src/HOL/ex/CTL.thy
author krauss
Thu, 17 May 2007 22:33:41 +0200
changeset 22999 c1ce129e6f9c
parent 21404 eb85850d3eb7
child 23219 87ad6e8a5f2c
permissions -rw-r--r--
Added unification case study (using new function package)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     1
(*  Title:      HOL/ex/CTL.thy
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     2
    ID:         $Id$
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     3
    Author:     Gertrud Bauer
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     4
*)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     5
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     6
header {* CTL formulae *}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     7
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 15871
diff changeset
     8
theory CTL imports Main begin
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
     9
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    10
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    11
  We formalize basic concepts of Computational Tree Logic (CTL)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    12
  \cite{McMillan-PhDThesis,McMillan-LectureNotes} within the
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    13
  simply-typed set theory of HOL.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    14
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    15
  By using the common technique of ``shallow embedding'', a CTL
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    16
  formula is identified with the corresponding set of states where it
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    17
  holds.  Consequently, CTL operations such as negation, conjunction,
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    18
  disjunction simply become complement, intersection, union of sets.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    19
  We only require a separate operation for implication, as point-wise
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    20
  inclusion is usually not encountered in plain set-theory.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    21
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    22
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    23
lemmas [intro!] = Int_greatest Un_upper2 Un_upper1 Int_lower1 Int_lower2
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    24
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    25
types 'a ctl = "'a set"
20807
wenzelm
parents: 17388
diff changeset
    26
wenzelm
parents: 17388
diff changeset
    27
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    28
  imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"    (infixr "\<rightarrow>" 75) where
20807
wenzelm
parents: 17388
diff changeset
    29
  "p \<rightarrow> q = - p \<union> q"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    30
20807
wenzelm
parents: 17388
diff changeset
    31
lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" unfolding imp_def by auto
wenzelm
parents: 17388
diff changeset
    32
lemma [intro!]: "p \<subseteq> (q \<rightarrow> p)" unfolding imp_def by rule
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    33
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    34
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    35
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    36
  \smallskip The CTL path operators are more interesting; they are
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    37
  based on an arbitrary, but fixed model @{text \<M>}, which is simply
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    38
  a transition relation over states @{typ "'a"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    39
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    40
20807
wenzelm
parents: 17388
diff changeset
    41
axiomatization \<M> :: "('a \<times> 'a) set"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    42
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    43
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    44
  The operators @{text \<EX>}, @{text \<EF>}, @{text \<EG>} are taken
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    45
  as primitives, while @{text \<AX>}, @{text \<AF>}, @{text \<AG>} are
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    46
  defined as derived ones.  The formula @{text "\<EX> p"} holds in a
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    47
  state @{term s}, iff there is a successor state @{term s'} (with
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    48
  respect to the model @{term \<M>}), such that @{term p} holds in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    49
  @{term s'}.  The formula @{text "\<EF> p"} holds in a state @{term
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    50
  s}, iff there is a path in @{text \<M>}, starting from @{term s},
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    51
  such that there exists a state @{term s'} on the path, such that
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    52
  @{term p} holds in @{term s'}.  The formula @{text "\<EG> p"} holds
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    53
  in a state @{term s}, iff there is a path, starting from @{term s},
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    54
  such that for all states @{term s'} on the path, @{term p} holds in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    55
  @{term s'}.  It is easy to see that @{text "\<EF> p"} and @{text
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    56
  "\<EG> p"} may be expressed using least and greatest fixed points
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    57
  \cite{McMillan-PhDThesis}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    58
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    59
20807
wenzelm
parents: 17388
diff changeset
    60
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    61
  EX  ("\<EX> _" [80] 90) where "\<EX> p = {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    62
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    63
  EF ("\<EF> _" [80] 90)  where "\<EF> p = lfp (\<lambda>s. p \<union> \<EX> s)"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    64
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    65
  EG ("\<EG> _" [80] 90)  where "\<EG> p = gfp (\<lambda>s. p \<inter> \<EX> s)"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    66
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    67
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    68
  @{text "\<AX>"}, @{text "\<AF>"} and @{text "\<AG>"} are now defined
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    69
  dually in terms of @{text "\<EX>"}, @{text "\<EF>"} and @{text
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    70
  "\<EG>"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    71
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    72
20807
wenzelm
parents: 17388
diff changeset
    73
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    74
  AX  ("\<AX> _" [80] 90) where "\<AX> p = - \<EX> - p"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    75
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    76
  AF  ("\<AF> _" [80] 90) where "\<AF> p = - \<EG> - p"
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    77
definition
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21312
diff changeset
    78
  AG  ("\<AG> _" [80] 90) where "\<AG> p = - \<EF> - p"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    79
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    80
lemmas [simp] = EX_def EG_def AX_def EF_def AF_def AG_def
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    81
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    82
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    83
section {* Basic fixed point properties *}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    84
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    85
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    86
  First of all, we use the de-Morgan property of fixed points
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    87
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    88
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    89
lemma lfp_gfp: "lfp f = - gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    90
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    91
  show "lfp f \<subseteq> - gfp (\<lambda>s. - f (- s))"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    92
  proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    93
    fix x assume l: "x \<in> lfp f"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    94
    show "x \<in> - gfp (\<lambda>s. - f (- s))"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    95
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    96
      assume "x \<in> gfp (\<lambda>s. - f (- s))"
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
    97
      then obtain u where "x \<in> u" and "u \<subseteq> - f (- u)"
21312
1d39091a3208 started reorgnization of lattice theories
nipkow
parents: 21026
diff changeset
    98
	by (auto simp add: gfp_def Sup_set_eq)
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
    99
      then have "f (- u) \<subseteq> - u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   100
      then have "lfp f \<subseteq> - u" by (rule lfp_lowerbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   101
      from l and this have "x \<notin> u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   102
      then show False by contradiction
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   103
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   104
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   105
  show "- gfp (\<lambda>s. - f (- s)) \<subseteq> lfp f"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   106
  proof (rule lfp_greatest)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   107
    fix u assume "f u \<subseteq> u"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   108
    then have "- u \<subseteq> - f u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   109
    then have "- u \<subseteq> - f (- (- u))" by simp
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   110
    then have "- u \<subseteq> gfp (\<lambda>s. - f (- s))" by (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   111
    then show "- gfp (\<lambda>s. - f (- s)) \<subseteq> u" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   112
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   113
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   114
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   115
lemma lfp_gfp': "- lfp f = gfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   116
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   117
21026
3b2821e0d541 Adapted to changes in FixedPoint theory.
berghofe
parents: 20807
diff changeset
   118
lemma gfp_lfp': "- gfp f = lfp (\<lambda>s::'a set. - (f (- s)))"
15871
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   119
  by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   120
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   121
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   122
  in order to give dual fixed point representations of @{term "AF p"}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   123
  and @{term "AG p"}:
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   124
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   125
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   126
lemma AF_lfp: "\<AF> p = lfp (\<lambda>s. p \<union> \<AX> s)" by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   127
lemma AG_gfp: "\<AG> p = gfp (\<lambda>s. p \<inter> \<AX> s)" by (simp add: lfp_gfp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   128
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   129
lemma EF_fp: "\<EF> p = p \<union> \<EX> \<EF> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   130
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   131
  have "mono (\<lambda>s. p \<union> \<EX> s)" by rule (auto simp add: EX_def)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   132
  then show ?thesis by (simp only: EF_def) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   133
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   134
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   135
lemma AF_fp: "\<AF> p = p \<union> \<AX> \<AF> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   136
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   137
  have "mono (\<lambda>s. p \<union> \<AX> s)" by rule (auto simp add: AX_def EX_def)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   138
  then show ?thesis by (simp only: AF_lfp) (rule lfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   139
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   140
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   141
lemma EG_fp: "\<EG> p = p \<inter> \<EX> \<EG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   142
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   143
  have "mono (\<lambda>s. p \<inter> \<EX> s)" by rule (auto simp add: EX_def)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   144
  then show ?thesis by (simp only: EG_def) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   145
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   146
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   147
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   148
  From the greatest fixed point definition of @{term "\<AG> p"}, we
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   149
  derive as a consequence of the Knaster-Tarski theorem on the one
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   150
  hand that @{term "\<AG> p"} is a fixed point of the monotonic
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   151
  function @{term "\<lambda>s. p \<inter> \<AX> s"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   152
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   153
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   154
lemma AG_fp: "\<AG> p = p \<inter> \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   155
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   156
  have "mono (\<lambda>s. p \<inter> \<AX> s)" by rule (auto simp add: AX_def EX_def)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   157
  then show ?thesis by (simp only: AG_gfp) (rule gfp_unfold)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   158
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   159
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   160
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   161
  This fact may be split up into two inequalities (merely using
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   162
  transitivity of @{text "\<subseteq>" }, which is an instance of the overloaded
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   163
  @{text "\<le>"} in Isabelle/HOL).
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   164
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   165
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   166
lemma AG_fp_1: "\<AG> p \<subseteq> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   167
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   168
  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> p" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   169
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   170
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   171
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   172
lemma AG_fp_2: "\<AG> p \<subseteq> \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   173
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   174
  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> \<AX> \<AG> p" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   175
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   176
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   177
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   178
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   179
  On the other hand, we have from the Knaster-Tarski fixed point
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   180
  theorem that any other post-fixed point of @{term "\<lambda>s. p \<inter> AX s"} is
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   181
  smaller than @{term "AG p"}.  A post-fixed point is a set of states
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   182
  @{term q} such that @{term "q \<subseteq> p \<inter> AX q"}.  This leads to the
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   183
  following co-induction principle for @{term "AG p"}.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   184
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   185
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   186
lemma AG_I: "q \<subseteq> p \<inter> \<AX> q \<Longrightarrow> q \<subseteq> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   187
  by (simp only: AG_gfp) (rule gfp_upperbound)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   188
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   189
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   190
section {* The tree induction principle \label{sec:calc-ctl-tree-induct} *}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   191
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   192
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   193
  With the most basic facts available, we are now able to establish a
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   194
  few more interesting results, leading to the \emph{tree induction}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   195
  principle for @{text AG} (see below).  We will use some elementary
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   196
  monotonicity and distributivity rules.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   197
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   198
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   199
lemma AX_int: "\<AX> (p \<inter> q) = \<AX> p \<inter> \<AX> q" by auto 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   200
lemma AX_mono: "p \<subseteq> q \<Longrightarrow> \<AX> p \<subseteq> \<AX> q" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   201
lemma AG_mono: "p \<subseteq> q \<Longrightarrow> \<AG> p \<subseteq> \<AG> q"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   202
  by (simp only: AG_gfp, rule gfp_mono) auto 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   203
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   204
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   205
  The formula @{term "AG p"} implies @{term "AX p"} (we use
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   206
  substitution of @{text "\<subseteq>"} with monotonicity).
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   207
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   208
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   209
lemma AG_AX: "\<AG> p \<subseteq> \<AX> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   210
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   211
  have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   212
  also have "\<AG> p \<subseteq> p" by (rule AG_fp_1) moreover note AX_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   213
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   214
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   215
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   216
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   217
  Furthermore we show idempotency of the @{text "\<AG>"} operator.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   218
  The proof is a good example of how accumulated facts may get
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   219
  used to feed a single rule step.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   220
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   221
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   222
lemma AG_AG: "\<AG> \<AG> p = \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   223
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   224
  show "\<AG> \<AG> p \<subseteq> \<AG> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   225
next
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   226
  show "\<AG> p \<subseteq> \<AG> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   227
  proof (rule AG_I)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   228
    have "\<AG> p \<subseteq> \<AG> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   229
    moreover have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   230
    ultimately show "\<AG> p \<subseteq> \<AG> p \<inter> \<AX> \<AG> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   231
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   232
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   233
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   234
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   235
  \smallskip We now give an alternative characterization of the @{text
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   236
  "\<AG>"} operator, which describes the @{text "\<AG>"} operator in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   237
  an ``operational'' way by tree induction: In a state holds @{term
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   238
  "AG p"} iff in that state holds @{term p}, and in all reachable
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   239
  states @{term s} follows from the fact that @{term p} holds in
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   240
  @{term s}, that @{term p} also holds in all successor states of
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   241
  @{term s}.  We use the co-induction principle @{thm [source] AG_I}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   242
  to establish this in a purely algebraic manner.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   243
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   244
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   245
theorem AG_induct: "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   246
proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   247
  show "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> p"  (is "?lhs \<subseteq> _")
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   248
  proof (rule AG_I)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   249
    show "?lhs \<subseteq> p \<inter> \<AX> ?lhs"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   250
    proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   251
      show "?lhs \<subseteq> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   252
      show "?lhs \<subseteq> \<AX> ?lhs"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   253
      proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   254
	{
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   255
	  have "\<AG> (p \<rightarrow> \<AX> p) \<subseteq> p \<rightarrow> \<AX> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   256
          also have "p \<inter> p \<rightarrow> \<AX> p \<subseteq> \<AX> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   257
          finally have "?lhs \<subseteq> \<AX> p" by auto
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   258
	}  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   259
	moreover
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   260
	{
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   261
	  have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> (p \<rightarrow> \<AX> p)" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   262
          also have "\<dots> \<subseteq> \<AX> \<dots>" by (rule AG_fp_2)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   263
          finally have "?lhs \<subseteq> \<AX> \<AG> (p \<rightarrow> \<AX> p)" .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   264
	}  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   265
	ultimately have "?lhs \<subseteq> \<AX> p \<inter> \<AX> \<AG> (p \<rightarrow> \<AX> p)" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   266
	also have "\<dots> = \<AX> ?lhs" by (simp only: AX_int)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   267
	finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   268
      qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   269
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   270
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   271
next
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   272
  show "\<AG> p \<subseteq> p \<inter> \<AG> (p \<rightarrow> \<AX> p)"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   273
  proof
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   274
    show "\<AG> p \<subseteq> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   275
    show "\<AG> p \<subseteq> \<AG> (p \<rightarrow> \<AX> p)"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   276
    proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   277
      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   278
      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX) moreover note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   279
      also have "\<AX> p \<subseteq> (p \<rightarrow> \<AX> p)" .. moreover note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   280
      finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   281
    qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   282
  qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   283
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   284
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   285
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   286
section {* An application of tree induction \label{sec:calc-ctl-commute} *}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   287
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   288
text {*
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   289
  Further interesting properties of CTL expressions may be
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   290
  demonstrated with the help of tree induction; here we show that
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   291
  @{text \<AX>} and @{text \<AG>} commute.
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   292
*}
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   293
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   294
theorem AG_AX_commute: "\<AG> \<AX> p = \<AX> \<AG> p"
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   295
proof -
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   296
  have "\<AG> \<AX> p = \<AX> p \<inter> \<AX> \<AG> \<AX> p" by (rule AG_fp)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   297
  also have "\<dots> = \<AX> (p \<inter> \<AG> \<AX> p)" by (simp only: AX_int)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   298
  also have "p \<inter> \<AG> \<AX> p = \<AG> p"  (is "?lhs = _")
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   299
  proof  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   300
    have "\<AX> p \<subseteq> p \<rightarrow> \<AX> p" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   301
    also have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p" by (rule AG_induct)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   302
    also note Int_mono AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   303
    ultimately show "?lhs \<subseteq> \<AG> p" by fast
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   304
  next  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   305
    have "\<AG> p \<subseteq> p" by (rule AG_fp_1)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   306
    moreover 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   307
    {
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   308
      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   309
      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX)
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   310
      also note AG_mono
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   311
      ultimately have "\<AG> p \<subseteq> \<AG> \<AX> p" .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   312
    } 
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   313
    ultimately show "\<AG> p \<subseteq> ?lhs" ..
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   314
  qed  
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   315
  finally show ?thesis .
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   316
qed
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   317
e524119dbf19 *** empty log message ***
bauerg
parents:
diff changeset
   318
end