|
12197
|
1 |
(* Title: ZF/UNITY/GenPrefix.ML
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
|
|
|
4 |
Copyright 2001 University of Cambridge
|
|
|
5 |
|
|
|
6 |
Charpentier's Generalized Prefix Relation
|
|
|
7 |
<xs,ys>:gen_prefix(r)
|
|
|
8 |
if ys = xs' @ zs where length(xs) = length(xs')
|
|
|
9 |
and corresponding elements of xs, xs' are pairwise related by r
|
|
|
10 |
|
|
|
11 |
Based on Lex/Prefix
|
|
|
12 |
*)
|
|
|
13 |
|
|
|
14 |
Goalw [refl_def]
|
|
|
15 |
"[| refl(A, r); x:A |] ==> <x,x>:r";
|
|
|
16 |
by Auto_tac;
|
|
|
17 |
qed "reflD";
|
|
|
18 |
|
|
|
19 |
(*** preliminary lemmas ***)
|
|
|
20 |
|
|
|
21 |
Goal "xs:list(A) ==> <[], xs>:gen_prefix(A, r)";
|
|
|
22 |
by (dtac (rotate_prems 1 gen_prefix.append) 1);
|
|
|
23 |
by (rtac gen_prefix.Nil 1);
|
|
|
24 |
by Auto_tac;
|
|
|
25 |
qed "Nil_gen_prefix";
|
|
|
26 |
Addsimps [Nil_gen_prefix];
|
|
|
27 |
|
|
|
28 |
|
|
|
29 |
Goal "<xs,ys>:gen_prefix(A, r) ==> length(xs) le length(ys)";
|
|
|
30 |
by (etac gen_prefix.induct 1);
|
|
|
31 |
by (subgoal_tac "ys:list(A)" 3);
|
|
|
32 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]
|
|
|
33 |
addIs [le_trans],
|
|
|
34 |
simpset() addsimps [length_app]));
|
|
|
35 |
qed "gen_prefix_length_le";
|
|
|
36 |
|
|
|
37 |
|
|
|
38 |
Goal "[| <xs', ys'>:gen_prefix(A, r) |] \
|
|
|
39 |
\ ==> (ALL x xs. x:A --> xs'= Cons(x,xs) --> \
|
|
|
40 |
\ (EX y ys. y:A & ys' = Cons(y,ys) &\
|
|
|
41 |
\ <x,y>:r & <xs, ys>:gen_prefix(A, r)))";
|
|
|
42 |
by (etac gen_prefix.induct 1);
|
|
|
43 |
by (force_tac (claset() addIs [gen_prefix.append],
|
|
|
44 |
simpset()) 3);
|
|
|
45 |
by (REPEAT(Asm_simp_tac 1));
|
|
|
46 |
val lemma = result();
|
|
|
47 |
|
|
|
48 |
(*As usual converting it to an elimination rule is tiresome*)
|
|
|
49 |
val major::prems =
|
|
|
50 |
Goal "[| <Cons(x,xs), zs>:gen_prefix(A, r); \
|
|
|
51 |
\ !!y ys. [|zs = Cons(y, ys); y:A; x:A; <x,y>:r; \
|
|
|
52 |
\ <xs,ys>:gen_prefix(A, r) |] ==> P \
|
|
|
53 |
\ |] ==> P";
|
|
|
54 |
by (cut_facts_tac [major] 1);
|
|
|
55 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1);
|
|
|
56 |
by (Clarify_tac 1);
|
|
|
57 |
by (etac ConsE 1);
|
|
|
58 |
by (cut_facts_tac [major RS lemma] 1);
|
|
|
59 |
by (Full_simp_tac 1);
|
|
|
60 |
by (dtac mp 1);
|
|
|
61 |
by (Asm_simp_tac 1);
|
|
|
62 |
by (REPEAT (eresolve_tac [exE, conjE] 1));
|
|
|
63 |
by (REPEAT (ares_tac prems 1));
|
|
|
64 |
qed "Cons_gen_prefixE";
|
|
|
65 |
AddSEs [Cons_gen_prefixE];
|
|
|
66 |
|
|
|
67 |
Goal
|
|
|
68 |
"(<Cons(x,xs),Cons(y,ys)>:gen_prefix(A, r)) \
|
|
|
69 |
\ <-> (x:A & y:A & <x,y>:r & <xs,ys>:gen_prefix(A, r))";
|
|
|
70 |
by (auto_tac (claset() addIs [gen_prefix.prepend], simpset()));
|
|
|
71 |
qed"Cons_gen_prefix_Cons";
|
|
|
72 |
AddIffs [Cons_gen_prefix_Cons];
|
|
|
73 |
|
|
|
74 |
(** Monotonicity of gen_prefix **)
|
|
|
75 |
|
|
|
76 |
Goal "r<=s ==> gen_prefix(A, r) <= gen_prefix(A, s)";
|
|
|
77 |
by (Clarify_tac 1);
|
|
|
78 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1);
|
|
|
79 |
by (Clarify_tac 1);
|
|
|
80 |
by (etac rev_mp 1);
|
|
|
81 |
by (etac gen_prefix.induct 1);
|
|
|
82 |
by (auto_tac (claset() addIs
|
|
|
83 |
[gen_prefix.append], simpset()));
|
|
|
84 |
qed "gen_prefix_mono2";
|
|
|
85 |
|
|
|
86 |
Goal "A<=B ==>gen_prefix(A, r) <= gen_prefix(B, r)";
|
|
|
87 |
by (Clarify_tac 1);
|
|
|
88 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1);
|
|
|
89 |
by (Clarify_tac 1);
|
|
|
90 |
by (etac rev_mp 1);
|
|
|
91 |
by (eres_inst_tac [("P", "y:list(A)")] rev_mp 1);
|
|
|
92 |
by (eres_inst_tac [("P", "xa:list(A)")] rev_mp 1);
|
|
|
93 |
by (etac gen_prefix.induct 1);
|
|
|
94 |
by (Asm_simp_tac 1);
|
|
|
95 |
by (Clarify_tac 1);
|
|
|
96 |
by (REPEAT(etac ConsE 1));
|
|
|
97 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]
|
|
|
98 |
addIs [gen_prefix.append, list_mono RS subsetD],
|
|
|
99 |
simpset()));
|
|
|
100 |
qed "gen_prefix_mono1";
|
|
|
101 |
|
|
|
102 |
Goal "[| A <= B; r <= s |] ==> gen_prefix(A, r) <= gen_prefix(B, s)";
|
|
|
103 |
by (rtac subset_trans 1);
|
|
|
104 |
by (rtac gen_prefix_mono1 1);
|
|
|
105 |
by (rtac gen_prefix_mono2 2);
|
|
|
106 |
by Auto_tac;
|
|
|
107 |
qed "gen_prefix_mono";
|
|
|
108 |
|
|
|
109 |
(*** gen_prefix order ***)
|
|
|
110 |
|
|
|
111 |
(* reflexivity *)
|
|
|
112 |
Goalw [refl_def] "refl(A, r) ==> refl(list(A), gen_prefix(A, r))";
|
|
|
113 |
by Auto_tac;
|
|
|
114 |
by (induct_tac "x" 1);
|
|
|
115 |
by Auto_tac;
|
|
|
116 |
qed "refl_gen_prefix";
|
|
|
117 |
Addsimps [refl_gen_prefix RS reflD];
|
|
|
118 |
|
|
|
119 |
(* Transitivity *)
|
|
|
120 |
(* A lemma for proving gen_prefix_trans_comp *)
|
|
|
121 |
|
|
|
122 |
Goal "xs:list(A) ==> \
|
|
|
123 |
\ ALL zs. <xs @ ys, zs>:gen_prefix(A, r) --> <xs, zs>: gen_prefix(A, r)";
|
|
|
124 |
by (etac list.induct 1);
|
|
|
125 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD], simpset()));
|
|
|
126 |
qed_spec_mp "append_gen_prefix";
|
|
|
127 |
|
|
|
128 |
(* Lemma proving transitivity and more*)
|
|
|
129 |
|
|
|
130 |
Goal "<x, y>: gen_prefix(A, r) ==> \
|
|
|
131 |
\ (ALL z:list(A). <y,z>:gen_prefix(A, s)--><x, z>:gen_prefix(A, s O r))";
|
|
|
132 |
by (etac gen_prefix.induct 1);
|
|
|
133 |
by (auto_tac (claset() addEs [ConsE], simpset() addsimps [Nil_gen_prefix]));
|
|
|
134 |
by (subgoal_tac "ys:list(A)" 1);
|
|
|
135 |
by (blast_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]) 2);
|
|
|
136 |
by (dres_inst_tac [("xs", "ys"), ("r", "s")] append_gen_prefix 1);
|
|
|
137 |
by Auto_tac;
|
|
|
138 |
qed_spec_mp "gen_prefix_trans_comp";
|
|
|
139 |
|
|
|
140 |
Goal "trans(r) ==> r O r <= r";
|
|
|
141 |
by (auto_tac (claset() addDs [transD], simpset()));
|
|
|
142 |
qed "trans_comp_subset";
|
|
|
143 |
|
|
|
144 |
Goal "trans(r) ==> trans(gen_prefix(A,r))";
|
|
|
145 |
by (simp_tac (simpset() addsimps [trans_def]) 1);
|
|
|
146 |
by (Clarify_tac 1);
|
|
|
147 |
by (rtac (impOfSubs (trans_comp_subset RS gen_prefix_mono2)) 1);
|
|
|
148 |
by (assume_tac 2);
|
|
|
149 |
by (rtac gen_prefix_trans_comp 1);
|
|
|
150 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD], simpset()));
|
|
|
151 |
qed_spec_mp "trans_gen_prefix";
|
|
|
152 |
|
|
|
153 |
Goal
|
|
|
154 |
"trans(r) ==> trans[list(A)](gen_prefix(A, r))";
|
|
|
155 |
by (dres_inst_tac [("A", "A")] trans_gen_prefix 1);
|
|
|
156 |
by (rewrite_goal_tac [trans_def, trans_on_def] 1);
|
|
|
157 |
by (Blast_tac 1);
|
|
|
158 |
qed "trans_on_gen_prefix";
|
|
|
159 |
|
|
|
160 |
Goalw [prefix_def]
|
|
|
161 |
"[| <x,y>:prefix(A); <y, z>:gen_prefix(A, r); r<=A*A |] \
|
|
|
162 |
\ ==> <x, z>:gen_prefix(A, r)";
|
|
|
163 |
by (res_inst_tac [("P", "%r. <x,z>:gen_prefix(A, r)")]
|
|
|
164 |
(right_comp_id RS subst) 1);
|
|
|
165 |
by (REPEAT(blast_tac (claset() addDs [gen_prefix_trans_comp,
|
|
|
166 |
gen_prefix.dom_subset RS subsetD]) 1));
|
|
|
167 |
qed_spec_mp "prefix_gen_prefix_trans";
|
|
|
168 |
|
|
|
169 |
|
|
|
170 |
Goalw [prefix_def]
|
|
|
171 |
"[| <x,y>:gen_prefix(A,r); <y, z>:prefix(A); r<=A*A |] \
|
|
|
172 |
\ ==> <x, z>:gen_prefix(A, r)";
|
|
|
173 |
by (res_inst_tac [("P", "%r. <x,z>:gen_prefix(A, r)")] (left_comp_id RS subst) 1);
|
|
|
174 |
by (REPEAT(blast_tac (claset() addDs [gen_prefix_trans_comp,
|
|
|
175 |
gen_prefix.dom_subset RS subsetD]) 1));
|
|
|
176 |
qed_spec_mp "gen_prefix_prefix_trans";
|
|
|
177 |
|
|
|
178 |
(** Antisymmetry **)
|
|
|
179 |
|
|
|
180 |
Goal "n:nat ==> ALL b:nat. n #+ b le n --> b = 0";
|
|
|
181 |
by (induct_tac "n" 1);
|
|
|
182 |
by Auto_tac;
|
|
|
183 |
qed_spec_mp "nat_le_lemma";
|
|
|
184 |
|
|
|
185 |
Goal "antisym(r) ==> antisym(gen_prefix(A, r))";
|
|
|
186 |
by (simp_tac (simpset() addsimps [antisym_def]) 1);
|
|
|
187 |
by (rtac (impI RS allI RS allI) 1);
|
|
|
188 |
by (etac gen_prefix.induct 1);
|
|
|
189 |
by (full_simp_tac (simpset() addsimps [antisym_def]) 2);
|
|
|
190 |
by (Blast_tac 2);
|
|
|
191 |
by (Blast_tac 1);
|
|
|
192 |
(*append case is hardest*)
|
|
|
193 |
by (Clarify_tac 1);
|
|
|
194 |
by (subgoal_tac "length(zs) = 0" 1);
|
|
|
195 |
by (subgoal_tac "ys:list(A)" 1);
|
|
|
196 |
by (blast_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]) 2);
|
|
|
197 |
by (dres_inst_tac [("psi", "<ys @ zs, xs>:gen_prefix(A,r)")] asm_rl 1);
|
|
|
198 |
by (Asm_full_simp_tac 1);
|
|
|
199 |
by (subgoal_tac "length(ys @ zs) = length(ys) #+ length(zs) &ys:list(A)&xs:list(A)" 1);
|
|
|
200 |
by (blast_tac (claset() addIs [length_app]
|
|
|
201 |
addDs [gen_prefix.dom_subset RS subsetD]) 2);
|
|
|
202 |
by (REPEAT (dtac gen_prefix_length_le 1));
|
|
|
203 |
by (Clarify_tac 1);
|
|
|
204 |
by (Asm_full_simp_tac 1);
|
|
|
205 |
by (dres_inst_tac [("j", "length(xs)")] le_trans 1);
|
|
|
206 |
by (Blast_tac 1);
|
|
|
207 |
by (auto_tac (claset() addIs [nat_le_lemma], simpset()));
|
|
|
208 |
qed_spec_mp "antisym_gen_prefix";
|
|
|
209 |
|
|
|
210 |
(*** recursion equations ***)
|
|
|
211 |
|
|
|
212 |
Goal "xs:list(A) ==> <xs, []>:gen_prefix(A,r) <-> (xs = [])";
|
|
|
213 |
by (induct_tac "xs" 1);
|
|
|
214 |
by Auto_tac;
|
|
|
215 |
qed "gen_prefix_Nil";
|
|
|
216 |
Addsimps [gen_prefix_Nil];
|
|
|
217 |
|
|
|
218 |
Goalw [refl_def]
|
|
|
219 |
"[| refl(A, r); xs:list(A) |] ==> \
|
|
|
220 |
\ <xs@ys, xs@zs>: gen_prefix(A, r) <-> <ys,zs>:gen_prefix(A, r)";
|
|
|
221 |
by (induct_tac "xs" 1);
|
|
|
222 |
by (ALLGOALS Asm_simp_tac);
|
|
|
223 |
qed "same_gen_prefix_gen_prefix";
|
|
|
224 |
Addsimps [same_gen_prefix_gen_prefix];
|
|
|
225 |
|
|
|
226 |
Goal "[| xs:list(A); ys:list(A); y:A |] ==> \
|
|
|
227 |
\ <xs, Cons(y,ys)> : gen_prefix(A,r) <-> \
|
|
|
228 |
\ (xs=[] | (EX z zs. xs=Cons(z,zs) & z:A & <z,y>:r & <zs,ys>:gen_prefix(A,r)))";
|
|
|
229 |
by (induct_tac "xs" 1);
|
|
|
230 |
by Auto_tac;
|
|
|
231 |
qed "gen_prefix_Cons";
|
|
|
232 |
|
|
|
233 |
Goal "[| refl(A,r); <xs,ys>:gen_prefix(A, r); zs:list(A) |] \
|
|
|
234 |
\ ==> <xs@zs, take(length(xs), ys) @ zs> : gen_prefix(A, r)";
|
|
|
235 |
by (etac gen_prefix.induct 1);
|
|
|
236 |
by (Asm_simp_tac 1);
|
|
|
237 |
by (ALLGOALS(forward_tac [gen_prefix.dom_subset RS subsetD]));
|
|
|
238 |
by Auto_tac;
|
|
|
239 |
by (ftac gen_prefix_length_le 1);
|
|
|
240 |
by (subgoal_tac "take(length(xs), ys):list(A)" 1);
|
|
|
241 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps
|
|
|
242 |
[diff_is_0_iff RS iffD2, take_type ])));
|
|
|
243 |
qed "gen_prefix_take_append";
|
|
|
244 |
|
|
|
245 |
Goal "[| refl(A, r); <xs,ys>:gen_prefix(A,r); \
|
|
|
246 |
\ length(xs) = length(ys); zs:list(A) |] \
|
|
|
247 |
\ ==> <xs@zs, ys @ zs> : gen_prefix(A, r)";
|
|
|
248 |
by (dres_inst_tac [("zs", "zs")] gen_prefix_take_append 1);
|
|
|
249 |
by (REPEAT(assume_tac 1));
|
|
|
250 |
by (subgoal_tac "take(length(xs), ys)=ys" 1);
|
|
|
251 |
by (auto_tac (claset() addSIs [take_all]
|
|
|
252 |
addDs [gen_prefix.dom_subset RS subsetD],
|
|
|
253 |
simpset()));
|
|
|
254 |
qed "gen_prefix_append_both";
|
|
|
255 |
|
|
|
256 |
(*NOT suitable for rewriting since [y] has the form y#ys*)
|
|
|
257 |
Goal "xs:list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys";
|
|
|
258 |
by (auto_tac (claset(), simpset() addsimps [app_assoc]));
|
|
|
259 |
qed "append_cons_conv";
|
|
|
260 |
|
|
|
261 |
Goal "[| <xs,ys>:gen_prefix(A, r); refl(A, r) |] \
|
|
|
262 |
\ ==> length(xs) < length(ys) --> \
|
|
|
263 |
\ <xs @ [nth(length(xs), ys)], ys>:gen_prefix(A, r)";
|
|
|
264 |
by (etac gen_prefix.induct 1);
|
|
|
265 |
by (Blast_tac 1);
|
|
|
266 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1);
|
|
|
267 |
by (Clarify_tac 1);
|
|
|
268 |
by (ALLGOALS(asm_full_simp_tac (simpset() addsimps [length_type])));
|
|
|
269 |
(* Append case is hardest *)
|
|
|
270 |
by (forward_tac [gen_prefix_length_le RS (le_iff RS iffD1) ] 1);
|
|
|
271 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1);
|
|
|
272 |
by (Clarify_tac 1);
|
|
|
273 |
by (subgoal_tac "length(xs):nat&length(ys):nat &length(zs):nat" 1);
|
|
|
274 |
by (blast_tac (claset() addIs [length_type]) 2);
|
|
|
275 |
by (Clarify_tac 1);
|
|
|
276 |
by (ALLGOALS (asm_full_simp_tac (simpset()
|
|
|
277 |
addsimps [nth_append, length_type, length_app])));
|
|
|
278 |
by (Clarify_tac 1);
|
|
|
279 |
by (rtac conjI 1);
|
|
|
280 |
by (blast_tac (claset() addIs [gen_prefix.append]) 1);
|
|
|
281 |
by (thin_tac "length(xs) < length(ys) -->?u" 1);
|
|
|
282 |
by (case_tac "zs=[]" 1);
|
|
|
283 |
by (auto_tac (claset(), simpset() addsimps [neq_Nil_iff]));
|
|
|
284 |
by (res_inst_tac [("P1", "%x. <?u(x), ?v>:?w")] (nat_diff_split RS iffD2) 1);
|
|
|
285 |
by Auto_tac;
|
|
|
286 |
by (stac append_cons_conv 1);
|
|
|
287 |
by (rtac gen_prefix.append 2);
|
|
|
288 |
by (auto_tac (claset() addEs [ConsE],
|
|
|
289 |
simpset() addsimps [gen_prefix_append_both]));
|
|
|
290 |
val lemma = result() RS mp;
|
|
|
291 |
|
|
|
292 |
Goal "[| <xs,ys>: gen_prefix(A, r); length(xs) < length(ys); refl(A, r) |] \
|
|
|
293 |
\ ==> <xs @ [nth(length(xs), ys)], ys>:gen_prefix(A, r)";
|
|
|
294 |
by (blast_tac (claset() addIs [lemma]) 1);
|
|
|
295 |
qed "append_one_gen_prefix";
|
|
|
296 |
|
|
|
297 |
|
|
|
298 |
(** Proving the equivalence with Charpentier's definition **)
|
|
|
299 |
|
|
|
300 |
Goal "xs:list(A) ==> \
|
|
|
301 |
\ ALL ys:list(A). ALL i:nat. i < length(xs) \
|
|
|
302 |
\ --> <xs, ys>: gen_prefix(A, r) --> <nth(i, xs), nth(i, ys)>:r";
|
|
|
303 |
by (induct_tac "xs" 1);
|
|
|
304 |
by (ALLGOALS(Clarify_tac));
|
|
|
305 |
by (ALLGOALS(Asm_full_simp_tac));
|
|
|
306 |
by (etac natE 1);
|
|
|
307 |
by (ALLGOALS(Asm_full_simp_tac));
|
|
|
308 |
by (dres_inst_tac [("x", "ysa")] bspec 1);
|
|
|
309 |
by (dres_inst_tac [("x", "x")] bspec 2);
|
|
|
310 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD], simpset()));
|
|
|
311 |
qed_spec_mp "gen_prefix_imp_nth";
|
|
|
312 |
|
|
|
313 |
Goal "xs:list(A) ==> \
|
|
|
314 |
\ ALL ys:list(A). length(xs) le length(ys) \
|
|
|
315 |
\ --> (ALL i:nat. i < length(xs)--> <nth(i, xs), nth(i,ys)>:r) \
|
|
|
316 |
\ --> <xs, ys> : gen_prefix(A, r)";
|
|
|
317 |
by (induct_tac "xs" 1);
|
|
|
318 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [lt_succ_eq_0_disj])));
|
|
|
319 |
by (Clarify_tac 1);
|
|
|
320 |
by (case_tac "x=[]" 1);
|
|
|
321 |
by (ALLGOALS(asm_full_simp_tac (simpset() addsimps [neq_Nil_iff])));
|
|
|
322 |
by (Clarify_tac 1);
|
|
|
323 |
by (dres_inst_tac [("x", "ys")] bspec 1);
|
|
|
324 |
by (ALLGOALS(Clarify_tac));
|
|
|
325 |
by Auto_tac;
|
|
|
326 |
qed_spec_mp "nth_imp_gen_prefix";
|
|
|
327 |
|
|
|
328 |
Goal "(<xs,ys>: gen_prefix(A,r)) <-> \
|
|
|
329 |
\ (xs:list(A) & ys:list(A) & length(xs) le length(ys) & \
|
|
|
330 |
\ (ALL i:nat. i < length(xs) --> <nth(i,xs), nth(i, ys)>: r))";
|
|
|
331 |
by (rtac iffI 1);
|
|
|
332 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1);
|
|
12484
|
333 |
by (ftac gen_prefix_length_le 1);
|
|
12197
|
334 |
by (ALLGOALS(Clarify_tac));
|
|
|
335 |
by (rtac nth_imp_gen_prefix 2);
|
|
|
336 |
by (dtac (rotate_prems 4 gen_prefix_imp_nth) 1);
|
|
|
337 |
by Auto_tac;
|
|
|
338 |
qed "gen_prefix_iff_nth";
|
|
|
339 |
|
|
|
340 |
(** prefix is a partial order: **)
|
|
|
341 |
|
|
|
342 |
Goalw [prefix_def]
|
|
|
343 |
"refl(list(A), prefix(A))";
|
|
|
344 |
by (rtac refl_gen_prefix 1);
|
|
|
345 |
by (auto_tac (claset(), simpset() addsimps [refl_def]));
|
|
|
346 |
qed "refl_prefix";
|
|
|
347 |
Addsimps [refl_prefix RS reflD];
|
|
|
348 |
|
|
|
349 |
Goalw [prefix_def] "trans(prefix(A))";
|
|
|
350 |
by (rtac trans_gen_prefix 1);
|
|
|
351 |
by (auto_tac (claset(), simpset() addsimps [trans_def]));
|
|
|
352 |
qed "trans_prefix";
|
|
|
353 |
|
|
|
354 |
bind_thm("prefix_trans", trans_prefix RS transD);
|
|
|
355 |
|
|
|
356 |
Goalw [prefix_def] "trans[list(A)](prefix(A))";
|
|
|
357 |
by (rtac trans_on_gen_prefix 1);
|
|
|
358 |
by (auto_tac (claset(), simpset() addsimps [trans_def]));
|
|
|
359 |
qed "trans_on_prefix";
|
|
|
360 |
|
|
|
361 |
bind_thm("prefix_trans_on", trans_on_prefix RS trans_onD);
|
|
|
362 |
|
|
|
363 |
(* Monotonicity of "set" operator WRT prefix *)
|
|
|
364 |
|
|
|
365 |
Goalw [prefix_def]
|
|
|
366 |
"<xs,ys>:prefix(A) ==> set_of_list(xs) <= set_of_list(ys)";
|
|
|
367 |
by (etac gen_prefix.induct 1);
|
|
|
368 |
by (subgoal_tac "xs:list(A)&ys:list(A)" 3);
|
|
|
369 |
by (blast_tac (claset() addDs [gen_prefix.dom_subset RS subsetD]) 4);
|
|
|
370 |
by (auto_tac (claset(), simpset() addsimps [set_of_list_append]));
|
|
|
371 |
qed "set_of_list_prefix_mono";
|
|
|
372 |
|
|
|
373 |
(** recursion equations **)
|
|
|
374 |
|
|
|
375 |
Goalw [prefix_def] "xs:list(A) ==> <[],xs>:prefix(A)";
|
|
|
376 |
by (asm_simp_tac (simpset() addsimps [Nil_gen_prefix]) 1);
|
|
|
377 |
qed "Nil_prefix";
|
|
|
378 |
Addsimps[Nil_prefix];
|
|
|
379 |
|
|
|
380 |
|
|
|
381 |
Goalw [prefix_def] "<xs, []>:prefix(A) <-> (xs = [])";
|
|
|
382 |
by Auto_tac;
|
|
|
383 |
by (forward_tac [gen_prefix.dom_subset RS subsetD] 1);
|
|
|
384 |
by (dres_inst_tac [("psi", "<xs, []>:gen_prefix(A, id(A))")] asm_rl 1);
|
|
|
385 |
by (asm_full_simp_tac (simpset() addsimps [gen_prefix_Nil]) 1);
|
|
|
386 |
qed "prefix_Nil";
|
|
|
387 |
AddIffs [prefix_Nil];
|
|
|
388 |
|
|
|
389 |
Goalw [prefix_def]
|
|
|
390 |
"<Cons(x,xs), Cons(y,ys)>:prefix(A) <-> (x=y & <xs,ys>:prefix(A) & y:A)";
|
|
|
391 |
by Auto_tac;
|
|
|
392 |
qed"Cons_prefix_Cons";
|
|
|
393 |
AddIffs [Cons_prefix_Cons];
|
|
|
394 |
|
|
|
395 |
Goalw [prefix_def]
|
|
|
396 |
"xs:list(A)==> <xs@ys,xs@zs>:prefix(A) <-> (<ys,zs>:prefix(A))";
|
|
|
397 |
by (subgoal_tac "refl(A,id(A))" 1);
|
|
|
398 |
by (Asm_simp_tac 1);
|
|
|
399 |
by (auto_tac (claset(), simpset() addsimps[refl_def]));
|
|
|
400 |
qed "same_prefix_prefix";
|
|
|
401 |
Addsimps [same_prefix_prefix];
|
|
|
402 |
|
|
|
403 |
Goal "xs:list(A) ==> <xs@ys,xs>:prefix(A) <-> (<ys,[]>:prefix(A))";
|
|
|
404 |
by (res_inst_tac [("P", "%x. <?u, x>:?v <-> ?w(x)")] (app_right_Nil RS subst) 1);
|
|
|
405 |
by (rtac same_prefix_prefix 2);
|
|
|
406 |
by Auto_tac;
|
|
|
407 |
qed "same_prefix_prefix_Nil";
|
|
|
408 |
Addsimps [same_prefix_prefix_Nil];
|
|
|
409 |
|
|
|
410 |
Goalw [prefix_def]
|
|
|
411 |
"[| <xs,ys>:prefix(A); zs:list(A) |] ==> <xs,ys@zs>:prefix(A)";
|
|
|
412 |
by (etac gen_prefix.append 1);
|
|
|
413 |
by (assume_tac 1);
|
|
|
414 |
qed "prefix_appendI";
|
|
|
415 |
Addsimps [prefix_appendI];
|
|
|
416 |
|
|
|
417 |
Goalw [prefix_def]
|
|
|
418 |
"[| xs:list(A); ys:list(A); y:A |] ==> \
|
|
|
419 |
\ <xs,Cons(y,ys)>:prefix(A) <-> \
|
|
|
420 |
\ (xs=[] | (EX zs. xs=Cons(y,zs) & <zs,ys>:prefix(A)))";
|
|
|
421 |
by (auto_tac (claset(), simpset() addsimps [gen_prefix_Cons]));
|
|
|
422 |
qed "prefix_Cons";
|
|
|
423 |
|
|
|
424 |
Goalw [prefix_def]
|
|
|
425 |
"[| <xs,ys>:prefix(A); length(xs) < length(ys) |] \
|
|
|
426 |
\ ==> <xs @ [nth(length(xs),ys)], ys>:prefix(A)";
|
|
|
427 |
by (subgoal_tac "refl(A, id(A))" 1);
|
|
|
428 |
by (asm_simp_tac (simpset() addsimps [append_one_gen_prefix]) 1);
|
|
|
429 |
by (auto_tac (claset(), simpset() addsimps [refl_def]));
|
|
|
430 |
qed "append_one_prefix";
|
|
|
431 |
|
|
|
432 |
Goalw [prefix_def]
|
|
|
433 |
"<xs,ys>:prefix(A) ==> length(xs) le length(ys)";
|
|
|
434 |
by (blast_tac (claset() addDs [gen_prefix_length_le]) 1);
|
|
|
435 |
qed "prefix_length_le";
|
|
|
436 |
|
|
|
437 |
Goalw [prefix_def]
|
|
|
438 |
"<xs,ys>:prefix(A) ==> xs~=ys --> length(xs) < length(ys)";
|
|
|
439 |
by (etac gen_prefix.induct 1);
|
|
|
440 |
by (Clarify_tac 1);
|
|
|
441 |
by (ALLGOALS(subgoal_tac "ys:list(A)&xs:list(A)"));
|
|
|
442 |
by (auto_tac (claset() addDs [gen_prefix.dom_subset RS subsetD],
|
|
|
443 |
simpset() addsimps [length_app, length_type]));
|
|
|
444 |
by (subgoal_tac "length(zs)=0" 1);
|
|
|
445 |
by (dtac not_lt_imp_le 2);
|
|
|
446 |
by (res_inst_tac [("j", "length(ys)")] lt_trans2 5);
|
|
|
447 |
by Auto_tac;
|
|
|
448 |
val lemma = result();
|
|
|
449 |
|
|
|
450 |
Goalw [prefix_def]
|
|
|
451 |
"prefix(A)<=list(A)*list(A)";
|
|
|
452 |
by (blast_tac (claset() addSIs [gen_prefix.dom_subset]) 1);
|
|
|
453 |
qed "prefix_type";
|
|
|
454 |
|
|
|
455 |
Goalw [strict_prefix_def]
|
|
|
456 |
"strict_prefix(A) <= list(A)*list(A)";
|
|
|
457 |
by (blast_tac (claset() addSIs [prefix_type RS subsetD]) 1);
|
|
|
458 |
qed "strict_prefix_type";
|
|
|
459 |
|
|
|
460 |
Goalw [strict_prefix_def]
|
|
|
461 |
"<xs,ys>:strict_prefix(A) ==> length(xs) < length(ys)";
|
|
|
462 |
by (resolve_tac [lemma RS mp] 1);
|
|
|
463 |
by (auto_tac (claset() addDs [prefix_type RS subsetD], simpset()));
|
|
|
464 |
qed "strict_prefix_length_lt";
|
|
|
465 |
|
|
|
466 |
(*Equivalence to the definition used in Lex/Prefix.thy*)
|
|
|
467 |
Goalw [prefix_def]
|
|
|
468 |
"<xs,zs>:prefix(A) <-> (EX ys:list(A). zs = xs@ys) & xs:list(A)";
|
|
|
469 |
by (auto_tac (claset(),
|
|
|
470 |
simpset() addsimps [gen_prefix_iff_nth,
|
|
|
471 |
nth_append, nth_type, app_type, length_app]));
|
|
|
472 |
by (subgoal_tac "length(xs):nat&length(zs):nat & \
|
|
|
473 |
\ drop(length(xs), zs):list(A)" 1);
|
|
|
474 |
by (res_inst_tac [("x", "drop(length(xs), zs)")] bexI 1);
|
|
|
475 |
by (ALLGOALS(Clarify_tac));
|
|
|
476 |
by (asm_simp_tac (simpset() addsimps [length_type, drop_type]) 2);
|
|
|
477 |
by (rtac nth_equalityI 1);
|
|
|
478 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps
|
|
|
479 |
[nth_append, app_type, drop_type, length_app, length_drop])));
|
|
|
480 |
by (rtac (nat_diff_split RS iffD2) 1);
|
|
|
481 |
by (ALLGOALS(Asm_full_simp_tac));
|
|
|
482 |
by (Clarify_tac 1);
|
|
|
483 |
by (dres_inst_tac [("i", "length(zs)")] leI 1);
|
|
|
484 |
by (force_tac (claset(), simpset() addsimps [le_subset_iff]) 1);
|
|
|
485 |
by Safe_tac;
|
|
|
486 |
by (Blast_tac 1);
|
|
|
487 |
by (subgoal_tac "length(xs) #+ (x #- length(xs)) = x" 1);
|
|
12484
|
488 |
by (stac nth_drop 1);
|
|
12197
|
489 |
by (ALLGOALS(asm_simp_tac (simpset() addsimps [leI])));
|
|
|
490 |
by (rtac (nat_diff_split RS iffD2) 1);
|
|
|
491 |
by Auto_tac;
|
|
|
492 |
qed "prefix_iff";
|
|
|
493 |
|
|
|
494 |
Goal
|
|
|
495 |
"[|xs:list(A); ys:list(A); y:A |] ==> \
|
|
|
496 |
\ <xs, ys@[y]>:prefix(A) <-> (xs = ys@[y] | <xs,ys>:prefix(A))";
|
|
|
497 |
by (simp_tac (simpset() addsimps [prefix_iff]) 1);
|
|
|
498 |
by (rtac iffI 1);
|
|
|
499 |
by (Clarify_tac 1);
|
|
|
500 |
by (eres_inst_tac [("xs", "ysa")] rev_list_elim 1);
|
|
|
501 |
by (Asm_full_simp_tac 1);
|
|
|
502 |
by (dres_inst_tac [("psi", "ya:list(A)")] asm_rl 1);
|
|
|
503 |
by (rotate_tac ~1 1);
|
|
|
504 |
by (asm_full_simp_tac (simpset() addsimps
|
|
|
505 |
[app_type, app_assoc RS sym] delsimps [app_assoc]) 1);
|
|
|
506 |
by (auto_tac (claset(), simpset() addsimps [app_assoc, app_type]));
|
|
|
507 |
qed "prefix_snoc";
|
|
|
508 |
Addsimps [prefix_snoc];
|
|
|
509 |
|
|
|
510 |
|
|
|
511 |
Goal "zs:list(A) ==> ALL xs:list(A). ALL ys:list(A). \
|
|
|
512 |
\ (<xs, ys@zs>:prefix(A)) <-> \
|
|
|
513 |
\ (<xs,ys>:prefix(A) | (EX us. xs = ys@us & <us,zs>:prefix(A)))";
|
|
|
514 |
by (etac list_append_induct 1);
|
|
|
515 |
by (Clarify_tac 2);
|
|
|
516 |
by (rtac iffI 2);
|
|
|
517 |
by (asm_full_simp_tac (simpset() delsimps [app_assoc]
|
|
|
518 |
addsimps [app_assoc RS sym]) 2);
|
|
|
519 |
by (etac disjE 2 THEN etac disjE 3);
|
|
|
520 |
by (rtac disjI2 2);
|
|
|
521 |
by (res_inst_tac [("x", "y @ [x]")] exI 2);
|
|
|
522 |
by (asm_full_simp_tac (simpset() delsimps [app_assoc]
|
|
|
523 |
addsimps [app_assoc RS sym]) 2);
|
|
|
524 |
by (REPEAT(Force_tac 1));
|
|
|
525 |
qed_spec_mp "prefix_append_iff";
|
|
|
526 |
|
|
|
527 |
|
|
|
528 |
(*Although the prefix ordering is not linear, the prefixes of a list
|
|
|
529 |
are linearly ordered.*)
|
|
|
530 |
Goal "[| zs:list(A); xs:list(A); ys:list(A) |] \
|
|
|
531 |
\ ==> <xs, zs>:prefix(A) --> <ys,zs>:prefix(A) \
|
|
|
532 |
\ --><xs,ys>:prefix(A) | <ys,xs>:prefix(A)";
|
|
|
533 |
by (etac list_append_induct 1);
|
|
|
534 |
by Auto_tac;
|
|
|
535 |
qed_spec_mp "common_prefix_linear";
|
|
|
536 |
|
|
|
537 |
|
|
|
538 |
(*** pfixLe, pfixGe: properties inherited from the translations ***)
|
|
|
539 |
|
|
|
540 |
|
|
|
541 |
|
|
|
542 |
(** pfixLe **)
|
|
|
543 |
|
|
|
544 |
Goalw [refl_def, Le_def] "refl(nat,Le)";
|
|
|
545 |
by Auto_tac;
|
|
|
546 |
qed "refl_Le";
|
|
|
547 |
AddIffs [refl_Le];
|
|
|
548 |
|
|
|
549 |
Goalw [antisym_def, Le_def] "antisym(Le)";
|
|
|
550 |
by (auto_tac (claset() addIs [le_anti_sym], simpset()));
|
|
|
551 |
qed "antisym_Le";
|
|
|
552 |
AddIffs [antisym_Le];
|
|
|
553 |
|
|
|
554 |
Goalw [trans_def, Le_def] "trans(Le)";
|
|
|
555 |
by (auto_tac (claset() addIs [le_trans], simpset()));
|
|
|
556 |
qed "trans_Le";
|
|
|
557 |
AddIffs [trans_Le];
|
|
|
558 |
|
|
|
559 |
Goal "x:list(nat) ==> x pfixLe x";
|
|
|
560 |
by (blast_tac (claset() addIs [refl_gen_prefix RS reflD]) 1);
|
|
|
561 |
qed "pfixLe_refl";
|
|
|
562 |
Addsimps[pfixLe_refl];
|
|
|
563 |
|
|
|
564 |
Goal "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z";
|
|
|
565 |
by (blast_tac (claset() addIs [trans_gen_prefix RS transD]) 1);
|
|
|
566 |
qed "pfixLe_trans";
|
|
|
567 |
|
|
|
568 |
Goal "[| x pfixLe y; y pfixLe x |] ==> x = y";
|
|
|
569 |
by (blast_tac (claset() addIs [antisym_gen_prefix RS antisymE]) 1);
|
|
|
570 |
qed "pfixLe_antisym";
|
|
|
571 |
|
|
|
572 |
|
|
|
573 |
Goalw [prefix_def, Le_def]
|
|
|
574 |
"<xs,ys>:prefix(nat)==> xs pfixLe ys";
|
|
|
575 |
by (rtac (gen_prefix_mono RS subsetD) 1);
|
|
|
576 |
by Auto_tac;
|
|
|
577 |
qed "prefix_imp_pfixLe";
|
|
|
578 |
|
|
|
579 |
Goalw [refl_def, Ge_def] "refl(nat, Ge)";
|
|
|
580 |
by Auto_tac;
|
|
|
581 |
qed "refl_Ge";
|
|
|
582 |
AddIffs [refl_Ge];
|
|
|
583 |
|
|
|
584 |
Goalw [antisym_def, Ge_def] "antisym(Ge)";
|
|
|
585 |
by (auto_tac (claset() addIs [le_anti_sym], simpset()));
|
|
|
586 |
qed "antisym_Ge";
|
|
|
587 |
AddIffs [antisym_Ge];
|
|
|
588 |
|
|
|
589 |
Goalw [trans_def, Ge_def] "trans(Ge)";
|
|
|
590 |
by (auto_tac (claset() addIs [le_trans], simpset()));
|
|
|
591 |
qed "trans_Ge";
|
|
|
592 |
AddIffs [trans_Ge];
|
|
|
593 |
|
|
|
594 |
Goal "x:list(nat) ==> x pfixGe x";
|
|
|
595 |
by (blast_tac (claset() addIs [refl_gen_prefix RS reflD]) 1);
|
|
|
596 |
qed "pfixGe_refl";
|
|
|
597 |
Addsimps[pfixGe_refl];
|
|
|
598 |
|
|
|
599 |
Goal "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z";
|
|
|
600 |
by (blast_tac (claset() addIs [trans_gen_prefix RS transD]) 1);
|
|
|
601 |
qed "pfixGe_trans";
|
|
|
602 |
|
|
|
603 |
Goal "[| x pfixGe y; y pfixGe x |] ==> x = y";
|
|
|
604 |
by (blast_tac (claset() addIs [antisym_gen_prefix RS antisymE]) 1);
|
|
|
605 |
qed "pfixGe_antisym";
|
|
|
606 |
|
|
|
607 |
Goalw [prefix_def, Ge_def]
|
|
|
608 |
"<xs,ys>:prefix(nat) ==> xs pfixGe ys";
|
|
|
609 |
by (rtac (gen_prefix_mono RS subsetD) 1);
|
|
|
610 |
by Auto_tac;
|
|
|
611 |
qed "prefix_imp_pfixGe";
|
|
|
612 |
|
|
|
613 |
|
|
|
614 |
|
|
|
615 |
|
|
|
616 |
|
|
|
617 |
|