) and as(1) by(auto simp add: setsum_delta) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   490
	hence "setsum u f > 0" using uy apply(rule_tac less_le_trans[of _ "u y"]) using as(4) and y(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   491
	thus False using as(2,5) unfolding setsum_clauses(2)[OF as(1)] and True by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   492
      thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2,3) unfolding True by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   493
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   494
      have *:"setsum u f = setsum u (insert x f) - u x" using as(2) unfolding setsum_clauses(2)[OF as(1)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   495
      have **:"u x \<le> 1" apply(rule ccontr) unfolding not_le using as(5)[unfolded setsum_clauses(2)[OF as(1)]] and as(2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   496
	using setsum_nonneg[of f u] and as(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   497
      case False hence "inverse (1 - u x) *s (\<Sum>x\<in>f. u x *s x) \<in> s" unfolding setsum_cmul[THEN sym] and vector_smult_assoc
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   498
	apply(rule_tac ind[THEN spec, THEN mp]) apply rule defer apply rule apply rule apply(rule mult_nonneg_nonneg)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   499
	unfolding setsum_right_distrib[THEN sym] and * using as and ** by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   500
      hence "u x *s x + (1 - u x) *s ((inverse (1 - u x)) *s setsum (\<lambda>x. u x *s x) f) \<in>s" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   501
	apply(rule_tac asm(1)[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using as and ** False by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   502
      thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2) and False by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   503
  qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   504
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   505
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   506
lemma convex_finite: assumes "finite s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   507
  shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   508
                      \<longrightarrow> setsum (\<lambda>x. u x *s x) s \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   509
  unfolding convex_explicit apply(rule, rule, rule) defer apply(rule,rule,rule)apply(erule conjE)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   510
  fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   511
  have *:"s \<inter> t = t" using as(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   512
  show "(\<Sum>x\<in>t. u x *s x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   513
    unfolding if_smult and setsum_cases[OF assms] and * using as(2-) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   514
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   515
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   516
subsection {* Cones. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   517
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   518
definition "cone (s::(real^'n) set) \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *s x) \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   519
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   520
lemma cone_empty[intro, simp]: "cone {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   521
  unfolding cone_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   522
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   523
lemma cone_univ[intro, simp]: "cone UNIV"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   524
  unfolding cone_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   525
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   526
lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   527
  unfolding cone_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   528
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   529
subsection {* Conic hull. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   530
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   531
lemma cone_cone_hull: "cone (cone hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   532
  unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   533
  by (auto simp add: mem_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   534
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   535
lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   536
  apply(rule hull_eq[unfolded mem_def])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   537
  using cone_Inter unfolding subset_eq by (auto simp add: mem_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   538
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   539
subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   540
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   541
definition "affine_dependent (s::(real^'n) set) \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   542
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   543
lemma affine_dependent_explicit:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   544
  "affine_dependent p \<longleftrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   545
    (\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   546
    (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) s = 0)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   547
  unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   548
  apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   549
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   550
  fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   551
  have "x\<notin>s" using as(1,4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   552
  show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *s v) = 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   553
    apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   554
    unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   555
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   556
  fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *s v) = 0" "v \<in> s" "u v \<noteq> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   557
  have "s \<noteq> {v}" using as(3,6) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   558
  thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   559
    apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   560
    unfolding vector_smult_assoc[THEN sym] and setsum_cmul unfolding setsum_right_distrib[THEN sym] and setsum_diff1''[OF as(1,5)] using as by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   561
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   562
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   563
lemma affine_dependent_explicit_finite:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   564
  assumes "finite (s::(real^'n) set)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   565
  shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) s = 0)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   566
  (is "?lhs = ?rhs")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   567
proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   568
  have *:"\<And>vt u v. (if vt then u v else 0) *s v = (if vt then (u v) *s v else (0::real^'n))" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   569
  assume ?lhs
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   570
  then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0"  "(\<Sum>v\<in>t. u v *s v) = 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   571
    unfolding affine_dependent_explicit by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   572
  thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   573
    apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   574
    unfolding Int_absorb2[OF `t\<subseteq>s`, unfolded Int_commute] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   575
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   576
  assume ?rhs
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   577
  then obtain u v where "setsum u s = 0"  "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *s v) = 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   578
  thus ?lhs unfolding affine_dependent_explicit using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   579
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   580
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   581
subsection {* A general lemma. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   582
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   583
lemma convex_connected:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   584
  assumes "convex s" shows "connected s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   585
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   586
  { fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   587
    assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   588
    then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   589
    hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   590
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   591
    { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   592
      { fix y have *:"(1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2) = (y - x) *s x1 - (y - x) *s x2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   593
	  by(simp add: ring_simps vector_sadd_rdistrib vector_sub_rdistrib)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   594
	assume "\<bar>y - x\<bar> < e / norm (x1 - x2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   595
	hence "norm ((1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2)) < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   596
	  unfolding * and vector_ssub_ldistrib[THEN sym] and norm_mul 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   597
	  unfolding less_divide_eq using n by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   598
      hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2)) < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   599
	apply(rule_tac x="e / norm (x1 - x2)" in exI) using as
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   600
	apply auto unfolding zero_less_divide_iff using n by simp  }  note * = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   601
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   602
    have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *s x1 + x *s x2 \<notin> e1 \<and> (1 - x) *s x1 + x *s x2 \<notin> e2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   603
      apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_sym)+
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   604
      using * apply(simp add: dist_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   605
      using as(1,2)[unfolded open_def] apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   606
      using as(1,2)[unfolded open_def] apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   607
      using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   608
      using as(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   609
    then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *s x1 + x *s x2 \<notin> e1"  "(1 - x) *s x1 + x *s x2 \<notin> e2" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   610
    hence False using as(4) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   611
      using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   612
      using x1(2) x2(2) by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   613
  thus ?thesis unfolding connected_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   614
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   615
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   616
subsection {* One rather trivial consequence. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   617
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   618
lemma connected_UNIV: "connected UNIV"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   619
  by(simp add: convex_connected convex_UNIV)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   620
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   621
subsection {* Convex functions into the reals. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   622
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   623
definition "convex_on s (f::real^'n \<Rightarrow> real) = 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   624
  (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *s x + v *s y) \<le> u * f x + v * f y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   625
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   626
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   627
  unfolding convex_on_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   628
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   629
lemma convex_add:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   630
  assumes "convex_on s f" "convex_on s g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   631
  shows "convex_on s (\<lambda>x. f x + g x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   632
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   633
  { fix x y assume "x\<in>s" "y\<in>s" moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   634
    fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   635
    ultimately have "f (u *s x + v *s y) + g (u *s x + v *s y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   636
      using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   637
      using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   638
      apply - apply(rule add_mono) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   639
    hence "f (u *s x + v *s y) + g (u *s x + v *s y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: ring_simps)  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   640
  thus ?thesis unfolding convex_on_def by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   641
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   642
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   643
lemma convex_cmul: 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   644
  assumes "0 \<le> (c::real)" "convex_on s f"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   645
  shows "convex_on s (\<lambda>x. c * f x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   646
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   647
  have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: ring_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   648
  show ?thesis using assms(2) and mult_mono1[OF _ assms(1)] unfolding convex_on_def and * by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   649
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   650
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   651
lemma convex_lower:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   652
  assumes "convex_on s f"  "x\<in>s"  "y \<in> s"  "0 \<le> u"  "0 \<le> v"  "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   653
  shows "f (u *s x + v *s y) \<le> max (f x) (f y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   654
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   655
  let ?m = "max (f x) (f y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   656
  have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" apply(rule add_mono) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   657
    using assms(4,5) by(auto simp add: mult_mono1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   658
  also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   659
  finally show ?thesis using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   660
    using assms(2-6) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   661
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   662
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   663
lemma convex_local_global_minimum:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   664
  assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   665
  shows "\<forall>y\<in>s. f x \<le> f y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   666
proof(rule ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   667
  have "x\<in>s" using assms(1,3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   668
  assume "\<not> (\<forall>y\<in>s. f x \<le> f y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   669
  then obtain y where "y\<in>s" and y:"f x > f y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   670
  hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   671
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   672
  then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   673
    using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   674
  hence "f ((1-u) *s x + u *s y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   675
    using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   676
  moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   677
  have *:"x - ((1 - u) *s x + u *s y) = u *s (x - y)" by (simp add: vector_ssub_ldistrib vector_sub_rdistrib)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   678
  have "(1 - u) *s x + u *s y \<in> ball x e" unfolding mem_ball dist_def unfolding * and norm_mul and abs_of_pos[OF `0<u`] unfolding dist_def[THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   679
    using u unfolding pos_less_divide_eq[OF xy] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   680
  hence "f x \<le> f ((1 - u) *s x + u *s y)" using assms(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   681
  ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   682
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   683
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   684
lemma convex_distance: "convex_on s (\<lambda>x. dist a x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   685
proof(auto simp add: convex_on_def dist_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   686
  fix x y assume "x\<in>s" "y\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   687
  fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   688
  have "a = u *s a + v *s a" unfolding vector_sadd_rdistrib[THEN sym] and `u+v=1` by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   689
  hence *:"a - (u *s x + v *s y) = (u *s (a - x)) + (v *s (a - y))" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   690
  show "norm (a - (u *s x + v *s y)) \<le> u * norm (a - x) + v * norm (a - y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   691
    unfolding * using norm_triangle_ineq[of "u *s (a - x)" "v *s (a - y)"] unfolding norm_mul
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   692
    using `0 \<le> u` `0 \<le> v` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   693
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   694
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   695
subsection {* Arithmetic operations on sets preserve convexity. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   696
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   697
lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *s x) ` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   698
  unfolding convex_def and image_iff apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   699
  apply (rule_tac x="u *s x+v *s y" in bexI) by (auto simp add: field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   700
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   701
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   702
  unfolding convex_def and image_iff apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   703
  apply (rule_tac x="u *s x+v *s y" in bexI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   704
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   705
lemma convex_sums:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   706
  assumes "convex s" "convex t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   707
  shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   708
proof(auto simp add: convex_def image_iff)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   709
  fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   710
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   711
  show "\<exists>x y. u *s xa + u *s ya + (v *s xb + v *s yb) = x + y \<and> x \<in> s \<and> y \<in> t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   712
    apply(rule_tac x="u *s xa + v *s xb" in exI) apply(rule_tac x="u *s ya + v *s yb" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   713
    using assms(1)[unfolded convex_def, THEN bspec[where x=xa], THEN bspec[where x=xb]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   714
    using assms(2)[unfolded convex_def, THEN bspec[where x=ya], THEN bspec[where x=yb]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   715
    using uv xy by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   716
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   717
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   718
lemma convex_differences: 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   719
  assumes "convex s" "convex t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   720
  shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   721
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   722
  have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}" unfolding image_iff apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   723
    apply(rule_tac x=xa in exI) apply(rule_tac x="-y" in exI) apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   724
    apply(rule_tac x=xa in exI) apply(rule_tac x=xb in exI) by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   725
  thus ?thesis using convex_sums[OF assms(1)  convex_negations[OF assms(2)]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   726
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   727
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   728
lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   729
proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   730
  thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   731
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   732
lemma convex_affinity: assumes "convex (s::(real^'n) set)" shows "convex ((\<lambda>x. a + c *s x) ` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   733
proof- have "(\<lambda>x. a + c *s x) ` s = op + a ` op *s c ` s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   734
  thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   735
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   736
lemma convex_linear_image: assumes c:"convex s" and l:"linear f" shows "convex(f ` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   737
proof(auto simp add: convex_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   738
  fix x y assume xy:"x \<in> s" "y \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   739
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   740
  show "u *s f x + v *s f y \<in> f ` s" unfolding image_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   741
    apply(rule_tac x="u *s x + v *s y" in bexI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   742
    unfolding linear_add[OF l] linear_cmul[OF l] 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   743
    using c[unfolded convex_def] xy uv by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   744
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   745
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   746
subsection {* Balls, being convex, are connected. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   747
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   748
lemma convex_ball: "convex (ball x e)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   749
proof(auto simp add: convex_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   750
  fix y z assume yz:"dist x y < e" "dist x z < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   751
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   752
  have "dist x (u *s y + v *s z) \<le> u * dist x y + v * dist x z" using uv yz
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   753
    using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   754
  thus "dist x (u *s y + v *s z) < e" using real_convex_bound_lt[OF yz uv] by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   755
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   756
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   757
lemma convex_cball: "convex(cball x e)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   758
proof(auto simp add: convex_def Ball_def mem_cball)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   759
  fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   760
  fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   761
  have "dist x (u *s y + v *s z) \<le> u * dist x y + v * dist x z" using uv yz
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   762
    using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   763
  thus "dist x (u *s y + v *s z) \<le> e" using real_convex_bound_le[OF yz uv] by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   764
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   765
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   766
lemma connected_ball: "connected(ball x e)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   767
  using convex_connected convex_ball by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   768
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   769
lemma connected_cball: "connected(cball x e)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   770
  using convex_connected convex_cball by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   771
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   772
subsection {* Convex hull. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   773
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   774
lemma convex_convex_hull: "convex(convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   775
  unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   776
  unfolding mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   777
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   778
lemma convex_hull_eq: "(convex hull s = s) \<longleftrightarrow> convex s" apply(rule hull_eq[unfolded mem_def])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   779
  using convex_Inter[unfolded Ball_def mem_def] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   780
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   781
lemma bounded_convex_hull: assumes "bounded s" shows "bounded(convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   782
proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   783
  show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   784
    unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   785
    unfolding subset_eq mem_cball dist_def using B by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   786
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   787
lemma finite_imp_bounded_convex_hull:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   788
  "finite s \<Longrightarrow> bounded(convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   789
  using bounded_convex_hull finite_imp_bounded by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   790
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   791
subsection {* Stepping theorems for convex hulls of finite sets. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   792
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   793
lemma convex_hull_empty[simp]: "convex hull {} = {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   794
  apply(rule hull_unique) unfolding mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   795
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   796
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   797
  apply(rule hull_unique) unfolding mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   798
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   799
lemma convex_hull_insert:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   800
  assumes "s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   801
  shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   802
                                    b \<in> (convex hull s) \<and> (x = u *s a + v *s b)}" (is "?xyz = ?hull")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   803
 apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   804
 fix x assume x:"x = a \<or> x \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   805
 thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   806
   apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   807
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   808
  fix x assume "x\<in>?hull"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   809
  then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *s a + v *s b" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   810
  have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   811
    using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   812
  thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   813
    apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   814
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   815
  show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   816
    fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   817
    from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *s a + v1 *s b1" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   818
    from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *s a + v2 *s b2" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   819
    have *:"\<And>x s1 s2. x - s1 *s x - s2 *s x = ((1::real) - (s1 + s2)) *s x" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   820
    have "\<exists>b \<in> convex hull s. u *s x + v *s y = (u * u1) *s a + (v * u2) *s a + (b - (u * u1) *s b - (v * u2) *s b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   821
    proof(cases "u * v1 + v * v2 = 0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   822
      have *:"\<And>x s1 s2. x - s1 *s x - s2 *s x = ((1::real) - (s1 + s2)) *s x" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   823
      case True hence **:"u * v1 = 0" "v * v2 = 0" apply- apply(rule_tac [!] ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   824
	using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   825
      hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   826
      thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: **) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   827
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   828
      have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   829
      also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   830
      also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   831
      case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply -
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   832
	apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   833
	using as(1,2) obt1(1,2) obt2(1,2) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   834
      thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   835
	apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *s b1 + ((v * v2) / (u * v1 + v * v2)) *s b2" in bexI) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   836
	apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   837
	unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   838
    qed note * = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   839
    have u1:"u1 \<le> 1" apply(rule ccontr) unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   840
    have u2:"u2 \<le> 1" apply(rule ccontr) unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   841
    have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   842
      apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   843
    also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   844
    finally 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   845
    show "u *s x + v *s y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   846
      apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   847
      using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   848
  qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   849
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   850
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   851
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   852
subsection {* Explicit expression for convex hull. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   853
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   854
lemma convex_hull_indexed:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   855
  "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   856
                            (setsum u {1..k} = 1) \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   857
                            (setsum (\<lambda>i. u i *s x i) {1..k} = y)}" (is "?xyz = ?hull")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   858
  apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   859
  apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   860
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   861
  fix x assume "x\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   862
  thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   863
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   864
  fix t assume as:"s \<subseteq> t" "convex t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   865
  show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   866
    fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s y i) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   867
    show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   868
      using assm(1,2) as(1) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   869
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   870
  fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   871
  from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *s x1 i) = x" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   872
  from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *s x2 i) = y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   873
  have *:"\<And>P x1 x2 s1 s2 i.(if P i then s1 else s2) *s (if P i then x1 else x2) = (if P i then s1 *s x1 else s2 *s x2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   874
    "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   875
    prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   876
  have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   877
  show "u *s x + v *s y \<in> ?hull" apply(rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   878
    apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   879
    apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   880
    unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   881
    unfolding vector_smult_assoc[THEN sym] setsum_cmul setsum_right_distrib[THEN sym] proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   882
    fix i assume i:"i \<in> {1..k1+k2}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   883
    show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   884
    proof(cases "i\<in>{1..k1}")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   885
      case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   886
    next def j \<equiv> "i - k1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   887
      case False with i have "j \<in> {1..k2}" unfolding j_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   888
      thus ?thesis unfolding j_def[symmetric] using False
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   889
	using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   890
  qed(auto simp add: not_le x(2,3) y(2,3) uv(3))
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   891
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   892
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   893
lemma convex_hull_finite:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   894
  assumes "finite (s::(real^'n)set)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   895
  shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   896
         setsum u s = 1 \<and> setsum (\<lambda>x. u x *s x) s = y}" (is "?HULL = ?set")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   897
proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   898
  fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *s x) = x" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   899
    apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   900
    unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   901
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   902
  fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   903
  fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   904
  fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   905
  { fix x assume "x\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   906
    hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   907
      by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2))  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   908
  moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   909
    unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   910
  moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *s x) = u *s (\<Sum>x\<in>s. ux x *s x) + v *s (\<Sum>x\<in>s. uy x *s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   911
    unfolding vector_sadd_rdistrib and setsum_addf and vector_smult_assoc[THEN sym] and setsum_cmul by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   912
  ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *s x) = u *s (\<Sum>x\<in>s. ux x *s x) + v *s (\<Sum>x\<in>s. uy x *s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   913
    apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   914
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   915
  fix t assume t:"s \<subseteq> t" "convex t" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   916
  fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   917
  thus "(\<Sum>x\<in>s. u x *s x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   918
    using assms and t(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   919
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   920
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   921
subsection {* Another formulation from Lars Schewe. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   922
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   923
lemma convex_hull_explicit:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   924
  "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   925
             (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}" (is "?lhs = ?rhs")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   926
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   927
  { fix x assume "x\<in>?lhs"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   928
    then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s y i) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   929
      unfolding convex_hull_indexed by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   930
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   931
    have fin:"finite {1..k}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   932
    have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   933
    { fix j assume "j\<in>{1..k}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   934
      hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   935
	using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   936
	apply(rule setsum_nonneg) using obt(1) by auto } 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   937
    moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   938
    have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   939
      unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   940
    moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   941
      using setsum_image_gen[OF fin, of "\<lambda>i. u i *s y i" y, THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   942
      unfolding setsum_vmul[OF fin']  using obt(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   943
    ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   944
      apply(rule_tac x="y ` {1..k}" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   945
      apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   946
    hence "x\<in>?rhs" by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   947
  moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   948
  { fix y assume "y\<in>?rhs"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   949
    then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   950
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   951
    obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   952
    
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   953
    { fix i::nat assume "i\<in>{1..card s}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   954
      hence "f i \<in> s"  apply(subst f(2)[THEN sym]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   955
      hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   956
    moreover have *:"finite {1..card s}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   957
    { fix y assume "y\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   958
      then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   959
      hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   960
      hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   961
      hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y" "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *s f x) = u y *s y" by auto   }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   962
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   963
    hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *s f i) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   964
      unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *s f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   965
      unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *s f x)" "\<lambda>v. u v *s v"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   966
      using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   967
    
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   968
    ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *s x i) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   969
      apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   970
    hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   971
  ultimately show ?thesis unfolding expand_set_eq by blast
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   972
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   973
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   974
subsection {* A stepping theorem for that expansion. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   975
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   976
lemma convex_hull_finite_step:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   977
  assumes "finite (s::(real^'n) set)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   978
  shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *s x) (insert a s) = y)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   979
     \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *s x) s = y - v *s a)" (is "?lhs = ?rhs")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   980
proof(rule, case_tac[!] "a\<in>s")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   981
  assume "a\<in>s" hence *:"insert a s = s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   982
  assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   983
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   984
  assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *s x) = y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   985
  assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   986
    apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   987
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   988
  assume "a\<in>s" hence *:"insert a s = s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   989
  have fin:"finite (insert a s)" using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   990
  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   991
  show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding vector_sadd_rdistrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   992
    unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   993
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   994
  assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   995
  moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *s x) = (\<Sum>x\<in>s. u x *s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   996
    apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   997
  ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI)  unfolding setsum_clauses(2)[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   998
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
   999
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1000
subsection {* Hence some special cases. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1001
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1002
lemma convex_hull_2:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1003
  "convex hull {a,b} = {u *s a + v *s b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1004
proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1005
show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1006
  apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1007
  apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1008
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1009
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *s (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1010
  unfolding convex_hull_2 unfolding Collect_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1011
proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1012
  fix x show "(\<exists>v u. x = v *s a + u *s b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *s (b - a) \<and> 0 \<le> u \<and> u \<le> 1)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1013
    unfolding * apply auto apply(rule_tac[!] x=u in exI) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1014
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1015
lemma convex_hull_3:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1016
  "convex hull {a::real^'n,b,c} = { u *s a + v *s b + w *s c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1017
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1018
  have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1019
  have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1020
         "\<And>x y z ::real^'n. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: ring_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1021
  show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and *
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1022
    unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1023
    apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1024
    apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1025
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1026
lemma convex_hull_3_alt:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1027
  "convex hull {a,b,c} = {a + u *s (b - a) + v *s (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1028
proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1029
  show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1030
    apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by simp qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1031
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1032
subsection {* Relations among closure notions and corresponding hulls. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1033
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1034
lemma subspace_imp_affine: "subspace s \<Longrightarrow> affine s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1035
  unfolding subspace_def affine_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1036
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1037
lemma affine_imp_convex: "affine s \<Longrightarrow> convex s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1038
  unfolding affine_def convex_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1039
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1040
lemma subspace_imp_convex: "subspace s \<Longrightarrow> convex s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1041
  using subspace_imp_affine affine_imp_convex by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1042
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1043
lemma affine_hull_subset_span: "(affine hull s) \<subseteq> (span s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1044
  unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1045
  using subspace_imp_affine  by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1046
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1047
lemma convex_hull_subset_span: "(convex hull s) \<subseteq> (span s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1048
  unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1049
  using subspace_imp_convex by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1050
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1051
lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1052
  unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1053
  using affine_imp_convex by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1054
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1055
lemma affine_dependent_imp_dependent: "affine_dependent s \<Longrightarrow> dependent s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1056
  unfolding affine_dependent_def dependent_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1057
  using affine_hull_subset_span by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1058
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1059
lemma dependent_imp_affine_dependent:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1060
  assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1061
  shows "affine_dependent (insert a s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1062
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1063
  from assms(1)[unfolded dependent_explicit] obtain S u v 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1064
    where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *s v) = 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1065
  def t \<equiv> "(\<lambda>x. x + a) ` S"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1066
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1067
  have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1068
  have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1069
  have fin:"finite t" and  "t\<subseteq>s" unfolding t_def using obt(1,2) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1070
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1071
  hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1072
  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1073
    apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1074
  have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1075
    unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1076
  moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1077
    apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1078
  moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *s x) = (\<Sum>x\<in>t. Q x *s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1079
    apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1080
  have "(\<Sum>x\<in>t. u (x - a)) *s a = (\<Sum>v\<in>t. u (v - a) *s v)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1081
    unfolding setsum_vmul[OF fin(1)] unfolding t_def and setsum_reindex[OF inj] and o_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1082
    using obt(5) by (auto simp add: setsum_addf)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1083
  hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *s v) = 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1084
    unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: *  vector_smult_lneg) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1085
  ultimately show ?thesis unfolding affine_dependent_explicit
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1086
    apply(rule_tac x="insert a t" in exI) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1087
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1088
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1089
lemma convex_cone:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1090
  "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *s x) \<in> s)" (is "?lhs = ?rhs")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1091
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1092
  { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1093
    hence "2 *s x \<in>s" "2 *s y \<in> s" unfolding cone_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1094
    hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1095
      apply(erule_tac x="2*s x" in ballE) apply(erule_tac x="2*s y" in ballE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1096
      apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1097
  thus ?thesis unfolding convex_def cone_def by blast
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1098
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1099
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1100
lemma affine_dependent_biggerset: fixes s::"(real^'n::finite) set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1101
  assumes "finite s" "card s \<ge> CARD('n) + 2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1102
  shows "affine_dependent s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1103
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1104
  have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1105
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1106
  have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1107
    apply(rule card_image) unfolding inj_on_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1108
  also have "\<dots> > CARD('n)" using assms(2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1109
    unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1110
  finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1111
    apply(rule dependent_imp_affine_dependent)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1112
    apply(rule dependent_biggerset) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1113
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1114
lemma affine_dependent_biggerset_general:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1115
  assumes "finite (s::(real^'n::finite) set)" "card s \<ge> dim s + 2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1116
  shows "affine_dependent s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1117
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1118
  from assms(2) have "s \<noteq> {}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1119
  then obtain a where "a\<in>s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1120
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1121
  have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1122
    apply(rule card_image) unfolding inj_on_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1123
  have "dim {x - a |x. x \<in> s - {a}} \<le> dim s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1124
    apply(rule subset_le_dim) unfolding subset_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1125
    using `a\<in>s` by (auto simp add:span_superset span_sub)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1126
  also have "\<dots> < dim s + 1" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1127
  also have "\<dots> \<le> card (s - {a})" using assms
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1128
    using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1129
  finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1130
    apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1131
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1132
subsection {* Caratheodory's theorem. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1133
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1134
lemma convex_hull_caratheodory: fixes p::"(real^'n::finite) set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1135
  shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1136
  (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1137
  unfolding convex_hull_explicit expand_set_eq mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1138
proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1139
  fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1140
  assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1141
  then obtain N where "?P N" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1142
  hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1143
  then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1144
  then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1"  "(\<Sum>v\<in>s. u v *s v) = y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1145
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1146
  have "card s \<le> CARD('n) + 1" proof(rule ccontr, simp only: not_le)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1147
    assume "CARD('n) + 1 < card s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1148
    hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1149
    then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *s v) = 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1150
      using affine_dependent_explicit_finite[OF obt(1)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1151
    def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1152
    have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1153
      assume as:"\<forall>x\<in>s. 0 \<le> w x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1154
      hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1155
      hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1156
	using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1157
      thus False using wv(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1158
    qed hence "i\<noteq>{}" unfolding i_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1159
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1160
    hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1161
      using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1162
    have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1163
      fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1164
      show"0 \<le> u v + t * w v" proof(cases "w v < 0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1165
	case False thus ?thesis apply(rule_tac add_nonneg_nonneg) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1166
	  using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1167
	case True hence "t \<le> u v / (- w v)" using `v\<in>s`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1168
	  unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1169
	thus ?thesis unfolding real_0_le_add_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1170
	  using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1171
      qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1172
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1173
    obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1174
      using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1175
    hence a:"a\<in>s" "u a + t * w a = 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1176
    have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'a::ring)" unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1177
    have "(\<Sum>v\<in>s. u v + t * w v) = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1178
      unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1179
    moreover have "(\<Sum>v\<in>s. u v *s v + (t * w v) *s v) - (u a *s a + (t * w a) *s a) = y" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1180
      unfolding setsum_addf obt(6) vector_smult_assoc[THEN sym] setsum_cmul wv(4)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1181
      by (metis diff_0_right a(2) pth_5 pth_8 pth_d vector_mul_eq_0)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1182
    ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1183
      apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: *)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1184
    thus False using smallest[THEN spec[where x="n - 1"]] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1185
  thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1186
    \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y" using obt by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1187
qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1188
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1189
lemma caratheodory:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1190
 "convex hull p = {x::real^'n::finite. \<exists>s. finite s \<and> s \<subseteq> p \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1191
      card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1192
  unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1193
  fix x assume "x \<in> convex hull p"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1194
  then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1195
     "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"unfolding convex_hull_caratheodory by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1196
  thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1197
    apply(rule_tac x=s in exI) using hull_subset[of s convex]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1198
  using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1199
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1200
  fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1201
  then obtain s where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1" "x \<in> convex hull s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1202
  thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1203
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1204
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1205
subsection {* Openness and compactness are preserved by convex hull operation. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1206
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1207
lemma open_convex_hull:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1208
  assumes "open s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1209
  shows "open(convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1210
  unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1211
proof(rule, rule) fix a
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1212
  assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1213
  then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = a" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1214
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1215
  from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1216
    using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1217
  have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1218
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1219
  show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1220
    apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1221
  proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1222
    show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1223
      using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1224
  next  fix y assume "y \<in> cball a (Min i)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1225
    hence y:"norm (a - y) \<le> Min i" unfolding dist_def[THEN sym] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1226
    { fix x assume "x\<in>t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1227
      hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1228
      hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1229
      moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1230
      ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by auto }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1231
    moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1232
    have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1233
    have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1234
      unfolding setsum_reindex[OF *] o_def using obt(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1235
    moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *s v) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1236
      unfolding setsum_reindex[OF *] o_def using obt(4,5)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1237
      by (simp add: setsum_addf setsum_subtractf setsum_vmul[OF obt(1), THEN sym]) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1238
    ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1239
      apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1240
      using obt(1, 3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1241
  qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1242
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1243
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1244
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1245
lemma compact_convex_combinations:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1246
  assumes "compact s" "compact t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1247
  shows "compact { (1 - u) *s x + u *s y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1248
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1249
  let ?X = "{ pastecart u w | u w. u \<in> {vec1 0 .. vec1 1} \<and> w \<in> { pastecart x y |x y. x \<in> s \<and> y \<in> t} }"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1250
  let ?h = "(\<lambda>z. (1 - dest_vec1(fstcart z)) *s fstcart(sndcart z) + dest_vec1(fstcart z) *s sndcart(sndcart z))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1251
  have *:"{ (1 - u) *s x + u *s y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1252
    apply(rule set_ext) unfolding image_iff mem_Collect_eq unfolding mem_interval_1 vec1_dest_vec1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1253
    apply rule apply auto apply(rule_tac x="pastecart (vec1 u) (pastecart xa y)" in exI) apply simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1254
    apply(rule_tac x="vec1 u" in exI) apply(rule_tac x="pastecart xa y" in exI) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1255
  { fix u::"real^1" fix x y assume as:"0 \<le> dest_vec1 u" "dest_vec1 u \<le> 1" "x \<in> s" "y \<in> t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1256
    hence "continuous (at (pastecart u (pastecart x y)))
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1257
           (\<lambda>z. fstcart (sndcart z) - dest_vec1 (fstcart z) *s fstcart (sndcart z) +
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1258
                dest_vec1 (fstcart z) *s sndcart (sndcart z))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1259
      apply (auto intro!: continuous_add continuous_sub continuous_mul simp add: o_def vec1_dest_vec1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1260
      using linear_continuous_at linear_fstcart linear_sndcart linear_sndcart
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1261
      using linear_compose[unfolded o_def] by auto }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1262
  hence "continuous_on {pastecart u w |u w. u \<in> {vec1 0..vec1 1} \<and> w \<in> {pastecart x y |x y. x \<in> s \<and> y \<in> t}}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1263
     (\<lambda>z. (1 - dest_vec1 (fstcart z)) *s fstcart (sndcart z) + dest_vec1 (fstcart z) *s sndcart (sndcart z))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1264
    apply(rule_tac continuous_at_imp_continuous_on) unfolding mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1265
    unfolding mem_interval_1 vec1_dest_vec1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1266
 thus ?thesis unfolding * apply(rule compact_continuous_image)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1267
    defer apply(rule compact_pastecart) defer apply(rule compact_pastecart)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1268
    using compact_interval assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1269
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1270
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1271
lemma compact_convex_hull: fixes s::"(real^'n::finite) set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1272
  assumes "compact s"  shows "compact(convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1273
proof(cases "s={}")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1274
  case True thus ?thesis using compact_empty by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1275
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1276
  case False then obtain w where "w\<in>s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1277
  show ?thesis unfolding caratheodory[of s]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1278
  proof(induct "CARD('n) + 1")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1279
    have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1280
      using compact_empty by (auto simp add: convex_hull_empty)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1281
    case 0 thus ?case unfolding * by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1282
  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1283
    case (Suc n)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1284
    show ?case proof(cases "n=0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1285
      case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1286
	unfolding expand_set_eq and mem_Collect_eq proof(rule, rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1287
	fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1288
	then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1289
	show "x\<in>s" proof(cases "card t = 0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1290
	  case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by(simp add: convex_hull_empty)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1291
	next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1292
	  case False hence "card t = Suc 0" using t(3) `n=0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1293
	  then obtain a where "t = {a}" unfolding card_Suc_eq by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1294
	  thus ?thesis using t(2,4) by (simp add: convex_hull_singleton)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1295
	qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1296
      next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1297
	fix x assume "x\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1298
	thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1299
	  apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1300
      qed thus ?thesis using assms by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1301
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1302
      case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1303
	{ (1 - u) *s x + u *s y | x y u. 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1304
	0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1305
	unfolding expand_set_eq and mem_Collect_eq proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1306
	fix x assume "\<exists>u v c. x = (1 - c) *s u + c *s v \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1307
          0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1308
	then obtain u v c t where obt:"x = (1 - c) *s u + c *s v"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1309
          "0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n"  "v \<in> convex hull t" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1310
	moreover have "(1 - c) *s u + c *s v \<in> convex hull insert u t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1311
	  apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1312
	  using obt(7) and hull_mono[of t "insert u t"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1313
	ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1314
	  apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1315
      next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1316
	fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1317
	then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1318
	let ?P = "\<exists>u v c. x = (1 - c) *s u + c *s v \<and>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1319
          0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1320
	show ?P proof(cases "card t = Suc n")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1321
	  case False hence "card t \<le> n" using t(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1322
	  thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1323
	    by(auto intro!: exI[where x=t])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1324
	next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1325
	  case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1326
	  show ?P proof(cases "u={}")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1327
	    case True hence "x=a" using t(4)[unfolded au] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1328
	    show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1329
	      using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"] simp add: convex_hull_singleton)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1330
	  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1331
	    case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *s a + vx *s b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1332
	      using t(4)[unfolded au convex_hull_insert[OF False]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1333
	    have *:"1 - vx = ux" using obt(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1334
	    show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1335
	      using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1336
	      by(auto intro!: exI[where x=u])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1337
	  qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1338
	qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1339
      qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1340
      thus ?thesis using compact_convex_combinations[OF assms Suc] by simp 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1341
    qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1342
  qed 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1343
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1344
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1345
lemma finite_imp_compact_convex_hull:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1346
 "finite s \<Longrightarrow> compact(convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1347
  apply(drule finite_imp_compact, drule compact_convex_hull) by assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1348
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1349
subsection {* Extremal points of a simplex are some vertices. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1350
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1351
lemma dist_increases_online: assumes "d \<noteq> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1352
  shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1353
proof(cases "a \<bullet> d - b \<bullet> d > 0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1354
  case True hence "0 < d \<bullet> d + (a \<bullet> d * 2 - b \<bullet> d * 2)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1355
    apply(rule_tac add_pos_pos) using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1356
  thus ?thesis apply(rule_tac disjI2) unfolding dist_def and real_vector_norm_def and real_sqrt_less_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1357
    by(simp add: dot_rsub dot_radd dot_lsub dot_ladd dot_sym field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1358
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1359
  case False hence "0 < d \<bullet> d + (b \<bullet> d * 2 - a \<bullet> d * 2)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1360
    apply(rule_tac add_pos_nonneg) using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1361
  thus ?thesis apply(rule_tac disjI1) unfolding dist_def and real_vector_norm_def and real_sqrt_less_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1362
    by(simp add: dot_rsub dot_radd dot_lsub dot_ladd dot_sym field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1363
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1364
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1365
lemma norm_increases_online:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1366
 "(d::real^'n::finite) \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1367
  using dist_increases_online[of d a 0] unfolding dist_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1368
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1369
lemma simplex_furthest_lt:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1370
  fixes s::"(real^'n::finite) set" assumes "finite s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1371
  shows "\<forall>x \<in> (convex hull s).  x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1372
proof(induct_tac rule: finite_induct[of s])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1373
  fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1374
  show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1375
  proof(rule,rule,cases "s = {}")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1376
    case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1377
    obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *s x + v *s b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1378
      using y(1)[unfolded convex_hull_insert[OF False]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1379
    show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1380
    proof(cases "y\<in>convex hull s")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1381
      case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1382
	using as(3)[THEN bspec[where x=y]] and y(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1383
      thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1384
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1385
      case False show ?thesis  using obt(3) proof(cases "u=0", case_tac[!] "v=0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1386
	assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1387
	thus ?thesis using False and obt(4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1388
      next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1389
	assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1390
	thus ?thesis using y(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1391
      next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1392
	assume "u\<noteq>0" "v\<noteq>0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1393
	then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1394
	have "x\<noteq>b" proof(rule ccontr) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1395
	  assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1396
	    using obt(3) by(auto simp add: vector_sadd_rdistrib[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1397
	  thus False using obt(4) and False by simp qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1398
	hence *:"w *s (x - b) \<noteq> 0" using w(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1399
	show ?thesis using dist_increases_online[OF *, of a y]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1400
 	proof(erule_tac disjE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1401
	  assume "dist a y < dist a (y + w *s (x - b))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1402
	  hence "norm (y - a) < norm ((u + w) *s x + (v - w) *s b - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1403
	    unfolding dist_sym[of a] unfolding dist_def obt(5) by (simp add: ring_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1404
	  moreover have "(u + w) *s x + (v - w) *s b \<in> convex hull insert x s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1405
	    unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1406
	    apply(rule_tac x="u + w" in exI) apply rule defer 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1407
	    apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1408
	  ultimately show ?thesis by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1409
	next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1410
	  assume "dist a y < dist a (y - w *s (x - b))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1411
	  hence "norm (y - a) < norm ((u - w) *s x + (v + w) *s b - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1412
	    unfolding dist_sym[of a] unfolding dist_def obt(5) by (simp add: ring_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1413
	  moreover have "(u - w) *s x + (v + w) *s b \<in> convex hull insert x s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1414
	    unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1415
	    apply(rule_tac x="u - w" in exI) apply rule defer 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1416
	    apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1417
	  ultimately show ?thesis by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1418
	qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1419
      qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1420
    qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1421
  qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1422
qed (auto simp add: assms)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1423
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1424
lemma simplex_furthest_le:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1425
  assumes "finite s" "s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1426
  shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1427
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1428
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1429
  then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1430
    using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1431
    unfolding dist_sym[of a] unfolding dist_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1432
  thus ?thesis proof(cases "x\<in>s")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1433
    case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1434
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1435
    thus ?thesis using x(2)[THEN bspec[where x=y]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1436
  qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1437
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1438
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1439
lemma simplex_furthest_le_exists:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1440
  "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1441
  using simplex_furthest_le[of s] by (cases "s={}")auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1442
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1443
lemma simplex_extremal_le:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1444
  assumes "finite s" "s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1445
  shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1446
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1447
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1448
  then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1449
    "\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1450
    using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1451
  thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1452
    assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1453
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1454
    thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1455
  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1456
    assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1457
      using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1458
    thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1459
      by (auto simp add: norm_minus_commute)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1460
  qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1461
qed 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1462
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1463
lemma simplex_extremal_le_exists:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1464
  "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1465
  \<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1466
  using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1467
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1468
subsection {* Closest point of a convex set is unique, with a continuous projection. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1469
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1470
definition 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1471
 "closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1472
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1473
lemma closest_point_exists:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1474
  assumes "closed s" "s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1475
  shows  "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1476
  unfolding closest_point_def apply(rule_tac[!] someI2_ex) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1477
  using distance_attains_inf[OF assms(1,2), of a] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1478
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1479
lemma closest_point_in_set:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1480
  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1481
  by(meson closest_point_exists)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1482
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1483
lemma closest_point_le:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1484
  "closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1485
  using closest_point_exists[of s] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1486
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1487
lemma closest_point_self:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1488
  assumes "x \<in> s"  shows "closest_point s x = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1489
  unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x]) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1490
  using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1491
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1492
lemma closest_point_refl:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1493
 "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1494
  using closest_point_in_set[of s x] closest_point_self[of x s] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1495
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1496
lemma closer_points_lemma: fixes y::"real^'n::finite"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1497
  assumes "y \<bullet> z > 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1498
  shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *s z - y) < norm y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1499
proof- have z:"z \<bullet> z > 0" unfolding dot_pos_lt using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1500
  thus ?thesis using assms apply(rule_tac x="(y \<bullet> z) / (z \<bullet> z)" in exI) apply(rule) defer proof(rule+)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1501
    fix v assume "0<v" "v \<le> y \<bullet> z / (z \<bullet> z)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1502
    thus "norm (v *s z - y) < norm y" unfolding norm_lt using z and assms
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1503
      by (simp add: field_simps dot_sym  mult_strict_left_mono[OF _ `0<v`])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1504
  qed(rule divide_pos_pos, auto) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1505
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1506
lemma closer_point_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1507
  assumes "(y - x) \<bullet> (z - x) > 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1508
  shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *s (z - x)) y < dist x y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1509
proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *s (z - x) - (y - x)) < norm (y - x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1510
    using closer_points_lemma[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1511
  show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1512
    unfolding dist_def by(auto simp add: norm_minus_commute field_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1513
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1514
lemma any_closest_point_dot:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1515
  assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1516
  shows "(a - x) \<bullet> (y - x) \<le> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1517
proof(rule ccontr) assume "\<not> (a - x) \<bullet> (y - x) \<le> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1518
  then obtain u where u:"u>0" "u\<le>1" "dist (x + u *s (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1519
  let ?z = "(1 - u) *s x + u *s y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1520
  thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_sym field_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1521
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1522
lemma any_closest_point_unique:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1523
  assumes "convex s" "closed s" "x \<in> s" "y \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1524
  "\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1525
  shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1526
  unfolding norm_pths(1) and norm_le_square by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1527
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1528
lemma closest_point_unique:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1529
  assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1530
  shows "x = closest_point s a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1531
  using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"] 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1532
  using closest_point_exists[OF assms(2)] and assms(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1533
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1534
lemma closest_point_dot:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1535
  assumes "convex s" "closed s" "x \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1536
  shows "(a - closest_point s a) \<bullet> (x - closest_point s a) \<le> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1537
  apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1538
  using closest_point_exists[OF assms(2)] and assms(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1539
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1540
lemma closest_point_lt:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1541
  assumes "convex s" "closed s" "x \<in> s" "x \<noteq> closest_point s a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1542
  shows "dist a (closest_point s a) < dist a x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1543
  apply(rule ccontr) apply(rule_tac notE[OF assms(4)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1544
  apply(rule closest_point_unique[OF assms(1-3), of a])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1545
  using closest_point_le[OF assms(2), of _ a] by fastsimp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1546
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1547
lemma closest_point_lipschitz:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1548
  assumes "convex s" "closed s" "s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1549
  shows "dist (closest_point s x) (closest_point s y) \<le> dist x y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1550
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1551
  have "(x - closest_point s x) \<bullet> (closest_point s y - closest_point s x) \<le> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1552
       "(y - closest_point s y) \<bullet> (closest_point s x - closest_point s y) \<le> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1553
    apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1554
    using closest_point_exists[OF assms(2-3)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1555
  thus ?thesis unfolding dist_def and norm_le
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1556
    using dot_pos_le[of "(x - closest_point s x) - (y - closest_point s y)"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1557
    by (auto simp add: dot_sym dot_ladd dot_radd) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1558
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1559
lemma continuous_at_closest_point:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1560
  assumes "convex s" "closed s" "s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1561
  shows "continuous (at x) (closest_point s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1562
  unfolding continuous_at_eps_delta 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1563
  using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1564
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1565
lemma continuous_on_closest_point:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1566
  assumes "convex s" "closed s" "s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1567
  shows "continuous_on t (closest_point s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1568
  apply(rule continuous_at_imp_continuous_on) using continuous_at_closest_point[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1569
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1570
subsection {* Various point-to-set separating/supporting hyperplane theorems. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1571
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1572
lemma supporting_hyperplane_closed_point:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1573
  assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1574
  shows "\<exists>a b. \<exists>y\<in>s. a \<bullet> z < b \<and> (a \<bullet> y = b) \<and> (\<forall>x\<in>s. a \<bullet> x \<ge> b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1575
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1576
  from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1577
  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="(y - z) \<bullet> y" in exI, rule_tac x=y in bexI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1578
    apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1579
    show "(y - z) \<bullet> z < (y - z) \<bullet> y" apply(subst diff_less_iff(1)[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1580
      unfolding dot_rsub[THEN sym] and dot_pos_lt using `y\<in>s` `z\<notin>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1581
  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1582
    fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *s y + u *s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1583
      using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1584
    assume "\<not> (y - z) \<bullet> y \<le> (y - z) \<bullet> x" then obtain v where
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1585
      "v>0" "v\<le>1" "dist (y + v *s (x - y)) z < dist y z" using closer_point_lemma[of z y x] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1586
    thus False using *[THEN spec[where x=v]] by(auto simp add: dist_sym field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1587
  qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1588
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1589
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1590
lemma separating_hyperplane_closed_point:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1591
  assumes "convex s" "closed s" "z \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1592
  shows "\<exists>a b. a \<bullet> z < b \<and> (\<forall>x\<in>s. a \<bullet> x > b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1593
proof(cases "s={}")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1594
  case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1595
    using less_le_trans[OF _ dot_pos_le[of z]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1596
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1597
  case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1598
    using distance_attains_inf[OF assms(2) False] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1599
  show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="(y - z) \<bullet> z + (norm(y - z))\<twosuperior> / 2" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1600
    apply rule defer apply rule proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1601
    fix x assume "x\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1602
    have "\<not> 0 < (z - y) \<bullet> (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1603
      assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *s (x - y)) z < dist y z"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1604
      then obtain u where "u>0" "u\<le>1" "dist (y + u *s (x - y)) z < dist y z" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1605
      thus False using y[THEN bspec[where x="y + u *s (x - y)"]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1606
	using assms(1)[unfolded convex_alt, THEN bspec[where x=y]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1607
	using `x\<in>s` `y\<in>s` by (auto simp add: dist_sym field_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1608
    moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1609
    hence "0 < (y - z) \<bullet> (y - z)" unfolding norm_pow_2 by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1610
    ultimately show "(y - z) \<bullet> z + (norm (y - z))\<twosuperior> / 2 < (y - z) \<bullet> x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1611
      unfolding norm_pow_2 and dlo_simps(3) by (auto simp add: field_simps dot_sym)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1612
  qed(insert `y\<in>s` `z\<notin>s`, auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1613
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1614
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1615
lemma separating_hyperplane_closed_0:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1616
  assumes "convex (s::(real^'n::finite) set)" "closed s" "0 \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1617
  shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. a \<bullet> x > b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1618
  proof(cases "s={}") guess a using UNIV_witness[where 'a='n] ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1619
  case True have "norm ((basis a)::real^'n::finite) = 1" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1620
    using norm_basis and dimindex_ge_1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1621
  thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1622
next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1623
    apply - apply(erule exE)+ unfolding dot_rzero apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1624
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1625
subsection {* Now set-to-set for closed/compact sets. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1626
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1627
lemma separating_hyperplane_closed_compact:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1628
  assumes "convex (s::(real^'n::finite) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1629
  shows "\<exists>a b. (\<forall>x\<in>s. a \<bullet> x < b) \<and> (\<forall>x\<in>t. a \<bullet> x > b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1630
proof(cases "s={}")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1631
  case True
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1632
  obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1633
  obtain z::"real^'n" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1634
  hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1635
  then obtain a b where ab:"a \<bullet> z < b" "\<forall>x\<in>t. b < a \<bullet> x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1636
    using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1637
  thus ?thesis using True by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1638
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1639
  case False then obtain y where "y\<in>s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1640
  obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < a \<bullet> x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1641
    using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1642
    using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1643
  hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + a \<bullet> y < a \<bullet> x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1644
  def k \<equiv> "rsup ((\<lambda>x. a \<bullet> x) ` t)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1645
  show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1646
    apply(rule,rule) defer apply(rule) unfolding dot_lneg and neg_less_iff_less proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1647
    from ab have "((\<lambda>x. a \<bullet> x) ` t) *<= (a \<bullet> y - b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1648
      apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1649
    hence k:"isLub UNIV ((\<lambda>x. a \<bullet> x) ` t) k" unfolding k_def apply(rule_tac rsup) using assms(5) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1650
    fix x assume "x\<in>t" thus "a \<bullet> x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "a \<bullet> x"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1651
  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1652
    fix x assume "x\<in>s" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1653
    hence "k \<le> a \<bullet> x - b" unfolding k_def apply(rule_tac rsup_le) using assms(5)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1654
      unfolding setle_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1655
      using ab[THEN bspec[where x=x]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1656
    thus "k + b / 2 < a \<bullet> x" using `0 < b` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1657
  qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1658
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1659
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1660
lemma separating_hyperplane_compact_closed:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1661
  assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1662
  shows "\<exists>a b. (\<forall>x\<in>s. a \<bullet> x < b) \<and> (\<forall>x\<in>t. a \<bullet> x > b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1663
proof- obtain a b where "(\<forall>x\<in>t. a \<bullet> x < b) \<and> (\<forall>x\<in>s. b < a \<bullet> x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1664
    using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1665
  thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1666
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1667
subsection {* General case without assuming closure and getting non-strict separation. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1668
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1669
lemma separating_hyperplane_set_0:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1670
  assumes "convex s" "(0::real^'n::finite) \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1671
  shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> a \<bullet> x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1672
proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> c \<bullet> x}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1673
  have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1674
    apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1675
    defer apply(rule,rule,erule conjE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1676
    fix f assume as:"f \<subseteq> ?k ` s" "finite f"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1677
    obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1678
    then obtain a b where ab:"a \<noteq> 0" "0 < b"  "\<forall>x\<in>convex hull c. b < a \<bullet> x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1679
      using separating_hyperplane_closed_0[OF convex_convex_hull, of c]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1680
      using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1681
      using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1682
    hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> y \<bullet> x)" apply(rule_tac x="inverse(norm a) *s a" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1683
       using hull_subset[of c convex] unfolding subset_eq and dot_rmult
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1684
       apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1685
       by(auto simp add: dot_sym elim!: ballE) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1686
    thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1687
  qed(insert closed_halfspace_ge, auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1688
  then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1689
  thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: dot_sym) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1690
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1691
lemma separating_hyperplane_sets:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1692
  assumes "convex s" "convex (t::(real^'n::finite) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1693
  shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. a \<bullet> x \<le> b) \<and> (\<forall>x\<in>t. a \<bullet> x \<ge> b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1694
proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1695
  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> a \<bullet> x"  using assms(3-5) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1696
  hence "\<forall>x\<in>t. \<forall>y\<in>s. a \<bullet> y \<le> a \<bullet> x" apply- apply(rule, rule) apply(erule_tac x="x - y" in ballE) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1697
  thus ?thesis apply(rule_tac x=a in exI, rule_tac x="rsup ((\<lambda>x. a \<bullet> x) ` s)" in exI) using `a\<noteq>0`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1698
    apply(rule) apply(rule,rule) apply(rule rsup[THEN isLubD2]) prefer 4 apply(rule,rule rsup_le) unfolding setle_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1699
    prefer 4 using assms(3-5) by blast+ qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1700
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1701
subsection {* More convexity generalities. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1702
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1703
lemma convex_closure: assumes "convex s" shows "convex(closure s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1704
  unfolding convex_def Ball_def closure_sequential
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1705
  apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1706
  apply(rule_tac x="\<lambda>n. u *s xb n + v *s xc n" in exI) apply(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1707
  apply(rule assms[unfolded convex_def, rule_format]) prefer 6
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1708
  apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1709
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1710
lemma convex_interior: assumes "convex s" shows "convex(interior s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1711
  unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1712
  fix x y u assume u:"0 \<le> u" "u \<le> (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1713
  fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1714
  show "\<exists>e>0. ball ((1 - u) *s x + u *s y) e \<subseteq> s" apply(rule_tac x="min d e" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1715
    apply rule unfolding subset_eq defer apply rule proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1716
    fix z assume "z \<in> ball ((1 - u) *s x + u *s y) (min d e)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1717
    hence "(1- u) *s (z - u *s (y - x)) + u *s (z + (1 - u) *s (y - x)) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1718
      apply(rule_tac assms[unfolded convex_alt, rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1719
      using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_def by(auto simp add: ring_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1720
    thus "z \<in> s" using u by (auto simp add: ring_simps) qed(insert u ed(3-4), auto) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1721
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1722
lemma convex_hull_eq_empty: "convex hull s = {} \<longleftrightarrow> s = {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1723
  using hull_subset[of s convex] convex_hull_empty by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1724
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1725
subsection {* Moving and scaling convex hulls. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1726
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1727
lemma convex_hull_translation_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1728
  "convex hull ((\<lambda>x. a + x) ` s) \<subseteq> (\<lambda>x. a + x) ` (convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1729
  apply(rule hull_minimal, rule image_mono, rule hull_subset) unfolding mem_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1730
  using convex_translation[OF convex_convex_hull, of a s] by assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1731
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1732
lemma convex_hull_bilemma: fixes neg
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1733
  assumes "(\<forall>s a. (convex hull (up a s)) \<subseteq> up a (convex hull s))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1734
  shows "(\<forall>s. up a (up (neg a) s) = s) \<and> (\<forall>s. up (neg a) (up a s) = s) \<and> (\<forall>s t a. s \<subseteq> t \<longrightarrow> up a s \<subseteq> up a t)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1735
  \<Longrightarrow> \<forall>s. (convex hull (up a s)) = up a (convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1736
  using assms by(metis subset_antisym) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1737
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1738
lemma convex_hull_translation:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1739
  "convex hull ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1740
  apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1741
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1742
lemma convex_hull_scaling_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1743
 "(convex hull ((\<lambda>x. c *s x) ` s)) \<subseteq> (\<lambda>x. c *s x) ` (convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1744
  apply(rule hull_minimal, rule image_mono, rule hull_subset)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1745
  unfolding mem_def by(rule convex_scaling, rule convex_convex_hull)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1746
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1747
lemma convex_hull_scaling:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1748
  "convex hull ((\<lambda>x. c *s x) ` s) = (\<lambda>x. c *s x) ` (convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1749
  apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1750
  unfolding image_image vector_smult_assoc by(auto simp add:image_constant_conv convex_hull_eq_empty)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1751
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1752
lemma convex_hull_affinity:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1753
  "convex hull ((\<lambda>x. a + c *s x) ` s) = (\<lambda>x. a + c *s x) ` (convex hull s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1754
  unfolding image_image[THEN sym] convex_hull_scaling convex_hull_translation  ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1755
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1756
subsection {* Convex set as intersection of halfspaces. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1757
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1758
lemma convex_halfspace_intersection:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1759
  assumes "closed s" "convex s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1760
  shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. a \<bullet> x \<le> b})}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1761
  apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1762
  fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. a \<bullet> x \<le> b}) \<longrightarrow> x \<in> xa"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1763
  hence "\<forall>a b. s \<subseteq> {x. a \<bullet> x \<le> b} \<longrightarrow> x \<in> {x. a \<bullet> x \<le> b}" by blast
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1764
  thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1765
    apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1766
qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1767
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1768
subsection {* Radon's theorem (from Lars Schewe). *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1769
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1770
lemma radon_ex_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1771
  assumes "finite c" "affine_dependent c"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1772
  shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) c = 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1773
proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1774
  thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult vector_smult_lzero
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1775
    and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1776
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1777
lemma radon_s_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1778
  assumes "finite s" "setsum f s = (0::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1779
  shows "setsum f {x\<in>s. 0 < f x} = - setsum f {x\<in>s. f x < 0}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1780
proof- have *:"\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1781
  show ?thesis unfolding real_add_eq_0_iff[THEN sym] and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1782
    using assms(2) by assumption qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1783
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1784
lemma radon_v_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1785
  assumes "finite s" "setsum f s = 0" "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::real^'n)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1786
  shows "(setsum f {x\<in>s. 0 < g x}) = - setsum f {x\<in>s. g x < 0}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1787
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1788
  have *:"\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1789
  show ?thesis unfolding eq_neg_iff_add_eq_0 and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1790
    using assms(2) by assumption qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1791
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1792
lemma radon_partition:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1793
  assumes "finite c" "affine_dependent c"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1794
  shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1795
  obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0"  "(\<Sum>v\<in>c. u v *s v) = 0" using radon_ex_lemma[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1796
  have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1797
  def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *s setsum (\<lambda>x. u x *s x) {x\<in>c. u x > 0}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1798
  have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1799
    case False hence "u v < 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1800
    thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1801
      case True thus ?thesis using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1802
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1803
      case False hence "setsum u c \<le> setsum (\<lambda>x. if x=v then u v else 0) c" apply(rule_tac setsum_mono) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1804
      thus ?thesis unfolding setsum_delta[OF assms(1)] using uv(2) and `u v < 0` and uv(1) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1805
  qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1806
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1807
  hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding real_less_def apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1808
  moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1809
    "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *s x) = (\<Sum>x\<in>c. u x *s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1810
    using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1811
  hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1812
   "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *s x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *s x)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1813
    unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add:  setsum_Un_zero[OF fin, THEN sym]) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1814
  moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1815
    apply (rule) apply (rule mult_nonneg_nonneg) using * by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1816
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1817
  ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1818
    apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1819
    using assms(1) unfolding vector_smult_assoc[THEN sym] setsum_cmul and z_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1820
    by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1821
  moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1822
    apply (rule) apply (rule mult_nonneg_nonneg) using * by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1823
  hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1824
    apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1825
    using assms(1) unfolding vector_smult_assoc[THEN sym] setsum_cmul and z_def using *
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1826
    by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1827
  ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1828
qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1829
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1830
lemma radon: assumes "affine_dependent c"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1831
  obtains m p where "m\<subseteq>c" "p\<subseteq>c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1832
proof- from assms[unfolded affine_dependent_explicit] guess s .. then guess u ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1833
  hence *:"finite s" "affine_dependent s" and s:"s \<subseteq> c" unfolding affine_dependent_explicit by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1834
  from radon_partition[OF *] guess m .. then guess p ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1835
  thus ?thesis apply(rule_tac that[of p m]) using s by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1836
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1837
subsection {* Helly's theorem. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1838
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1839
lemma helly_induct: fixes f::"(real^'n::finite) set set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1840
  assumes "f hassize n" "n \<ge> CARD('n) + 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1841
  "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1842
  shows "\<Inter> f \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1843
  using assms unfolding hassize_def apply(erule_tac conjE) proof(induct n arbitrary: f)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1844
case (Suc n)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1845
show "\<Inter> f \<noteq> {}" apply(cases "n = CARD('n)") apply(rule Suc(4)[rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1846
  unfolding card_Diff_singleton_if[OF Suc(5)] and Suc(6) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1847
  assume ng:"n \<noteq> CARD('n)" hence "\<exists>X. \<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" apply(rule_tac bchoice) unfolding ex_in_conv
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1848
    apply(rule, rule Suc(1)[rule_format])  unfolding card_Diff_singleton_if[OF Suc(5)] and Suc(6)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1849
    defer apply(rule Suc(3)[rule_format]) defer apply(rule Suc(4)[rule_format]) using Suc(2,5) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1850
  then obtain X where X:"\<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1851
  show ?thesis proof(cases "inj_on X f")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1852
    case False then obtain s t where st:"s\<noteq>t" "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1853
    hence *:"\<Inter> f = \<Inter> (f - {s}) \<inter> \<Inter> (f - {t})" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1854
    show ?thesis unfolding * unfolding ex_in_conv[THEN sym] apply(rule_tac x="X s" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1855
      apply(rule, rule X[rule_format]) using X st by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1856
  next case True then obtain m p where mp:"m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1857
      using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1858
      unfolding card_image[OF True] and Suc(6) using Suc(2,5) and ng by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1859
    have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1860
    then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1861
    hence "f \<union> (g \<union> h) = f" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1862
    hence f:"f = g \<union> h" using inj_on_image_eq_iff[of X f "g \<union> h"] and True
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1863
      unfolding mp(2)[unfolded image_Un[THEN sym] gh] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1864
    have *:"g \<inter> h = {}" using mp(1) unfolding gh using inj_on_image_Int[OF True gh(3,4)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1865
    have "convex hull (X ` h) \<subseteq> \<Inter> g" "convex hull (X ` g) \<subseteq> \<Inter> h"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1866
      apply(rule_tac [!] hull_minimal) using Suc(3) gh(3-4)  unfolding mem_def unfolding subset_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1867
      apply(rule_tac [2] convex_Inter, rule_tac [4] convex_Inter) apply rule prefer 3 apply rule proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1868
      fix x assume "x\<in>X ` g" then guess y unfolding image_iff ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1869
      thus "x\<in>\<Inter>h" using X[THEN bspec[where x=y]] using * f by auto next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1870
      fix x assume "x\<in>X ` h" then guess y unfolding image_iff ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1871
      thus "x\<in>\<Inter>g" using X[THEN bspec[where x=y]] using * f by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1872
    qed(auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1873
    thus ?thesis unfolding f using mp(3)[unfolded gh] by blast qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1874
qed(insert dimindex_ge_1, auto) qed(auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1875
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1876
lemma helly: fixes f::"(real^'n::finite) set set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1877
  assumes "finite f" "card f \<ge> CARD('n) + 1" "\<forall>s\<in>f. convex s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1878
          "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1879
  shows "\<Inter> f \<noteq>{}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1880
  apply(rule helly_induct) unfolding hassize_def using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1881
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1882
subsection {* Convex hull is "preserved" by a linear function. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1883
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1884
lemma convex_hull_linear_image:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1885
  assumes "linear f"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1886
  shows "f ` (convex hull s) = convex hull (f ` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1887
  apply rule unfolding subset_eq ball_simps apply(rule_tac[!] hull_induct, rule hull_inc) prefer 3  
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1888
  apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1889
  apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1890
proof- show "convex {x. f x \<in> convex hull f ` s}" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1891
  unfolding convex_def by(auto simp add: linear_cmul[OF assms]  linear_add[OF assms]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1892
    convex_convex_hull[unfolded convex_def, rule_format]) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1893
  show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1894
    unfolding convex_def by (auto simp add: linear_cmul[OF assms, THEN sym]  linear_add[OF assms, THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1895
qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1896
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1897
lemma in_convex_hull_linear_image:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1898
  assumes "linear f" "x \<in> convex hull s" shows "(f x) \<in> convex hull (f ` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1899
using convex_hull_linear_image[OF assms(1)] assms(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1900
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1901
subsection {* Homeomorphism of all convex compact sets with nonempty interior. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1902
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1903
lemma compact_frontier_line_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1904
  assumes "compact s" "0 \<in> s" "x \<noteq> 0" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1905
  obtains u where "0 \<le> u" "(u *s x) \<in> frontier s" "\<forall>v>u. (v *s x) \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1906
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1907
  obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1908
  let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *s x)}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1909
  have A:"?A = (\<lambda>u. dest_vec1 u *s x) ` {0 .. vec1 (b / norm x)}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1910
    unfolding image_image[of "\<lambda>u. u *s x" "\<lambda>x. dest_vec1 x", THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1911
    unfolding dest_vec1_inverval vec1_dest_vec1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1912
  have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1913
    apply(rule, rule continuous_vmul) unfolding o_def vec1_dest_vec1 apply(rule continuous_at_id) by(rule compact_interval)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1914
  moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *s x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1915
    unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1916
  ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *s x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1917
    "y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1918
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1919
  have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1920
  { fix v assume as:"v > u" "v *s x \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1921
    hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)] 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1922
      using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] and norm_mul by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1923
    hence "norm (v *s x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1924
      apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1925
      using as(1) `u\<ge>0` by(auto simp add:field_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1926
    hence False unfolding obt(3) unfolding norm_mul using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1927
  } note u_max = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1928
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1929
  have "u *s x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *s x" in bexI) unfolding obt(3)[THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1930
    prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *s x" in exI) apply(rule, rule) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1931
    fix e  assume "0 < e" and as:"(u + e / 2 / norm x) *s x \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1932
    hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1933
    thus False using u_max[OF _ as] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1934
  qed(insert `y\<in>s`, auto simp add: dist_def obt(3))
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1935
  thus ?thesis apply(rule_tac that[of u]) apply(rule obt(1), assumption)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1936
    apply(rule,rule,rule ccontr) apply(rule u_max) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1937
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1938
lemma starlike_compact_projective:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1939
  assumes "compact s" "cball (0::real^'n::finite) 1 \<subseteq> s "
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1940
  "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *s x) \<in> (s - frontier s )"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1941
  shows "s homeomorphic (cball (0::real^'n::finite) 1)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1942
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1943
  have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1944
  def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *s x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1945
  have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1946
    using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1947
  have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1948
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1949
  have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1950
    apply rule unfolding pi_def apply(rule continuous_mul) unfolding o_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1951
    apply(rule continuous_at_inv[unfolded o_def]) unfolding continuous_at_vec1_range[unfolded o_def]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1952
    apply(rule,rule) apply(rule_tac x=e in exI) apply(rule,assumption,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1953
    proof- fix e x y assume "0 < e" "norm (y - x::real^'n) < e" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1954
      thus "\<bar>norm y - norm x\<bar> < e" using norm_triangle_ineq3[of y x] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1955
    qed(auto intro!:continuous_at_id)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1956
  def sphere \<equiv> "{x::real^'n. norm x = 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1957
  have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *s x) = pi x" unfolding pi_def sphere_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1958
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1959
  have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1960
  have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *s x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1961
    fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1962
    hence "x\<noteq>0" using `0\<notin>frontier s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1963
    obtain v where v:"0 \<le> v" "v *s x \<in> frontier s" "\<forall>w>v. w *s x \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1964
      using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1965
    have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1966
      assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1967
      assume "v>1" thus False using assms(3)[THEN bspec[where x="v *s x"], THEN spec[where x="inverse v"]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1968
	using v and x and fs unfolding inverse_less_1_iff by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1969
    show "u *s x \<in> s \<longleftrightarrow> u \<le> 1" apply rule  using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1970
      assume "u\<le>1" thus "u *s x \<in> s" apply(cases "u=1")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1971
	using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1972
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1973
  have "\<exists>surf. homeomorphism (frontier s) sphere pi surf"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1974
    apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1975
    apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_ext,rule) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1976
    unfolding inj_on_def prefer 3 apply(rule,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1977
  proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1978
    thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1979
  next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1980
    then obtain u where "0 \<le> u" "u *s x \<in> frontier s" "\<forall>v>u. v *s x \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1981
      using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1982
    thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *s x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1983
  next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1984
    hence xys:"x\<in>s" "y\<in>s" using fs by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1985
    from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1986
    from nor have x:"x = norm x *s ((inverse (norm y)) *s y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1987
    from nor have y:"y = norm y *s ((inverse (norm x)) *s x)" unfolding as(3)[unfolded pi_def] by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1988
    have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1989
      unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1990
    hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1991
      using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1992
      using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1993
      using xys nor by(auto simp add:field_simps divide_le_eq_1 divide_inverse[THEN sym])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1994
    thus "x = y" apply(subst injpi[THEN sym]) using as(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1995
  qed(insert `0 \<notin> frontier s`, auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1996
  then obtain surf where surf:"\<forall>x\<in>frontier s. surf (pi x) = x"  "pi ` frontier s = sphere" "continuous_on (frontier s) pi"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1997
    "\<forall>y\<in>sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf" unfolding homeomorphism_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1998
  
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  1999
  have cont_surfpi:"continuous_on (UNIV -  {0}) (surf \<circ> pi)" apply(rule continuous_on_compose, rule contpi)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2000
    apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2001
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2002
  { fix x assume as:"x \<in> cball (0::real^'n) 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2003
    have "norm x *s surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2004
      case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2005
      thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2006
	apply(rule_tac fs[unfolded subset_eq, rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2007
	unfolding surf(5)[THEN sym] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2008
    next case True thus ?thesis apply rule defer unfolding pi_def apply(rule fs[unfolded subset_eq, rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2009
	unfolding  surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2010
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2011
  { fix x assume "x\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2012
    hence "x \<in> (\<lambda>x. norm x *s surf (pi x)) ` cball 0 1" proof(cases "x=0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2013
      case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2014
    next let ?a = "inverse (norm (surf (pi x)))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2015
      case False hence invn:"inverse (norm x) \<noteq> 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2016
      from False have pix:"pi x\<in>sphere" using pi(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2017
      hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2018
      hence **:"norm x *s (?a *s surf (pi x)) = x" apply(rule_tac vector_mul_lcancel_imp[OF invn]) unfolding pi_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2019
      hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply -
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2020
	apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2021
      have "norm (surf (pi x)) \<noteq> 0" using ** False by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2022
      hence "norm x = norm ((?a * norm x) *s surf (pi x))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2023
	unfolding norm_mul abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2024
      moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *s surf (pi x))" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2025
	unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2026
      moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2027
      hence "dist 0 (inverse (norm (surf (pi x))) *s x) \<le> 1" unfolding dist_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2028
	using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2029
	using False `x\<in>s` by(auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2030
      ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *s x" in bexI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2031
	apply(subst injpi[THEN sym]) unfolding norm_mul abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2032
	unfolding pi(2)[OF `?a > 0`] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2033
    qed } note hom2 = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2034
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2035
  show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *s surf (pi x)"])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2036
    apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2037
    prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2038
    fix x::"real^'n" assume as:"x \<in> cball 0 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2039
    thus "continuous (at x) (\<lambda>x. norm x *s surf (pi x))" proof(cases "x=0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2040
      case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_vec1_norm[THEN spec])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2041
	using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2042
    next guess a using UNIV_witness[where 'a = 'n] ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2043
      obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2044
      hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis a" in ballE) defer apply(erule_tac x="basis a" in ballE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2045
	unfolding Ball_def mem_cball dist_def by (auto simp add: norm_basis[unfolded One_nat_def])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2046
      case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2047
	apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2048
	unfolding norm_0 vector_smult_lzero dist_def diff_0_right norm_mul abs_norm_cancel proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2049
	fix e and x::"real^'n" assume as:"norm x < e / B" "0 < norm x" "0<e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2050
	hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2051
	hence "norm (surf (pi x)) \<le> B" using B fs by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2052
	hence "norm x * norm (surf (pi x)) \<le> norm x * B" using as(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2053
	also have "\<dots> < e / B * B" apply(rule mult_strict_right_mono) using as(1) `B>0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2054
	also have "\<dots> = e" using `B>0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2055
	finally show "norm x * norm (surf (pi x)) < e" by assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2056
      qed(insert `B>0`, auto) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2057
  next { fix x assume as:"surf (pi x) = 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2058
      have "x = 0" proof(rule ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2059
	assume "x\<noteq>0" hence "pi x \<in> sphere" using pi(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2060
	hence "surf (pi x) \<in> frontier s" using surf(5) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2061
	thus False using `0\<notin>frontier s` unfolding as by simp qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2062
    } note surf_0 = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2063
    show "inj_on (\<lambda>x. norm x *s surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2064
      fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *s surf (pi x) = norm y *s surf (pi y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2065
      thus "x=y" proof(cases "x=0 \<or> y=0") 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2066
	case True thus ?thesis using as by(auto elim: surf_0) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2067
	case False
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2068
	hence "pi (surf (pi x)) = pi (surf (pi y))" using as(3)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2069
	  using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2070
	moreover have "pi x \<in> sphere" "pi y \<in> sphere" using pi(1) False by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2071
	ultimately have *:"pi x = pi y" using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]] by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2072
	moreover have "norm x = norm y" using as(3)[unfolded *] using False by(auto dest:surf_0)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2073
	ultimately show ?thesis using injpi by auto qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2074
  qed auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2075
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2076
lemma homeomorphic_convex_compact_lemma: fixes s::"(real^'n::finite) set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2077
  assumes "convex s" "compact s" "cball 0 1 \<subseteq> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2078
  shows "s homeomorphic (cball (0::real^'n) 1)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2079
  apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2080
  fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2081
  hence "u *s x \<in> interior s" unfolding interior_def mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2082
    apply(rule_tac x="ball (u *s x) (1 - u)" in exI) apply(rule, rule open_ball)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2083
    unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2084
    fix y assume "dist (u *s x) y < 1 - u"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2085
    hence "inverse (1 - u) *s (y - u *s x) \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2086
      using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_sym dist_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2087
      unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_mul      
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2088
      apply (rule mult_left_le_imp_le[of "1 - u"])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2089
      unfolding class_semiring.mul_a using `u<1` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2090
    thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *s (y - u *s x)" x "1 - u" u]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2091
      using as unfolding vector_smult_assoc by auto qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2092
  thus "u *s x \<in> s - frontier s" using frontier_def and interior_subset by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2093
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2094
lemma homeomorphic_convex_compact_cball: fixes e::real and s::"(real^'n::finite) set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2095
  assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2096
  shows "s homeomorphic (cball (b::real^'n::finite) e)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2097
proof- obtain a where "a\<in>interior s" using assms(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2098
  then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2099
  let ?d = "inverse d" and ?n = "0::real^'n"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2100
  have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *s (x - a)) ` s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2101
    apply(rule, rule_tac x="d *s x + a" in image_eqI) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2102
    apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2103
    by(auto simp add: mult_right_le_one_le)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2104
  hence "(\<lambda>x. inverse d *s (x - a)) ` s homeomorphic cball ?n 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2105
    using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *s -a + ?d *s x) ` s", OF convex_affinity compact_affinity]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2106
    using assms(1,2) by(auto simp add: uminus_add_conv_diff)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2107
  thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2108
    apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *s -a"]])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2109
    using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2110
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2111
lemma homeomorphic_convex_compact: fixes s::"(real^'n::finite) set" and t::"(real^'n) set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2112
  assumes "convex s" "compact s" "interior s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2113
          "convex t" "compact t" "interior t \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2114
  shows "s homeomorphic t"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2115
  using assms by(meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2116
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2117
subsection {* Epigraphs of convex functions. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2118
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2119
definition "epigraph s (f::real^'n \<Rightarrow> real) = {xy. fstcart xy \<in> s \<and> f(fstcart xy) \<le> dest_vec1 (sndcart xy)}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2120
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2121
lemma mem_epigraph: "(pastecart x (vec1 y)) \<in> epigraph s f \<longleftrightarrow> x \<in> s \<and> f x \<le> y" unfolding epigraph_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2122
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2123
lemma convex_epigraph: 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2124
  "convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2125
  unfolding convex_def convex_on_def unfolding Ball_def forall_pastecart epigraph_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2126
  unfolding mem_Collect_eq fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul fstcart_add fstcart_cmul
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2127
  unfolding Ball_def[symmetric] unfolding dest_vec1_add dest_vec1_cmul
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2128
  apply(subst forall_dest_vec1[THEN sym])+ by(meson real_le_refl real_le_trans add_mono mult_left_mono) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2129
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2130
lemma convex_epigraphI: assumes "convex_on s f" "convex s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2131
  shows "convex(epigraph s f)" using assms unfolding convex_epigraph by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2132
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2133
lemma convex_epigraph_convex: "convex s \<Longrightarrow> (convex_on s f \<longleftrightarrow> convex(epigraph s f))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2134
  using convex_epigraph by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2135
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2136
subsection {* Use this to derive general bound property of convex function. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2137
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2138
lemma forall_of_pastecart:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2139
  "(\<forall>p. P (\<lambda>x. fstcart (p x)) (\<lambda>x. sndcart (p x))) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2140
  apply(erule_tac x="\<lambda>a. pastecart (x a) (y a)" in allE) unfolding o_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2141
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2142
lemma forall_of_pastecart':
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2143
  "(\<forall>p. P (fstcart p) (sndcart p)) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2144
  apply(erule_tac x="pastecart x y" in allE) unfolding o_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2145
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2146
lemma forall_of_dest_vec1: "(\<forall>v. P (\<lambda>x. dest_vec1 (v x))) \<longleftrightarrow> (\<forall>x. P x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2147
  apply rule apply rule apply(erule_tac x="(vec1 \<circ> x)" in allE) unfolding o_def vec1_dest_vec1 by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2148
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2149
lemma forall_of_dest_vec1': "(\<forall>v. P (dest_vec1 v)) \<longleftrightarrow> (\<forall>x. P x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2150
  apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2151
  apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2152
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2153
lemma convex_on:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2154
  assumes "convex s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2155
  shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2156
   f (setsum (\<lambda>i. u i *s x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2157
  unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2158
  unfolding sndcart_setsum[OF finite_atLeastAtMost] fstcart_setsum[OF finite_atLeastAtMost] dest_vec1_setsum[OF finite_atLeastAtMost]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2159
  unfolding fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul fstcart_add fstcart_cmul
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2160
  unfolding dest_vec1_add dest_vec1_cmul apply(subst forall_of_pastecart)+ apply(subst forall_of_dest_vec1)+ apply rule
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2161
  using assms[unfolded convex] apply simp apply(rule,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2162
  apply(erule_tac x=k in allE, erule_tac x=u in allE, erule_tac x=x in allE) apply rule apply rule apply rule defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2163
  apply(rule_tac j="\<Sum>i = 1..k. u i * f (x i)" in real_le_trans)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2164
  defer apply(rule setsum_mono) apply(erule conjE)+ apply(erule_tac x=i in allE)apply(rule mult_left_mono)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2165
  using assms[unfolded convex] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2166
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2167
subsection {* Convexity of general and special intervals. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2168
31281
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2169
lemma is_interval_convex: assumes "is_interval s" shows "convex s"
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2170
  unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2171
  fix x y u v assume as:"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2172
  hence *:"u = 1 - v" "1 - v \<ge> 0" and **:"v = 1 - u" "1 - u \<ge> 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2173
  { fix a b assume "\<not> b \<le> u * a + v * b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2174
    hence "u * a < (1 - v) * b" unfolding not_le using as(4) by(auto simp add: field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2175
    hence "a < b" unfolding * using as(4) *(2) apply(rule_tac mult_left_less_imp_less[of "1 - v"]) by(auto simp add: field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2176
    hence "a \<le> u * a + v * b" unfolding * using as(4) by (auto simp add: field_simps intro!:mult_right_mono)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2177
  } moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2178
  { fix a b assume "\<not> u * a + v * b \<le> a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2179
    hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2180
    hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: ring_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2181
    hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) }
31281
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2182
  ultimately show "u *s x + v *s y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)])
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2183
    using as(3-) dimindex_ge_1 apply- by(auto simp add: vector_component) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2184
31281
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2185
lemma is_interval_connected: "is_interval s \<Longrightarrow> connected s"
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2186
  using is_interval_convex convex_connected by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2187
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2188
lemma convex_interval: "convex {a .. b}" "convex {a<..<b::real^'n::finite}"
31281
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2189
  apply(rule_tac[!] is_interval_convex) using is_interval_interval by auto
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2190
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2191
subsection {* On real^1, is_interval, convex and connected are all equivalent. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2192
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2193
lemma is_interval_1:
31281
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2194
  "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall> x. dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b \<longrightarrow> x \<in> s)"
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2195
  unfolding is_interval_def dest_vec1_def forall_1 by auto
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2196
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2197
lemma is_interval_connected_1: "is_interval s \<longleftrightarrow> connected (s::(real^1) set)"
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2198
  apply(rule, rule is_interval_connected, assumption) unfolding is_interval_1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2199
  apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2200
  fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2201
  hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2202
  let ?halfl = "{z. basis 1 \<bullet> z < dest_vec1 x} " and ?halfr = "{z. basis 1 \<bullet> z > dest_vec1 x} "
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2203
  { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2204
    using as(6) `y\<in>s` by (auto simp add: basis_component field_simps dest_vec1_eq[unfolded dest_vec1_def One_nat_def] dest_vec1_def) }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2205
  moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: basis_component field_simps dest_vec1_def) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2206
  hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2207
  ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2208
    apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2209
    apply(rule, rule open_halfspace_lt, rule, rule open_halfspace_gt) apply(rule, rule, rule ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2210
    by(auto simp add: basis_component field_simps) qed 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2211
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2212
lemma is_interval_convex_1:
31281
b4d4dbc5b04f Corrected definition of is_interval
himmelma
parents: 31279
diff changeset
  2213
  "is_interval s \<longleftrightarrow> convex (s::(real^1) set)" 
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2214
  using is_interval_convex convex_connected is_interval_connected_1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2215
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2216
lemma convex_connected_1:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2217
  "connected s \<longleftrightarrow> convex (s::(real^1) set)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2218
  using is_interval_convex convex_connected is_interval_connected_1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2219
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2220
subsection {* Another intermediate value theorem formulation. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2221
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2222
lemma ivt_increasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n::finite"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2223
  assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f a)$k \<le> y" "y \<le> (f b)$k"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2224
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2225
proof- have "f a \<in> f ` {a..b}" "f b \<in> f ` {a..b}" apply(rule_tac[!] imageI) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2226
    using assms(1) by(auto simp add: vector_less_eq_def dest_vec1_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2227
  thus ?thesis using connected_ivt_component[of "f ` {a..b}" "f a" "f b" k y]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2228
    using connected_continuous_image[OF assms(2) convex_connected[OF convex_interval(1)]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2229
    using assms by(auto intro!: imageI) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2230
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2231
lemma ivt_increasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n::finite"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2232
  assumes "dest_vec1 a \<le> dest_vec1 b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2233
  "\<forall>x\<in>{a .. b}. continuous (at x) f" "f a$k \<le> y" "y \<le> f b$k"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2234
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2235
  apply(rule ivt_increasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2236
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2237
lemma ivt_decreasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n::finite"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2238
  assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f b)$k \<le> y" "y \<le> (f a)$k"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2239
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2240
  apply(subst neg_equal_iff_equal[THEN sym]) unfolding vector_uminus_component[THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2241
  apply(rule ivt_increasing_component_on_1) using assms using continuous_on_neg
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2242
  by(auto simp add:vector_uminus_component)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2243
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2244
lemma ivt_decreasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n::finite"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2245
  assumes "dest_vec1 a \<le> dest_vec1 b" "\<forall>x\<in>{a .. b}. continuous (at x) f" "f b$k \<le> y" "y \<le> f a$k"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2246
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2247
  apply(rule ivt_decreasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2248
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2249
subsection {* A bound within a convex hull, and so an interval. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2250
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2251
lemma convex_on_convex_hull_bound:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2252
  assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2253
  shows "\<forall>x\<in> convex hull s. f x \<le> b" proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2254
  fix x assume "x\<in>convex hull s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2255
  then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s v i) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2256
    unfolding convex_hull_indexed mem_Collect_eq by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2257
  have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2258
    unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2259
    using assms(2) obt(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2260
  thus "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2261
    unfolding obt(2-3) using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2262
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2263
lemma unit_interval_convex_hull:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2264
  "{0::real^'n::finite .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2265
proof- have 01:"{0,1} \<subseteq> convex hull ?points" apply rule apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2266
  { fix n x assume "x\<in>{0::real^'n .. 1}" "n \<le> CARD('n)" "card {i. x$i \<noteq> 0} \<le> n" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2267
  hence "x\<in>convex hull ?points" proof(induct n arbitrary: x)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2268
    case 0 hence "x = 0" apply(subst Cart_eq) apply rule by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2269
    thus "x\<in>convex hull ?points" using 01 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2270
  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2271
    case (Suc n) show "x\<in>convex hull ?points" proof(cases "{i. x$i \<noteq> 0} = {}")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2272
      case True hence "x = 0" unfolding Cart_eq by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2273
      thus "x\<in>convex hull ?points" using 01 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2274
    next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2275
      case False def xi \<equiv> "Min ((\<lambda>i. x$i) ` {i. x$i \<noteq> 0})"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2276
      have "xi \<in> (\<lambda>i. x$i) ` {i. x$i \<noteq> 0}" unfolding xi_def apply(rule Min_in) using False by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2277
      then obtain i where i':"x$i = xi" "x$i \<noteq> 0" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2278
      have i:"\<And>j. x$j > 0 \<Longrightarrow> x$i \<le> x$j"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2279
	unfolding i'(1) xi_def apply(rule_tac Min_le) unfolding image_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2280
	defer apply(rule_tac x=j in bexI) using i' by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2281
      have i01:"x$i \<le> 1" "x$i > 0" using Suc(2)[unfolded mem_interval,rule_format,of i] using i'(2) `x$i \<noteq> 0`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2282
	by(auto simp add: Cart_lambda_beta) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2283
      show ?thesis proof(cases "x$i=1")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2284
	case True have "\<forall>j\<in>{i. x$i \<noteq> 0}. x$j = 1" apply(rule, rule ccontr) unfolding mem_Collect_eq proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2285
	  fix j assume "x $ j \<noteq> 0" "x $ j \<noteq> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2286
	  hence j:"x$j \<in> {0<..<1}" using Suc(2) by(auto simp add: vector_less_eq_def elim!:allE[where x=j])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2287
	  hence "x$j \<in> op $ x ` {i. x $ i \<noteq> 0}" by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2288
	  hence "x$j \<ge> x$i" unfolding i'(1) xi_def apply(rule_tac Min_le) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2289
	  thus False using True Suc(2) j by(auto simp add: vector_less_eq_def elim!:ballE[where x=j]) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2290
        thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2291
	  by(auto simp add: Cart_lambda_beta)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2292
      next let ?y = "\<lambda>j. if x$j = 0 then 0 else (x$j - x$i) / (1 - x$i)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2293
	case False hence *:"x = x$i *s (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *s (\<chi> j. ?y j)" unfolding Cart_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2294
	  by(auto simp add: Cart_lambda_beta vector_add_component vector_smult_component vector_minus_component field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2295
	{ fix j have "x$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $ j - x $ i) / (1 - x $ i)" "(x $ j - x $ i) / (1 - x $ i) \<le> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2296
	    apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2297
	    using Suc(2)[unfolded mem_interval, rule_format, of j] by(auto simp add:field_simps Cart_lambda_beta) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2298
	  hence "0 \<le> ?y j \<and> ?y j \<le> 1" by auto }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2299
	moreover have "i\<in>{j. x$j \<noteq> 0} - {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" using i01 by(auto simp add: Cart_lambda_beta)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2300
	hence "{j. x$j \<noteq> 0} \<noteq> {j. ((\<chi> j. ?y j)::real^'n::finite) $ j \<noteq> 0}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2301
	hence **:"{j. ((\<chi> j. ?y j)::real^'n::finite) $ j \<noteq> 0} \<subset> {j. x$j \<noteq> 0}" apply - apply rule by(auto simp add: Cart_lambda_beta)  
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2302
	have "card {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<le> n" using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2303
	ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2304
	  apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) defer apply(rule Suc(1))
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2305
	  unfolding mem_interval using i01 Suc(3) by (auto simp add: Cart_lambda_beta)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2306
      qed qed qed } note * = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2307
  show ?thesis apply rule defer apply(rule hull_minimal) unfolding subset_eq prefer 3 apply rule 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2308
    apply(rule_tac n2="CARD('n)" in *) prefer 3 apply(rule card_mono) using 01 and convex_interval(1) prefer 5 apply - apply rule
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2309
    unfolding mem_interval apply rule unfolding mem_Collect_eq apply(erule_tac x=i in allE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2310
    by(auto simp add: vector_less_eq_def mem_def[of _ convex]) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2311
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2312
subsection {* And this is a finite set of vertices. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2313
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2314
lemma unit_cube_convex_hull: obtains s where "finite s" "{0 .. 1::real^'n::finite} = convex hull s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2315
  apply(rule that[of "{x::real^'n::finite. \<forall>i. x$i=0 \<or> x$i=1}"])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2316
  apply(rule finite_subset[of _ "(\<lambda>s. (\<chi> i. if i\<in>s then 1::real else 0)::real^'n::finite) ` UNIV"])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2317
  prefer 3 apply(rule unit_interval_convex_hull) apply rule unfolding mem_Collect_eq proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2318
  fix x::"real^'n" assume as:"\<forall>i. x $ i = 0 \<or> x $ i = 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2319
  show "x \<in> (\<lambda>s. \<chi> i. if i \<in> s then 1 else 0) ` UNIV" apply(rule image_eqI[where x="{i. x$i = 1}"])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2320
    unfolding Cart_eq using as by(auto simp add:Cart_lambda_beta) qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2321
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2322
subsection {* Hence any cube (could do any nonempty interval). *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2323
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2324
lemma cube_convex_hull:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2325
  assumes "0 < d" obtains s::"(real^'n::finite) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2326
  let ?d = "(\<chi> i. d)::real^'n"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2327
  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *s y) ` {0 .. 1}" apply(rule set_ext, rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2328
    unfolding image_iff defer apply(erule bexE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2329
    fix y assume as:"y\<in>{x - ?d .. x + ?d}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2330
    { fix i::'n have "x $ i \<le> d + y $ i" "y $ i \<le> d + x $ i" using as[unfolded mem_interval, THEN spec[where x=i]]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2331
	by(auto simp add: vector_component)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2332
      hence "1 \<ge> inverse d * (x $ i - y $ i)" "1 \<ge> inverse d * (y $ i - x $ i)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2333
	apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2334
	using assms by(auto simp add: field_simps right_inverse) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2335
      hence "inverse d * (x $ i * 2) \<le> 2 + inverse d * (y $ i * 2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2336
            "inverse d * (y $ i * 2) \<le> 2 + inverse d * (x $ i * 2)" by(auto simp add:field_simps) }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2337
    hence "inverse (2 * d) *s (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2338
      by(auto simp add: Cart_eq vector_component_simps field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2339
    thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *s z" apply- apply(rule_tac x="inverse (2 * d) *s (y - (x - ?d))" in bexI) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2340
      using assms by(auto simp add: Cart_eq vector_less_eq_def Cart_lambda_beta)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2341
  next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2342
    fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *s z" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2343
    have "\<And>i. 0 \<le> d * z $ i \<and> d * z $ i \<le> d" using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2344
      apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2345
      using assms by(auto simp add: vector_component_simps Cart_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2346
    thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2347
      apply(erule_tac x=i in allE) using assms by(auto simp add:  vector_component_simps Cart_eq) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2348
  obtain s where "finite s" "{0..1::real^'n} = convex hull s" using unit_cube_convex_hull by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2349
  thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *s y)` s"]) unfolding * and convex_hull_affinity by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2350
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2351
subsection {* Bounded convex function on open set is continuous. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2352
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2353
lemma convex_on_bounded_continuous:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2354
  assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2355
  shows "continuous_on s (vec1 o f)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2356
  apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_vec1_range proof(rule,rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2357
  fix x e assume "x\<in>s" "(0::real) < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2358
  def B \<equiv> "abs b + 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2359
  have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2360
    unfolding B_def defer apply(drule assms(3)[rule_format]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2361
  obtain k where "k>0"and k:"cball x k \<subseteq> s" using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]] using `x\<in>s` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2362
  show "\<exists>d>0. \<forall>x'. norm (x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2363
    apply(rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI) apply rule defer proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2364
    fix y assume as:"norm (y - x) < min (k / 2) (e / (2 * B) * k)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2365
    show "\<bar>f y - f x\<bar> < e" proof(cases "y=x")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2366
      case False def t \<equiv> "k / norm (y - x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2367
      have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2368
      have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2369
	apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2370
      { def w \<equiv> "x + t *s (y - x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2371
	have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2372
	  unfolding t_def using `k>0` by(auto simp add: norm_mul simp del: vector_ssub_ldistrib) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2373
	have "(1 / t) *s x + - x + ((t - 1) / t) *s x = (1 / t - 1 + (t - 1) / t) *s x" by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2374
	also have "\<dots> = 0"  using `t>0` by(auto simp add:field_simps simp del:vector_sadd_rdistrib)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2375
	finally have w:"(1 / t) *s w + ((t - 1) / t) *s x = y" unfolding w_def using False and `t>0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2376
	have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2377
	hence "(f w - f x) / t < e"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2378
	  using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2379
	hence th1:"f y - f x < e" apply- apply(rule le_less_trans) defer apply assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2380
	  using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2381
	  using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2382
      moreover 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2383
      { def w \<equiv> "x - t *s (y - x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2384
	have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2385
	  unfolding t_def using `k>0` by(auto simp add: norm_mul simp del: vector_ssub_ldistrib) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2386
	have "(1 / (1 + t)) *s x + (t / (1 + t)) *s x = (1 / (1 + t) + t / (1 + t)) *s x" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2387
	also have "\<dots>=x" using `t>0` by (auto simp add:field_simps simp del:vector_sadd_rdistrib)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2388
	finally have w:"(1 / (1+t)) *s w + (t / (1 + t)) *s y = x" unfolding w_def using False and `t>0` by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2389
	have  "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2390
	hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2391
	have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2392
	  using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2393
	  using `0<t` `2<t` and `y\<in>s` `w\<in>s` by (auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2394
	also have "\<dots> = (f w + t * f y) / (1 + t)" using `t>0` unfolding real_divide_def by (auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2395
	also have "\<dots> < e + f y" using `t>0` * `e>0` by(auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2396
	finally have "f x - f y < e" by auto }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2397
      ultimately show ?thesis by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2398
    qed(insert `0<e`, auto) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2399
  qed(insert `0<e` `0<k` `0<B`, auto simp add:field_simps intro!:mult_pos_pos) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2400
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2401
subsection {* Upper bound on a ball implies upper and lower bounds. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2402
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2403
lemma convex_bounds_lemma:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2404
  assumes "convex_on (cball x e) f"  "\<forall>y \<in> cball x e. f y \<le> b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2405
  shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2406
  apply(rule) proof(cases "0 \<le> e") case True
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2407
  fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *s x - y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2408
  have *:"x - (2 *s x - y) = y - x" by vector
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2409
  have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_def * by(auto simp add: norm_minus_commute)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2410
  have "(1 / 2) *s y + (1 / 2) *s z = x" unfolding z_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2411
  thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2412
    using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2413
next case False fix y assume "y\<in>cball x e" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2414
  hence "dist x y < 0" using False unfolding mem_cball not_le by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2415
  thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using dist_pos_le[of x y] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2416
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2417
subsection {* Hence a convex function on an open set is continuous. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2418
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2419
lemma convex_on_continuous:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2420
  assumes "open (s::(real^'n::finite) set)" "convex_on s f" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2421
  shows "continuous_on s (vec1 \<circ> f)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2422
  unfolding continuous_on_eq_continuous_at[OF assms(1)] proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2423
  note dimge1 = dimindex_ge_1[where 'a='n]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2424
  fix x assume "x\<in>s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2425
  then obtain e where e:"cball x e \<subseteq> s" "e>0" using assms(1) unfolding open_contains_cball by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2426
  def d \<equiv> "e / real CARD('n)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2427
  have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2428
  let ?d = "(\<chi> i. d)::real^'n"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2429
  obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2430
  have "x\<in>{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2431
  hence "c\<noteq>{}" apply(rule_tac ccontr) using c by(auto simp add:convex_hull_empty)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2432
  def k \<equiv> "Max (f ` c)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2433
  have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2434
    apply(rule subset_trans[OF _ e(1)]) unfolding subset_eq mem_cball proof 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2435
    fix z assume z:"z\<in>{x - ?d..x + ?d}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2436
    have e:"e = setsum (\<lambda>i. d) (UNIV::'n set)" unfolding setsum_constant d_def using dimge1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2437
      by (metis card_enum field_simps d_def not_one_le_zero of_nat_le_iff real_eq_of_nat real_of_nat_1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2438
    show "dist x z \<le> e" unfolding dist_def e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2439
      using z[unfolded mem_interval] apply(erule_tac x=i in allE) by(auto simp add:field_simps vector_component_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2440
  hence k:"\<forall>y\<in>{x - ?d..x + ?d}. f y \<le> k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2441
    unfolding k_def apply(rule, rule Max_ge) using c(1) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2442
  have "d \<le> e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 using real_dimindex_ge_1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2443
  hence dsube:"cball x d \<subseteq> cball x e" unfolding subset_eq Ball_def mem_cball by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2444
  have conv:"convex_on (cball x d) f" apply(rule convex_on_subset, rule convex_on_subset[OF assms(2)]) apply(rule e(1)) using dsube by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2445
  hence "\<forall>y\<in>cball x d. abs (f y) \<le> k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2446
    fix y assume y:"y\<in>cball x d"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2447
    { fix i::'n have "x $ i - d \<le> y $ i"  "y $ i \<le> x $ i + d" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2448
	using order_trans[OF component_le_norm y[unfolded mem_cball dist_def], of i] by(auto simp add: vector_component)  }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2449
    thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2450
      by(auto simp add: vector_component_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2451
  hence "continuous_on (ball x d) (vec1 \<circ> f)" apply(rule_tac convex_on_bounded_continuous)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2452
    apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2453
  thus "continuous (at x) (vec1 \<circ> f)" unfolding continuous_on_eq_continuous_at[OF open_ball] using `d>0` by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2454
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2455
subsection {* Line segments, starlike sets etc.                                         *)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2456
(* Use the same overloading tricks as for intervals, so that                 *)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2457
(* segment[a,b] is closed and segment(a,b) is open relative to affine hull. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2458
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2459
definition "midpoint a b = (inverse (2::real)) *s (a + b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2460
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2461
definition "open_segment a b = {(1 - u) *s a + u *s b | u::real.  0 < u \<and> u < 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2462
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2463
definition "closed_segment a b = {(1 - u) *s a + u *s b | u::real. 0 \<le> u \<and> u \<le> 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2464
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2465
definition "between = (\<lambda> (a,b). closed_segment a b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2466
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2467
lemmas segment = open_segment_def closed_segment_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2468
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2469
definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2470
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2471
lemma midpoint_refl: "midpoint x x = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2472
  unfolding midpoint_def unfolding vector_add_ldistrib unfolding vector_sadd_rdistrib[THEN sym] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2473
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2474
lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2475
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2476
lemma dist_midpoint:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2477
  "dist a (midpoint a b) = (dist a b) / 2" (is ?t1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2478
  "dist b (midpoint a b) = (dist a b) / 2" (is ?t2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2479
  "dist (midpoint a b) a = (dist a b) / 2" (is ?t3)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2480
  "dist (midpoint a b) b = (dist a b) / 2" (is ?t4)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2481
proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2482
  have *: "\<And>x y::real^'n::finite. 2 *s x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2483
  have **:"\<And>x y::real^'n::finite. 2 *s x =   y \<Longrightarrow> norm x = (norm y) / 2" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2484
  show ?t1 unfolding midpoint_def dist_def apply (rule **) by(auto,vector)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2485
  show ?t2 unfolding midpoint_def dist_def apply (rule *)  by(auto,vector)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2486
  show ?t3 unfolding midpoint_def dist_def apply (rule *)  by(auto,vector)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2487
  show ?t4 unfolding midpoint_def dist_def apply (rule **) by(auto,vector) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2488
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2489
lemma midpoint_eq_endpoint:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2490
  "midpoint a b = a \<longleftrightarrow> a = (b::real^'n::finite)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2491
  "midpoint a b = b \<longleftrightarrow> a = b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2492
  unfolding dist_eq_0[THEN sym] dist_midpoint by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2493
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2494
lemma convex_contains_segment:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2495
  "convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. closed_segment a b \<subseteq> s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2496
  unfolding convex_alt closed_segment_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2497
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2498
lemma convex_imp_starlike:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2499
  "convex s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> starlike s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2500
  unfolding convex_contains_segment starlike_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2501
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2502
lemma segment_convex_hull:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2503
 "closed_segment a b = convex hull {a,b}" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2504
  have *:"\<And>x. {x} \<noteq> {}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2505
  have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2506
  show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_ext)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2507
    unfolding mem_Collect_eq apply(rule,erule exE) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2508
    apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2509
    apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2510
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2511
lemma convex_segment: "convex (closed_segment a b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2512
  unfolding segment_convex_hull by(rule convex_convex_hull)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2513
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2514
lemma ends_in_segment: "a \<in> closed_segment a b" "b \<in> closed_segment a b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2515
  unfolding segment_convex_hull apply(rule_tac[!] hull_subset[unfolded subset_eq, rule_format]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2516
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2517
lemma segment_furthest_le:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2518
  assumes "x \<in> closed_segment a b" shows "norm(y - x) \<le> norm(y - a) \<or>  norm(y - x) \<le> norm(y - b)" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2519
  obtain z where "z\<in>{a, b}" "norm (x - y) \<le> norm (z - y)" using simplex_furthest_le[of "{a, b}" y]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2520
    using assms[unfolded segment_convex_hull] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2521
  thus ?thesis by(auto simp add:norm_minus_commute) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2522
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2523
lemma segment_bound:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2524
  assumes "x \<in> closed_segment a b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2525
  shows "norm(x - a) \<le> norm(b - a)" "norm(x - b) \<le> norm(b - a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2526
  using segment_furthest_le[OF assms, of a]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2527
  using segment_furthest_le[OF assms, of b]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2528
  by (auto simp add:norm_minus_commute) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2529
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2530
lemma segment_refl:"closed_segment a a = {a}" unfolding segment by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2531
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2532
lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2533
  unfolding between_def mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2534
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2535
lemma between:"between (a,b) (x::real^'n::finite) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2536
proof(cases "a = b")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2537
  case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2538
    by(auto simp add:segment_refl dist_sym) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2539
  case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2540
  have *:"\<And>u. a - ((1 - u) *s a + u *s b) = u *s (a - b)" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2541
  show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2542
    apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2543
      fix u assume as:"x = (1 - u) *s a + u *s b" "0 \<le> u" "u \<le> 1" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2544
      hence *:"a - x = u *s (a - b)" "x - b = (1 - u) *s (a - b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2545
	unfolding as(1) by(auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2546
      show "norm (a - x) *s (x - b) = norm (x - b) *s (a - x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2547
	unfolding norm_minus_commute[of x a] * norm_mul Cart_eq using as(2,3)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2548
	by(auto simp add: vector_component_simps field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2549
    next assume as:"dist a b = dist a x + dist x b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2550
      have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] unfolding as[unfolded dist_def] norm_ge_zero by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2551
      thus "\<exists>u. x = (1 - u) *s a + u *s b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2552
	unfolding dist_def Cart_eq apply- apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 proof rule
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2553
	  fix i::'n have "((1 - norm (a - x) / norm (a - b)) *s a + (norm (a - x) / norm (a - b)) *s b) $ i =
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2554
	    ((norm (a - b) - norm (a - x)) * (a $ i) + norm (a - x) * (b $ i)) / norm (a - b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2555
	    using Fal by(auto simp add:vector_component_simps field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2556
	  also have "\<dots> = x$i" apply(rule divide_eq_imp[OF Fal])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2557
	    unfolding as[unfolded dist_def] using as[unfolded dist_triangle_eq Cart_eq,rule_format, of i]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2558
	    by(auto simp add:field_simps vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2559
	  finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *s a + (norm (a - x) / norm (a - b)) *s b) $ i" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2560
	qed(insert Fal2, auto) qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2561
31279
4ae81233cf69 Corrected error in Convex_Euclidean_Space
himmelma
parents: 31278
diff changeset
  2562
lemma between_midpoint: fixes a::"real^'n::finite" shows
31276
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2563
  "between (a,b) (midpoint a b)" (is ?t1) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2564
  "between (b,a) (midpoint a b)" (is ?t2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2565
proof- have *:"\<And>x y z. x = (1/2::real) *s z \<Longrightarrow> y = (1/2) *s z \<Longrightarrow> norm z = norm x + norm y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2566
  show ?t1 ?t2 unfolding between midpoint_def dist_def apply(rule_tac[!] *)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2567
    by(auto simp add:field_simps Cart_eq vector_component_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2568
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2569
lemma between_mem_convex_hull:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2570
  "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2571
  unfolding between_mem_segment segment_convex_hull ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2572
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2573
subsection {* Shrinking towards the interior of a convex set. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2574
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2575
lemma mem_interior_convex_shrink:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2576
  assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2577
  shows "x - e *s (x - c) \<in> interior s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2578
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2579
  show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2580
    apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2581
    fix y assume as:"dist (x - e *s (x - c)) y < e * d"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2582
    have *:"y = (1 - (1 - e)) *s ((1 / e) *s y - ((1 - e) / e) *s x) + (1 - e) *s x" using `e>0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2583
    have "dist c ((1 / e) *s y - ((1 - e) / e) *s x) = abs(1/e) * norm (e *s c - y + (1 - e) *s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2584
      unfolding dist_def unfolding norm_mul[THEN sym] apply(rule norm_eqI) using `e>0`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2585
      by(auto simp add:vector_component_simps Cart_eq field_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2586
    also have "\<dots> = abs(1/e) * norm (x - e *s (x - c) - y)" by(auto intro!:norm_eqI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2587
    also have "\<dots> < d" using as[unfolded dist_def] and `e>0`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2588
      by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2589
    finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2590
      apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2591
  qed(rule mult_pos_pos, insert `e>0` `d>0`, auto) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2592
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2593
lemma mem_interior_closure_convex_shrink:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2594
  assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2595
  shows "x - e *s (x - c) \<in> interior s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2596
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2597
  have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2598
    case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2599
    case False hence x:"x islimpt s" using assms(3)[unfolded closure_def] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2600
    show ?thesis proof(cases "e=1")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2601
      case True obtain y where "y\<in>s" "y \<noteq> x" "dist y x < 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2602
	using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2603
      thus ?thesis apply(rule_tac x=y in bexI) unfolding True using `d>0` by auto next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2604
      case False hence "0 < e * d / (1 - e)" and *:"1 - e > 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2605
	using `e\<le>1` `e>0` `d>0` by(auto intro!:mult_pos_pos divide_pos_pos)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2606
      then obtain y where "y\<in>s" "y \<noteq> x" "dist y x < e * d / (1 - e)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2607
	using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2608
      thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_def using pos_less_divide_eq[OF *] by auto qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2609
  then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2610
  def z \<equiv> "c + ((1 - e) / e) *s (x - y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2611
  have *:"x - e *s (x - c) = y - e *s (y - z)" unfolding z_def using `e>0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2612
  have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2613
    unfolding interior_open[OF open_ball] mem_ball z_def dist_def using y and assms(4,5)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2614
    by(auto simp del:vector_ssub_ldistrib simp add:field_simps norm_minus_commute) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2615
  thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2616
    using assms(1,4-5) `y\<in>s` by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2617
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2618
subsection {* Some obvious but surprisingly hard simplex lemmas. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2619
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2620
lemma simplex:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2621
  assumes "finite s" "0 \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2622
  shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *s x) s = y)}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2623
  unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2624
  apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2625
  apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2626
  unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2627
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2628
lemma std_simplex:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2629
  "convex hull (insert 0 { basis i | i. i\<in>UNIV}) =
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2630
        {x::real^'n::finite . (\<forall>i. 0 \<le> x$i) \<and> setsum (\<lambda>i. x$i) UNIV \<le> 1 }" (is "convex hull (insert 0 ?p) = ?s")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2631
proof- let ?D = "UNIV::'n set"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2632
  have "0\<notin>?p" by(auto simp add: basis_nonzero)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2633
  have "{(basis i)::real^'n |i. i \<in> ?D} = basis ` ?D" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2634
  note sumbas = this  setsum_reindex[OF basis_inj, unfolded o_def]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2635
  show ?thesis unfolding simplex[OF finite_stdbasis `0\<notin>?p`] apply(rule set_ext) unfolding mem_Collect_eq apply rule
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2636
    apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2637
    fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *s x) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2638
    have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2639
    hence **:"setsum u {basis i |i. i \<in> ?D} = setsum (op $ x) ?D" unfolding sumbas by(rule_tac setsum_cong, auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2640
    show " (\<forall>i. 0 \<le> x $ i) \<and> setsum (op $ x) ?D \<le> 1" apply - proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2641
      fix i::'n show "0 \<le> x$i" unfolding *[rule_format,of i,THEN sym] apply(rule_tac as(1)[rule_format]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2642
    qed(insert as(2)[unfolded **], auto)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2643
  next fix x::"real^'n" assume as:"\<forall>i. 0 \<le> x $ i" "setsum (op $ x) ?D \<le> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2644
    show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *s x) = x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2645
      apply(rule_tac x="\<lambda>y. y \<bullet> x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2646
      unfolding sumbas using as(2) and basis_expansion_unique by(auto simp add:dot_basis) qed qed 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2647
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2648
lemma interior_std_simplex:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2649
  "interior (convex hull (insert 0 { basis i| i. i\<in>UNIV})) =
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2650
  {x::real^'n::finite. (\<forall>i. 0 < x$i) \<and> setsum (\<lambda>i. x$i) UNIV < 1 }"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2651
  apply(rule set_ext) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2652
  unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2653
  fix x::"real^'n" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x. 0 \<le> xa $ x) \<and> setsum (op $ xa) UNIV \<le> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2654
  show "(\<forall>xa. 0 < x $ xa) \<and> setsum (op $ x) UNIV < 1" apply(rule,rule) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2655
    fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *s basis i"]] and `e>0`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2656
      unfolding dist_def by(auto simp add: norm_basis vector_component_simps basis_component elim:allE[where x=i])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2657
  next guess a using UNIV_witness[where 'a='n] ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2658
    have **:"dist x (x + (e / 2) *s basis a) < e" using  `e>0` and norm_basis[of a]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2659
      unfolding dist_def by(auto simp add: vector_component_simps basis_component intro!: mult_strict_left_mono_comm)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2660
    have "\<And>i. (x + (e / 2) *s basis a) $ i = x$i + (if i = a then e/2 else 0)" by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2661
    hence *:"setsum (op $ (x + (e / 2) *s basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2662
    have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *s basis a)) UNIV" unfolding * setsum_addf
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2663
      using `0<e` dimindex_ge_1 by(auto simp add: setsum_delta')
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2664
    also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2665
    finally show "setsum (op $ x) UNIV < 1" by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2666
next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2667
  fix x::"real^'n::finite" assume as:"\<forall>i. 0 < x $ i" "setsum (op $ x) UNIV < 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2668
  guess a using UNIV_witness[where 'a='b] ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2669
  let ?d = "(1 - setsum (op $ x) UNIV) / real (CARD('n))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2670
  have "Min ((op $ x) ` UNIV) > 0" apply(rule Min_grI) using as(1) dimindex_ge_1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2671
  moreover have"?d > 0" apply(rule divide_pos_pos) using as(2) using dimindex_ge_1 by(auto simp add: Suc_le_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2672
  ultimately show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> (\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2673
    apply(rule_tac x="min (Min ((op $ x) ` UNIV)) ?D" in exI) apply rule defer apply(rule,rule) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2674
    fix y assume y:"dist x y < min (Min (op $ x ` UNIV)) ?d"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2675
    have "setsum (op $ y) UNIV \<le> setsum (\<lambda>i. x$i + ?d) UNIV" proof(rule setsum_mono)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2676
      fix i::'n have "abs (y$i - x$i) < ?d" apply(rule le_less_trans) using component_le_norm[of "y - x" i]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2677
	using y[unfolded min_less_iff_conj dist_def, THEN conjunct2] by(auto simp add:vector_component_simps norm_minus_commute)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2678
      thus "y $ i \<le> x $ i + ?d" by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2679
    also have "\<dots> \<le> 1" unfolding setsum_addf setsum_constant card_enum real_eq_of_nat using dimindex_ge_1 by(auto simp add: Suc_le_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2680
    finally show "(\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" apply- proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2681
      fix i::'n have "norm (x - y) < x$i" using y[unfolded min_less_iff_conj dist_def, THEN conjunct1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2682
	using Min_gr_iff[of "op $ x ` dimset x"] dimindex_ge_1 by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2683
      thus "0 \<le> y$i" using component_le_norm[of "x - y" i] and as(1)[rule_format, of i] by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2684
    qed auto qed auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2685
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2686
lemma interior_std_simplex_nonempty: obtains a::"real^'n::finite" where
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2687
  "a \<in> interior(convex hull (insert 0 {basis i | i . i \<in> UNIV}))" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2688
  let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b. inverse (2 * real CARD('n)) *s b) {(basis i) | i. i \<in> ?D}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2689
  have *:"{basis i | i. i \<in> ?D} = basis ` ?D" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2690
  { fix i have "?a $ i = inverse (2 * real CARD('n))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2691
    unfolding setsum_component vector_smult_component and * and setsum_reindex[OF basis_inj] and o_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2692
    apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real CARD('n)) else 0) ?D"]) apply(rule setsum_cong2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2693
      unfolding setsum_delta'[OF finite_UNIV[where 'a='n]] and real_dimindex_ge_1[where 'n='n] by(auto simp add: basis_component[of i]) }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2694
  note ** = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2695
  show ?thesis apply(rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2696
    fix i::'n show "0 < ?a $ i" unfolding ** using dimindex_ge_1 by(auto simp add: Suc_le_eq) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2697
    have "setsum (op $ ?a) ?D = setsum (\<lambda>i. inverse (2 * real CARD('n))) ?D" by(rule setsum_cong2, rule **) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2698
    also have "\<dots> < 1" unfolding setsum_constant card_enum real_eq_of_nat real_divide_def[THEN sym] by (auto simp add:field_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2699
    finally show "setsum (op $ ?a) ?D < 1" by auto qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2700
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2701
subsection {* Paths. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2702
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2703
definition "path (g::real^1 \<Rightarrow> real^'n::finite) \<longleftrightarrow> continuous_on {0 .. 1} g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2704
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2705
definition "pathstart (g::real^1 \<Rightarrow> real^'n) = g 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2706
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2707
definition "pathfinish (g::real^1 \<Rightarrow> real^'n) = g 1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2708
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2709
definition "path_image (g::real^1 \<Rightarrow> real^'n) = g ` {0 .. 1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2710
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2711
definition "reversepath (g::real^1 \<Rightarrow> real^'n) = (\<lambda>x. g(1 - x))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2712
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2713
definition joinpaths:: "(real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n)" (infixr "+++" 75)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2714
  where "joinpaths g1 g2 = (\<lambda>x. if dest_vec1 x \<le> ((1 / 2)::real) then g1 (2 *s x) else g2(2 *s x - 1))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2715
definition "simple_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2716
  (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2717
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2718
definition "injective_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow>
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2719
  (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2720
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2721
subsection {* Some lemmas about these concepts. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2722
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2723
lemma injective_imp_simple_path:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2724
  "injective_path g \<Longrightarrow> simple_path g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2725
  unfolding injective_path_def simple_path_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2726
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2727
lemma path_image_nonempty: "path_image g \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2728
  unfolding path_image_def image_is_empty interval_eq_empty by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2729
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2730
lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2731
  unfolding pathstart_def path_image_def apply(rule imageI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2732
  unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2733
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2734
lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2735
  unfolding pathfinish_def path_image_def apply(rule imageI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2736
  unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2737
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2738
lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2739
  unfolding path_def path_image_def apply(rule connected_continuous_image, assumption)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2740
  by(rule convex_connected, rule convex_interval)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2741
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2742
lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2743
  unfolding path_def path_image_def apply(rule compact_continuous_image, assumption)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2744
  by(rule compact_interval)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2745
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2746
lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2747
  unfolding reversepath_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2748
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2749
lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2750
  unfolding pathstart_def reversepath_def pathfinish_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2751
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2752
lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2753
  unfolding pathstart_def reversepath_def pathfinish_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2754
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2755
lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2756
  unfolding pathstart_def joinpaths_def pathfinish_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2757
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2758
lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2759
  have "2 *s 1 - 1 = (1::real^1)" unfolding Cart_eq by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2760
  thus ?thesis unfolding pathstart_def joinpaths_def pathfinish_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2761
    unfolding vec_1[THEN sym] dest_vec1_vec by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2762
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2763
lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2764
  have *:"\<And>g. path_image(reversepath g) \<subseteq> path_image g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2765
    unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE)  
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2766
    apply(rule_tac x="1 - xa" in bexI) by(auto simp add:vector_less_eq_def vector_component_simps elim!:ballE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2767
  show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2768
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2769
lemma path_reversepath[simp]: "path(reversepath g) \<longleftrightarrow> path g" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2770
  have *:"\<And>g. path g \<Longrightarrow> path(reversepath g)" unfolding path_def reversepath_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2771
    apply(rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2772
    apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2773
    apply(rule continuous_on_subset[of "{0..1}"], assumption)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2774
    by (auto, auto simp add:vector_less_eq_def vector_component_simps elim!:ballE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2775
  show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2776
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2777
lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2778
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2779
lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow>  path g1 \<and> path g2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2780
  unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2781
  assume as:"continuous_on {0..1} (g1 +++ g2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2782
  have *:"g1 = (\<lambda>x. g1 (2 *s x)) \<circ> (\<lambda>x. (1/2) *s x)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2783
         "g2 = (\<lambda>x. g2 (2 *s x - 1)) \<circ> (\<lambda>x. (1/2) *s (x + 1))" unfolding o_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2784
  have "op *s (1 / 2) ` {0::real^1..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *s (x + 1)) ` {(0::real^1)..1} \<subseteq> {0..1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2785
    unfolding image_smult_interval by (auto, auto simp add:vector_less_eq_def vector_component_simps elim!:ballE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2786
  thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2787
    apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2788
    apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2789
    apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2790
    apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2791
    apply(rule) defer apply rule proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2792
    fix x assume "x \<in> op *s (1 / 2) ` {0::real^1..1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2793
    hence "dest_vec1 x \<le> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2794
    thus "(g1 +++ g2) x = g1 (2 *s x)" unfolding joinpaths_def by auto next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2795
    fix x assume "x \<in> (\<lambda>x. (1 / 2) *s (x + 1)) ` {0::real^1..1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2796
    hence "dest_vec1 x \<ge> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2797
    thus "(g1 +++ g2) x = g2 (2 *s x - 1)" proof(cases "dest_vec1 x = 1 / 2")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2798
      case True hence "x = (1/2) *s 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2799
      thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2800
    qed (auto simp add:le_less joinpaths_def) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2801
next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2802
  have *:"{0 .. 1::real^1} = {0.. (1/2)*s 1} \<union> {(1/2) *s 1 .. 1}" by(auto simp add: vector_component_simps) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2803
  have **:"op *s 2 ` {0..(1 / 2) *s 1} = {0..1::real^1}" apply(rule set_ext, rule) unfolding image_iff 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2804
    defer apply(rule_tac x="(1/2)*s x" in bexI) by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2805
  have ***:"(\<lambda>x. 2 *s x - 1) ` {(1 / 2) *s 1..1} = {0..1::real^1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2806
    unfolding image_affinity_interval[of _ "- 1", unfolded diff_def[symmetric]] and interval_eq_empty_1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2807
    by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2808
  have ****:"\<And>x::real^1. x $ 1 * 2 = 1 \<longleftrightarrow> x = (1/2) *s 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2809
  show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply(rule closed_interval)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2810
    show "continuous_on {0..(1 / 2) *s 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *s x)"]) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2811
      unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2812
      unfolding ** apply(rule as(1)) unfolding joinpaths_def by(auto simp add: vector_component_simps) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2813
    show "continuous_on {(1/2)*s1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *s x - 1)"]) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2814
      apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2815
      unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2816
      by(auto simp add: vector_component_simps ****) qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2817
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2818
lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2819
  fix x assume "x \<in> path_image (g1 +++ g2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2820
  then obtain y where y:"y\<in>{0..1}" "x = (if dest_vec1 y \<le> 1 / 2 then g1 (2 *s y) else g2 (2 *s y - 1))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2821
    unfolding path_image_def image_iff joinpaths_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2822
  thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "dest_vec1 y \<le> 1/2")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2823
    apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2824
    by(auto intro!: imageI simp add: vector_component_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2825
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2826
lemma subset_path_image_join:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2827
  assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s" shows "path_image(g1 +++ g2) \<subseteq> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2828
  using path_image_join_subset[of g1 g2] and assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2829
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2830
lemma path_image_join:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2831
  assumes "path g1" "path g2" "pathfinish g1 = pathstart g2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2832
  shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2833
apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2834
  fix x assume "x \<in> path_image g1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2835
  then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2836
  thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2837
    apply(rule_tac x="(1/2) *s y" in bexI) by(auto simp add: vector_component_simps) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2838
  fix x assume "x \<in> path_image g2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2839
  then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2840
  moreover have *:"y $ 1 = 0 \<Longrightarrow> y = 0" unfolding Cart_eq by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2841
  ultimately show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2842
    apply(rule_tac x="(1/2) *s (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2843
    by(auto simp add: vector_component_simps) qed 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2844
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2845
lemma not_in_path_image_join:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2846
  assumes "x \<notin> path_image g1" "x \<notin> path_image g2" shows "x \<notin> path_image(g1 +++ g2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2847
  using assms and path_image_join_subset[of g1 g2] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2848
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2849
lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2850
  using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2851
  apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2852
  unfolding mem_interval_1 by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2853
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2854
lemma simple_path_join_loop:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2855
  assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2856
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2857
  shows "simple_path(g1 +++ g2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2858
unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2859
  note inj = assms(1,2)[unfolded injective_path_def, rule_format]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2860
  fix x y::"real^1" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2861
  show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x$1 \<le> 1/2",case_tac[!] "y$1 \<le> 1/2", unfold not_le)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2862
    assume as:"x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2863
    hence "g1 (2 *s x) = g1 (2 *s y)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2864
    moreover have "2 *s x \<in> {0..1}" "2 *s y \<in> {0..1}" using xy(1,2) as
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2865
      unfolding mem_interval_1 dest_vec1_def by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2866
    ultimately show ?thesis using inj(1)[of "2*s x" "2*s y"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2867
  next assume as:"x $ 1 > 1 / 2" "y $ 1 > 1 / 2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2868
    hence "g2 (2 *s x - 1) = g2 (2 *s y - 1)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2869
    moreover have "2 *s x - 1 \<in> {0..1}" "2 *s y - 1 \<in> {0..1}" using xy(1,2) as
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2870
      unfolding mem_interval_1 dest_vec1_def by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2871
    ultimately show ?thesis using inj(2)[of "2*s x - 1" "2*s y - 1"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2872
  next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2873
    hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2874
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2875
    moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2876
      using inj(2)[of "2 *s y - 1" 0] and xy(2)[unfolded mem_interval_1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2877
      apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2878
    ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2879
    hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1)[unfolded mem_interval_1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2880
      using inj(1)[of "2 *s x" 0] by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2881
    moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2882
      unfolding joinpaths_def pathfinish_def using as(2) and xy(2)[unfolded mem_interval_1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2883
      using inj(2)[of "2 *s y - 1" 1] by (auto simp add:vector_component_simps Cart_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2884
    ultimately show ?thesis by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2885
  next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2886
    hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2887
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2888
    moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2889
      using inj(2)[of "2 *s x - 1" 0] and xy(1)[unfolded mem_interval_1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2890
      apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2891
    ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2892
    hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2)[unfolded mem_interval_1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2893
      using inj(1)[of "2 *s y" 0] by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2894
    moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2895
      unfolding joinpaths_def pathfinish_def using as(1) and xy(1)[unfolded mem_interval_1]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2896
      using inj(2)[of "2 *s x - 1" 1] by(auto simp add:vector_component_simps Cart_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2897
    ultimately show ?thesis by auto qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2898
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2899
lemma injective_path_join:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2900
  assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2901
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2902
  shows "injective_path(g1 +++ g2)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2903
  unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2904
  note inj = assms(1,2)[unfolded injective_path_def, rule_format]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2905
  fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2906
  show "x = y" proof(cases "x$1 \<le> 1/2", case_tac[!] "y$1 \<le> 1/2", unfold not_le)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2907
    assume "x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2" thus ?thesis using inj(1)[of "2*s x" "2*s y"] and xy
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2908
      unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2909
  next assume "x $ 1 > 1 / 2" "y $ 1 > 1 / 2" thus ?thesis using inj(2)[of "2*s x - 1" "2*s y - 1"] and xy
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2910
      unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2911
  next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2912
    hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2913
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2914
    hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2915
    thus ?thesis using as and inj(1)[of "2 *s x" 1] inj(2)[of "2 *s y - 1" 0] and xy(1,2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2916
      unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2917
      by(auto simp add:vector_component_simps Cart_eq forall_1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2918
  next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2919
    hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2920
      using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2921
    hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2922
    thus ?thesis using as and inj(2)[of "2 *s x - 1" 0] inj(1)[of "2 *s y" 1] and xy(1,2)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2923
      unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2924
      by(auto simp add:vector_component_simps forall_1 Cart_eq) qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2925
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2926
lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2927
 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2928
subsection {* Reparametrizing a closed curve to start at some chosen point. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2929
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2930
definition "shiftpath a (f::real^1 \<Rightarrow> real^'n) =
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2931
  (\<lambda>x. if dest_vec1 (a + x) \<le> 1 then f(a + x) else f(a + x - 1))"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2932
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2933
lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2934
  unfolding pathstart_def shiftpath_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2935
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2936
(** move this **)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2937
declare forall_1[simp] ex_1[simp]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2938
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2939
lemma pathfinish_shiftpath: assumes "0 \<le> a" "pathfinish g = pathstart g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2940
  shows "pathfinish(shiftpath a g) = g a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2941
  using assms unfolding pathstart_def pathfinish_def shiftpath_def
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2942
  by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2943
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2944
lemma endpoints_shiftpath:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2945
  assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2946
  shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2947
  using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2948
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2949
lemma closed_shiftpath:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2950
  assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2951
  shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2952
  using endpoints_shiftpath[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2953
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2954
lemma path_shiftpath:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2955
  assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2956
  shows "path(shiftpath a g)" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2957
  have *:"{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2958
  have **:"\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2959
    using assms(2)[unfolded pathfinish_def pathstart_def] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2960
  show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2961
    apply(rule closed_interval)+ apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2962
    apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2963
    apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2964
    apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2965
    using assms(3) and ** by(auto simp add:vector_component_simps field_simps Cart_eq) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2966
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2967
lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2968
  shows "shiftpath (1 - a) (shiftpath a g) x = g x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2969
  using assms unfolding pathfinish_def pathstart_def shiftpath_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2970
  by(auto simp add: vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2971
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2972
lemma path_image_shiftpath:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2973
  assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2974
  shows "path_image(shiftpath a g) = path_image g" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2975
  { fix x assume as:"g 1 = g 0" "x \<in> {0..1::real^1}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a $ 1 + x $ 1 \<le> 1}. g x \<noteq> g (a + y - 1)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2976
    hence "\<exists>y\<in>{0..1} \<inter> {x. a $ 1 + x $ 1 \<le> 1}. g x = g (a + y)" proof(cases "a \<le> x")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2977
      case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2978
	using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2979
	by(auto simp add:vector_component_simps field_simps atomize_not) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2980
      case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2981
	by(auto simp add:vector_component_simps field_simps) qed }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2982
  thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2983
    by(auto simp add:vector_component_simps image_iff) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2984
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2985
subsection {* Special case of straight-line paths. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2986
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2987
definition "linepath a b = (\<lambda>x. (1 - dest_vec1 x) *s a + dest_vec1 x *s b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2988
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2989
lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2990
  unfolding pathstart_def linepath_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2991
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2992
lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2993
  unfolding pathfinish_def linepath_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2994
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2995
lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2996
  unfolding linepath_def by(auto simp add: vec1_dest_vec1 o_def intro!: continuous_intros)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2997
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2998
lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  2999
  using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3000
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3001
lemma path_linepath[intro]: "path(linepath a b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3002
  unfolding path_def by(rule continuous_on_linepath)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3003
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3004
lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3005
  unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3006
  unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *s 1" in bexI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3007
  by(auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3008
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3009
lemma reversepath_linepath[simp]:  "reversepath(linepath a b) = linepath b a"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3010
  unfolding reversepath_def linepath_def by(rule ext, auto simp add:vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3011
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3012
lemma injective_path_linepath: assumes "a \<noteq> b" shows "injective_path(linepath a b)" proof- 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3013
  { obtain i where i:"a$i \<noteq> b$i" using assms[unfolded Cart_eq] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3014
    fix x y::"real^1" assume "x $ 1 *s b + y $ 1 *s a = x $ 1 *s a + y $ 1 *s b"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3015
    hence "x$1 * (b$i - a$i) = y$1 * (b$i - a$i)" unfolding Cart_eq by(auto simp add:field_simps vector_component_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3016
    hence "x = y" unfolding mult_cancel_right Cart_eq using i(1) by(auto simp add:field_simps) }
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3017
  thus ?thesis unfolding injective_path_def linepath_def by(auto simp add:vector_component_simps field_simps) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3018
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3019
lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3020
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3021
subsection {* Bounding a point away from a path. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3022
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3023
lemma not_on_path_ball: assumes "path g" "z \<notin> path_image g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3024
  shows "\<exists>e>0. ball z e \<inter> (path_image g) = {}" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3025
  obtain a where "a\<in>path_image g" "\<forall>y\<in>path_image g. dist z a \<le> dist z y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3026
    using distance_attains_inf[OF _ path_image_nonempty, of g z]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3027
    using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3028
  thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3029
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3030
lemma not_on_path_cball: assumes "path g" "z \<notin> path_image g"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3031
  shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3032
  obtain e where "ball z e \<inter> path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3033
  moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3034
  ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3035
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3036
subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3037
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3038
definition "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3039
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3040
lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3041
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3042
lemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" "y \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3043
  using assms unfolding path_defs by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3044
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3045
lemma path_component_refl: assumes "x \<in> s" shows "path_component s x x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3046
  unfolding path_defs apply(rule_tac x="\<lambda>u. x" in exI) using assms 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3047
  by(auto intro!:continuous_on_intros)    
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3048
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3049
lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3050
  by(auto intro!: path_component_mem path_component_refl) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3051
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3052
lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3053
  using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3054
  by(auto simp add: reversepath_simps)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3055
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3056
lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3057
  using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3058
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3059
lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow>  path_component s x y \<Longrightarrow> path_component t x y"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3060
  unfolding path_component_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3061
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3062
subsection {* Can also consider it as a set, as the name suggests. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3063
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3064
lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3065
  apply(rule set_ext) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3066
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3067
lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3068
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3069
lemma path_component_subset: "(path_component s x) \<subseteq> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3070
  apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3071
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3072
lemma path_component_eq_empty: "path_component s x = {} \<longleftrightarrow> x \<notin> s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3073
  apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3074
  apply(drule path_component_mem(1)) using path_component_refl by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3075
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3076
subsection {* Path connectedness of a space. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3077
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3078
definition "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3079
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3080
lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3081
  unfolding path_connected_def path_component_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3082
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3083
lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component s x = s)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3084
  unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3085
  unfolding subset_eq mem_path_component_set Ball_def mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3086
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3087
subsection {* Some useful lemmas about path-connectedness. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3088
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3089
lemma convex_imp_path_connected: assumes "convex s" shows "path_connected s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3090
  unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3091
  unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3092
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3093
lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3094
  unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3095
  fix e1 e2 assume as:"open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3096
  then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3097
  then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3098
    using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3099
  have *:"connected {0..1::real^1}" by(auto intro!: convex_connected convex_interval)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3100
  have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3101
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3102
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt by(auto intro!: exI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3103
  ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3104
    using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3105
    using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3106
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3107
lemma open_path_component: assumes "open s" shows "open(path_component s x)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3108
  unfolding open_contains_ball proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3109
  fix y assume as:"y \<in> path_component s x"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3110
  hence "y\<in>s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3111
  then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3112
  show "\<exists>e>0. ball y e \<subseteq> path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3113
    fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3114
      apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0`
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3115
      using as[unfolded mem_def] by auto qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3116
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3117
lemma open_non_path_component: assumes "open s" shows "open(s - path_component s x)" unfolding open_contains_ball proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3118
  fix y assume as:"y\<in>s - path_component s x" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3119
  then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3120
  show "\<exists>e>0. ball y e \<subseteq> s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3121
    fix z assume "z\<in>ball y e" "\<not> z \<notin> path_component s x" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3122
    hence "y \<in> path_component s x" unfolding not_not mem_path_component_set using `e>0` 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3123
      apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3124
      apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3125
    thus False using as by auto qed(insert e(2), auto) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3126
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3127
lemma connected_open_path_connected: assumes "open s" "connected s" shows "path_connected s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3128
  unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3129
  fix x y assume "x \<in> s" "y \<in> s" show "y \<in> path_component s x" proof(rule ccontr)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3130
    assume "y \<notin> path_component s x" moreover
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3131
    have "path_component s x \<inter> s \<noteq> {}" using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3132
    ultimately show False using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3133
    using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3134
qed qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3135
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3136
lemma path_connected_continuous_image:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3137
  assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3138
  unfolding path_connected_def proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3139
  fix x' y' assume "x' \<in> f ` s" "y' \<in> f ` s"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3140
  then obtain x y where xy:"x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3141
  guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] ..
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3142
  thus "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3143
    unfolding xy apply(rule_tac x="f \<circ> g" in exI) unfolding path_defs
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3144
    using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3145
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3146
lemma homeomorphic_path_connectedness:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3147
  "s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3148
  unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3149
  apply(drule_tac f=f in path_connected_continuous_image) prefer 3
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3150
  apply(drule_tac f=g in path_connected_continuous_image) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3151
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3152
lemma path_connected_empty: "path_connected {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3153
  unfolding path_connected_def by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3154
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3155
lemma path_connected_singleton: "path_connected {a}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3156
  unfolding path_connected_def apply(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3157
  apply(rule_tac x="linepath a a" in exI) by(auto simp add:segment)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3158
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3159
lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3160
  shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3161
  fix x y assume as:"x \<in> s \<union> t" "y \<in> s \<union> t" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3162
  from assms(3) obtain z where "z \<in> s \<inter> t" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3163
  thus "path_component (s \<union> t) x y" using as using assms(1-2)[unfolded path_connected_component] apply- 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3164
    apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3165
    by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3166
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3167
subsection {* sphere is path-connected. *}
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3168
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3169
lemma path_connected_punctured_universe:
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3170
 assumes "2 \<le> CARD('n::finite)" shows "path_connected((UNIV::(real^'n::finite) set) - {a})" proof-
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3171
  obtain \<psi> where \<psi>:"bij_betw \<psi> {1..CARD('n)} (UNIV::'n set)" using ex_bij_betw_nat_finite_1[OF finite_UNIV] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3172
  let ?U = "UNIV::(real^'n) set" let ?u = "?U - {0}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3173
  let ?basis = "\<lambda>k. basis (\<psi> k)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3174
  let ?A = "\<lambda>k. {x::real^'n. \<exists>i\<in>{1..k}. (basis (\<psi> i)) \<bullet> x \<noteq> 0}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3175
  have "\<forall>k\<in>{2..CARD('n)}. path_connected (?A k)" proof
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3176
    have *:"\<And>k. ?A (Suc k) = {x. ?basis (Suc k) \<bullet> x < 0} \<union> {x. ?basis (Suc k) \<bullet> x > 0} \<union> ?A k" apply(rule set_ext,rule) defer
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3177
      apply(erule UnE)+  unfolding mem_Collect_eq apply(rule_tac[1-2] x="Suc k" in bexI)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3178
      by(auto elim!: ballE simp add: not_less le_Suc_eq)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3179
    fix k assume "k \<in> {2..CARD('n)}" thus "path_connected (?A k)" proof(induct k)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3180
      case (Suc k) show ?case proof(cases "k = 1")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3181
	case False from Suc have d:"k \<in> {1..CARD('n)}" "Suc k \<in> {1..CARD('n)}" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3182
	hence "\<psi> k \<noteq> \<psi> (Suc k)" using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=k]] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3183
	hence **:"?basis k + ?basis (Suc k) \<in> {x. 0 < ?basis (Suc k) \<bullet> x} \<inter> (?A k)" 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3184
          "?basis k - ?basis (Suc k) \<in> {x. 0 > ?basis (Suc k) \<bullet> x} \<inter> ({x. 0 < ?basis (Suc k) \<bullet> x} \<union> (?A k))" using d
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3185
	  by(auto simp add: dot_basis vector_component_simps intro!:bexI[where x=k])
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3186
	show ?thesis unfolding * Un_assoc apply(rule path_connected_Un) defer apply(rule path_connected_Un) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3187
	  prefer 5 apply(rule_tac[1-2] convex_imp_path_connected, rule convex_halfspace_lt, rule convex_halfspace_gt)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3188
	  apply(rule Suc(1)) apply(rule_tac[2-3] ccontr) using d ** False by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3189
      next case True hence d:"1\<in>{1..CARD('n)}" "2\<in>{1..CARD('n)}" using Suc(2) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3190
	have ***:"Suc 1 = 2" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3191
	have **:"\<And>s t P Q. s \<union> t \<union> {x. P x \<or> Q x} = (s \<union> {x. P x}) \<union> (t \<union> {x. Q x})" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3192
	have "\<psi> 2 \<noteq> \<psi> (Suc 0)" apply(rule ccontr) using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=2]] using assms by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3193
	thus ?thesis unfolding * True unfolding ** neq_iff bex_disj_distrib apply -
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3194
	  apply(rule path_connected_Un, rule_tac[1-2] path_connected_Un) defer 3 apply(rule_tac[1-4] convex_imp_path_connected) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3195
	  apply(rule_tac[5] x=" ?basis 1 + ?basis 2" in nequals0I)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3196
	  apply(rule_tac[6] x="-?basis 1 + ?basis 2" in nequals0I)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3197
	  apply(rule_tac[7] x="-?basis 1 - ?basis 2" in nequals0I)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3198
	  using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add:vector_component_simps dot_basis)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3199
  qed qed auto qed note lem = this
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3200
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3201
  have ***:"\<And>x::real^'n. (\<exists>i\<in>{1..CARD('n)}. basis (\<psi> i) \<bullet> x \<noteq> 0) \<longleftrightarrow> (\<exists>i. basis i \<bullet> x \<noteq> 0)"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3202
    apply rule apply(erule bexE) apply(rule_tac x="\<psi> i" in exI) defer apply(erule exE) proof- 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3203
    fix x::"real^'n" and i assume as:"basis i \<bullet> x \<noteq> 0"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3204
    have "i\<in>\<psi> ` {1..CARD('n)}" using \<psi>[unfolded bij_betw_def, THEN conjunct2] by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3205
    then obtain j where "j\<in>{1..CARD('n)}" "\<psi> j = i" by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3206
    thus "\<exists>i\<in>{1..CARD('n)}. basis (\<psi> i) \<bullet> x \<noteq> 0" apply(rule_tac x=j in bexI) using as by auto qed auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3207
  have *:"?U - {a} = (\<lambda>x. x + a) ` {x. x \<noteq> 0}" apply(rule set_ext) unfolding image_iff 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3208
    apply rule apply(rule_tac x="x - a" in bexI) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3209
  have **:"\<And>x::real^'n. x\<noteq>0 \<longleftrightarrow> (\<exists>i. basis i \<bullet> x \<noteq> 0)" unfolding Cart_eq by(auto simp add: dot_basis)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3210
  show ?thesis unfolding * apply(rule path_connected_continuous_image) apply(rule continuous_on_intros)+ 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3211
    unfolding ** apply(rule lem[THEN bspec[where x="CARD('n)"], unfolded ***]) using assms by auto qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3212
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3213
lemma path_connected_sphere: assumes "2 \<le> CARD('n::finite)" shows "path_connected {x::real^'n::finite. norm(x - a) = r}" proof(cases "r\<le>0")
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3214
  case True thus ?thesis proof(cases "r=0") 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3215
    case False hence "{x::real^'n. norm(x - a) = r} = {}" using True by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3216
    thus ?thesis using path_connected_empty by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3217
  qed(auto intro!:path_connected_singleton) next
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3218
  case False hence *:"{x::real^'n. norm(x - a) = r} = (\<lambda>x. a + r *s x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3219
    unfolding image_iff apply(rule_tac x="(1/r) *s (x - a)" in bexI) unfolding mem_Collect_eq norm_mul by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3220
  have ***:"\<And>xa. (if xa = 0 then 0 else 1) \<noteq> 1 \<Longrightarrow> xa = 0" apply(rule ccontr) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3221
  have **:"{x::real^'n. norm x = 1} = (\<lambda>x. (1/norm x) *s x) ` (UNIV - {0})" apply(rule set_ext,rule)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3222
    unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq norm_mul by(auto intro!: ***) 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3223
  have "continuous_on (UNIV - {0}) (vec1 \<circ> (\<lambda>x::real^'n. 1 / norm x))" unfolding o_def continuous_on_eq_continuous_within
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3224
    apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3225
    apply(rule continuous_at_vec1_norm[unfolded o_def,THEN spec]) by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3226
  thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms]
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3227
    by(auto intro!: path_connected_continuous_image continuous_on_intros continuous_on_mul) qed
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3228
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3229
lemma connected_sphere: "2 \<le> CARD('n) \<Longrightarrow> connected {x::real^'n::finite. norm(x - a) = r}"
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3230
  using path_connected_sphere path_connected_imp_connected by auto
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3231
 
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3232
(** In continuous_at_vec1_norm : Use \<And> instead of \<forall>. **)
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3233
f6427bc40421 Added Convex_Euclidean_Space.thy
himmelma
parents:
diff changeset
  3234
end