17870
|
1 |
(* $Id$ *)
|
|
2 |
|
|
3 |
theory nominal
|
|
4 |
imports Main
|
|
5 |
uses ("nominal_package.ML") ("nominal_induct.ML") ("nominal_permeq.ML")
|
|
6 |
begin
|
|
7 |
|
|
8 |
ML {* reset NameSpace.unique_names; *}
|
|
9 |
|
|
10 |
section {* Permutations *}
|
|
11 |
(*======================*)
|
|
12 |
|
|
13 |
types
|
|
14 |
'x prm = "('x \<times> 'x) list"
|
|
15 |
|
|
16 |
(* polymorphic operations for permutation and swapping*)
|
|
17 |
consts
|
|
18 |
perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [80,80] 80)
|
|
19 |
swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
|
|
20 |
|
|
21 |
(* permutation on sets *)
|
|
22 |
defs (overloaded)
|
|
23 |
perm_set_def: "pi\<bullet>(X::'a set) \<equiv> {pi\<bullet>a | a. a\<in>X}"
|
|
24 |
|
|
25 |
(* permutation on units and products *)
|
|
26 |
primrec (perm_unit)
|
|
27 |
"pi\<bullet>() = ()"
|
|
28 |
|
|
29 |
primrec (perm_prod)
|
|
30 |
"pi\<bullet>(a,b) = (pi\<bullet>a,pi\<bullet>b)"
|
|
31 |
|
|
32 |
lemma perm_fst:
|
|
33 |
"pi\<bullet>(fst x) = fst (pi\<bullet>x)"
|
|
34 |
by (cases x, simp)
|
|
35 |
|
|
36 |
lemma perm_snd:
|
|
37 |
"pi\<bullet>(snd x) = snd (pi\<bullet>x)"
|
|
38 |
by (cases x, simp)
|
|
39 |
|
|
40 |
(* permutation on lists *)
|
|
41 |
primrec (perm_list)
|
|
42 |
perm_nil_def: "pi\<bullet>[] = []"
|
|
43 |
perm_cons_def: "pi\<bullet>(x#xs) = (pi\<bullet>x)#(pi\<bullet>xs)"
|
|
44 |
|
|
45 |
lemma perm_append:
|
|
46 |
fixes pi :: "'x prm"
|
|
47 |
and l1 :: "'a list"
|
|
48 |
and l2 :: "'a list"
|
|
49 |
shows "pi\<bullet>(l1@l2) = (pi\<bullet>l1)@(pi\<bullet>l2)"
|
|
50 |
by (induct l1, auto)
|
|
51 |
|
|
52 |
lemma perm_rev:
|
|
53 |
fixes pi :: "'x prm"
|
|
54 |
and l :: "'a list"
|
|
55 |
shows "pi\<bullet>(rev l) = rev (pi\<bullet>l)"
|
|
56 |
by (induct l, simp_all add: perm_append)
|
|
57 |
|
|
58 |
(* permutation on functions *)
|
|
59 |
defs (overloaded)
|
|
60 |
perm_fun_def: "pi\<bullet>(f::'a\<Rightarrow>'b) \<equiv> (\<lambda>x. pi\<bullet>f((rev pi)\<bullet>x))"
|
|
61 |
|
|
62 |
(* permutation on bools *)
|
|
63 |
primrec (perm_bool)
|
|
64 |
perm_true_def: "pi\<bullet>True = True"
|
|
65 |
perm_false_def: "pi\<bullet>False = False"
|
|
66 |
|
|
67 |
(* permutation on options *)
|
|
68 |
primrec (perm_option)
|
|
69 |
perm_some_def: "pi\<bullet>Some(x) = Some(pi\<bullet>x)"
|
|
70 |
perm_none_def: "pi\<bullet>None = None"
|
|
71 |
|
|
72 |
(* a "private" copy of the option type used in the abstraction function *)
|
|
73 |
datatype 'a nOption = nSome 'a | nNone
|
|
74 |
|
|
75 |
primrec (perm_noption)
|
|
76 |
perm_Nsome_def: "pi\<bullet>nSome(x) = nSome(pi\<bullet>x)"
|
|
77 |
perm_Nnone_def: "pi\<bullet>nNone = nNone"
|
|
78 |
|
|
79 |
(* permutation on characters (used in strings) *)
|
|
80 |
defs (overloaded)
|
|
81 |
perm_char_def: "pi\<bullet>(s::char) \<equiv> s"
|
|
82 |
|
|
83 |
(* permutation on ints *)
|
|
84 |
defs (overloaded)
|
|
85 |
perm_int_def: "pi\<bullet>(i::int) \<equiv> i"
|
|
86 |
|
|
87 |
(* permutation on nats *)
|
|
88 |
defs (overloaded)
|
|
89 |
perm_nat_def: "pi\<bullet>(i::nat) \<equiv> i"
|
|
90 |
|
|
91 |
section {* permutation equality *}
|
|
92 |
(*==============================*)
|
|
93 |
|
|
94 |
constdefs
|
|
95 |
prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool" (" _ \<sim> _ " [80,80] 80)
|
|
96 |
"pi1 \<sim> pi2 \<equiv> \<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a"
|
|
97 |
|
|
98 |
section {* Support, Freshness and Supports*}
|
|
99 |
(*========================================*)
|
|
100 |
constdefs
|
|
101 |
supp :: "'a \<Rightarrow> ('x set)"
|
|
102 |
"supp x \<equiv> {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}"
|
|
103 |
|
|
104 |
fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (" _ \<sharp> _" [80,80] 80)
|
|
105 |
"a \<sharp> x \<equiv> a \<notin> supp x"
|
|
106 |
|
|
107 |
supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl 80)
|
|
108 |
"S supports x \<equiv> \<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x)"
|
|
109 |
|
|
110 |
lemma supp_fresh_iff:
|
|
111 |
fixes x :: "'a"
|
|
112 |
shows "(supp x) = {a::'x. \<not>a\<sharp>x}"
|
|
113 |
apply(simp add: fresh_def)
|
|
114 |
done
|
|
115 |
|
|
116 |
lemma supp_unit:
|
|
117 |
shows "supp () = {}"
|
|
118 |
by (simp add: supp_def)
|
|
119 |
|
|
120 |
lemma supp_prod:
|
|
121 |
fixes x :: "'a"
|
|
122 |
and y :: "'b"
|
|
123 |
shows "(supp (x,y)) = (supp x)\<union>(supp y)"
|
|
124 |
by (force simp add: supp_def Collect_imp_eq Collect_neg_eq)
|
|
125 |
|
|
126 |
lemma supp_list_nil:
|
|
127 |
shows "supp [] = {}"
|
|
128 |
apply(simp add: supp_def)
|
|
129 |
done
|
|
130 |
|
|
131 |
lemma supp_list_cons:
|
|
132 |
fixes x :: "'a"
|
|
133 |
and xs :: "'a list"
|
|
134 |
shows "supp (x#xs) = (supp x)\<union>(supp xs)"
|
|
135 |
apply(auto simp add: supp_def Collect_imp_eq Collect_neg_eq)
|
|
136 |
done
|
|
137 |
|
|
138 |
lemma supp_list_append:
|
|
139 |
fixes xs :: "'a list"
|
|
140 |
and ys :: "'a list"
|
|
141 |
shows "supp (xs@ys) = (supp xs)\<union>(supp ys)"
|
|
142 |
by (induct xs, auto simp add: supp_list_nil supp_list_cons)
|
|
143 |
|
|
144 |
lemma supp_list_rev:
|
|
145 |
fixes xs :: "'a list"
|
|
146 |
shows "supp (rev xs) = (supp xs)"
|
|
147 |
by (induct xs, auto simp add: supp_list_append supp_list_cons supp_list_nil)
|
|
148 |
|
|
149 |
lemma supp_bool:
|
|
150 |
fixes x :: "bool"
|
|
151 |
shows "supp (x) = {}"
|
|
152 |
apply(case_tac "x")
|
|
153 |
apply(simp_all add: supp_def)
|
|
154 |
done
|
|
155 |
|
|
156 |
lemma supp_some:
|
|
157 |
fixes x :: "'a"
|
|
158 |
shows "supp (Some x) = (supp x)"
|
|
159 |
apply(simp add: supp_def)
|
|
160 |
done
|
|
161 |
|
|
162 |
lemma supp_none:
|
|
163 |
fixes x :: "'a"
|
|
164 |
shows "supp (None) = {}"
|
|
165 |
apply(simp add: supp_def)
|
|
166 |
done
|
|
167 |
|
|
168 |
lemma supp_int:
|
|
169 |
fixes i::"int"
|
|
170 |
shows "supp (i) = {}"
|
|
171 |
apply(simp add: supp_def perm_int_def)
|
|
172 |
done
|
|
173 |
|
|
174 |
lemma fresh_prod:
|
|
175 |
fixes a :: "'x"
|
|
176 |
and x :: "'a"
|
|
177 |
and y :: "'b"
|
|
178 |
shows "a\<sharp>(x,y) = (a\<sharp>x \<and> a\<sharp>y)"
|
|
179 |
by (simp add: fresh_def supp_prod)
|
|
180 |
|
|
181 |
lemma fresh_list_nil:
|
|
182 |
fixes a :: "'x"
|
|
183 |
shows "a\<sharp>([]::'a list)"
|
|
184 |
by (simp add: fresh_def supp_list_nil)
|
|
185 |
|
|
186 |
lemma fresh_list_cons:
|
|
187 |
fixes a :: "'x"
|
|
188 |
and x :: "'a"
|
|
189 |
and xs :: "'a list"
|
|
190 |
shows "a\<sharp>(x#xs) = (a\<sharp>x \<and> a\<sharp>xs)"
|
|
191 |
by (simp add: fresh_def supp_list_cons)
|
|
192 |
|
|
193 |
lemma fresh_list_append:
|
|
194 |
fixes a :: "'x"
|
|
195 |
and xs :: "'a list"
|
|
196 |
and ys :: "'a list"
|
|
197 |
shows "a\<sharp>(xs@ys) = (a\<sharp>xs \<and> a\<sharp>ys)"
|
|
198 |
by (simp add: fresh_def supp_list_append)
|
|
199 |
|
|
200 |
lemma fresh_list_rev:
|
|
201 |
fixes a :: "'x"
|
|
202 |
and xs :: "'a list"
|
|
203 |
shows "a\<sharp>(rev xs) = a\<sharp>xs"
|
|
204 |
by (simp add: fresh_def supp_list_rev)
|
|
205 |
|
|
206 |
lemma fresh_none:
|
|
207 |
fixes a :: "'x"
|
|
208 |
shows "a\<sharp>None"
|
|
209 |
apply(simp add: fresh_def supp_none)
|
|
210 |
done
|
|
211 |
|
|
212 |
lemma fresh_some:
|
|
213 |
fixes a :: "'x"
|
|
214 |
and x :: "'a"
|
|
215 |
shows "a\<sharp>(Some x) = a\<sharp>x"
|
|
216 |
apply(simp add: fresh_def supp_some)
|
|
217 |
done
|
|
218 |
|
|
219 |
section {* Abstract Properties for Permutations and Atoms *}
|
|
220 |
(*=========================================================*)
|
|
221 |
|
|
222 |
(* properties for being a permutation type *)
|
|
223 |
constdefs
|
|
224 |
"pt TYPE('a) TYPE('x) \<equiv>
|
|
225 |
(\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and>
|
|
226 |
(\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and>
|
|
227 |
(\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<sim> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)"
|
|
228 |
|
|
229 |
(* properties for being an atom type *)
|
|
230 |
constdefs
|
|
231 |
"at TYPE('x) \<equiv>
|
|
232 |
(\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and>
|
|
233 |
(\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and>
|
|
234 |
(\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and>
|
|
235 |
(infinite (UNIV::'x set))"
|
|
236 |
|
|
237 |
(* property of two atom-types being disjoint *)
|
|
238 |
constdefs
|
|
239 |
"disjoint TYPE('x) TYPE('y) \<equiv>
|
|
240 |
(\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and>
|
|
241 |
(\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)"
|
|
242 |
|
|
243 |
(* composition property of two permutation on a type 'a *)
|
|
244 |
constdefs
|
|
245 |
"cp TYPE ('a) TYPE('x) TYPE('y) \<equiv>
|
|
246 |
(\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))"
|
|
247 |
|
|
248 |
(* property of having finite support *)
|
|
249 |
constdefs
|
|
250 |
"fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)"
|
|
251 |
|
|
252 |
section {* Lemmas about the atom-type properties*}
|
|
253 |
(*==============================================*)
|
|
254 |
|
|
255 |
lemma at1:
|
|
256 |
fixes x::"'x"
|
|
257 |
assumes a: "at TYPE('x)"
|
|
258 |
shows "([]::'x prm)\<bullet>x = x"
|
|
259 |
using a by (simp add: at_def)
|
|
260 |
|
|
261 |
lemma at2:
|
|
262 |
fixes a ::"'x"
|
|
263 |
and b ::"'x"
|
|
264 |
and x ::"'x"
|
|
265 |
and pi::"'x prm"
|
|
266 |
assumes a: "at TYPE('x)"
|
|
267 |
shows "((a,b)#pi)\<bullet>x = swap (a,b) (pi\<bullet>x)"
|
|
268 |
using a by (simp only: at_def)
|
|
269 |
|
|
270 |
lemma at3:
|
|
271 |
fixes a ::"'x"
|
|
272 |
and b ::"'x"
|
|
273 |
and c ::"'x"
|
|
274 |
assumes a: "at TYPE('x)"
|
|
275 |
shows "swap (a,b) c = (if a=c then b else (if b=c then a else c))"
|
|
276 |
using a by (simp only: at_def)
|
|
277 |
|
|
278 |
(* rules to calculate simple premutations *)
|
|
279 |
lemmas at_calc = at2 at1 at3
|
|
280 |
|
|
281 |
lemma at4:
|
|
282 |
assumes a: "at TYPE('x)"
|
|
283 |
shows "infinite (UNIV::'x set)"
|
|
284 |
using a by (simp add: at_def)
|
|
285 |
|
|
286 |
lemma at_append:
|
|
287 |
fixes pi1 :: "'x prm"
|
|
288 |
and pi2 :: "'x prm"
|
|
289 |
and c :: "'x"
|
|
290 |
assumes at: "at TYPE('x)"
|
|
291 |
shows "(pi1@pi2)\<bullet>c = pi1\<bullet>(pi2\<bullet>c)"
|
|
292 |
proof (induct pi1)
|
|
293 |
case Nil show ?case by (simp add: at1[OF at])
|
|
294 |
next
|
|
295 |
case (Cons x xs)
|
|
296 |
assume i: "(xs @ pi2)\<bullet>c = xs\<bullet>(pi2\<bullet>c)"
|
|
297 |
have "(x#xs)@pi2 = x#(xs@pi2)" by simp
|
|
298 |
thus ?case using i by (cases "x", simp add: at2[OF at])
|
|
299 |
qed
|
|
300 |
|
|
301 |
lemma at_swap:
|
|
302 |
fixes a :: "'x"
|
|
303 |
and b :: "'x"
|
|
304 |
and c :: "'x"
|
|
305 |
assumes at: "at TYPE('x)"
|
|
306 |
shows "swap (a,b) (swap (a,b) c) = c"
|
|
307 |
by (auto simp add: at3[OF at])
|
|
308 |
|
|
309 |
lemma at_rev_pi:
|
|
310 |
fixes pi :: "'x prm"
|
|
311 |
and c :: "'x"
|
|
312 |
assumes at: "at TYPE('x)"
|
|
313 |
shows "(rev pi)\<bullet>(pi\<bullet>c) = c"
|
|
314 |
proof(induct pi)
|
|
315 |
case Nil show ?case by (simp add: at1[OF at])
|
|
316 |
next
|
|
317 |
case (Cons x xs) thus ?case
|
|
318 |
by (cases "x", simp add: at2[OF at] at_append[OF at] at1[OF at] at_swap[OF at])
|
|
319 |
qed
|
|
320 |
|
|
321 |
lemma at_pi_rev:
|
|
322 |
fixes pi :: "'x prm"
|
|
323 |
and x :: "'x"
|
|
324 |
assumes at: "at TYPE('x)"
|
|
325 |
shows "pi\<bullet>((rev pi)\<bullet>x) = x"
|
|
326 |
by (rule at_rev_pi[OF at, of "rev pi" _,simplified])
|
|
327 |
|
|
328 |
lemma at_bij1:
|
|
329 |
fixes pi :: "'x prm"
|
|
330 |
and x :: "'x"
|
|
331 |
and y :: "'x"
|
|
332 |
assumes at: "at TYPE('x)"
|
|
333 |
and a: "(pi\<bullet>x) = y"
|
|
334 |
shows "x=(rev pi)\<bullet>y"
|
|
335 |
proof -
|
|
336 |
from a have "y=(pi\<bullet>x)" by (rule sym)
|
|
337 |
thus ?thesis by (simp only: at_rev_pi[OF at])
|
|
338 |
qed
|
|
339 |
|
|
340 |
lemma at_bij2:
|
|
341 |
fixes pi :: "'x prm"
|
|
342 |
and x :: "'x"
|
|
343 |
and y :: "'x"
|
|
344 |
assumes at: "at TYPE('x)"
|
|
345 |
and a: "((rev pi)\<bullet>x) = y"
|
|
346 |
shows "x=pi\<bullet>y"
|
|
347 |
proof -
|
|
348 |
from a have "y=((rev pi)\<bullet>x)" by (rule sym)
|
|
349 |
thus ?thesis by (simp only: at_pi_rev[OF at])
|
|
350 |
qed
|
|
351 |
|
|
352 |
lemma at_bij:
|
|
353 |
fixes pi :: "'x prm"
|
|
354 |
and x :: "'x"
|
|
355 |
and y :: "'x"
|
|
356 |
assumes at: "at TYPE('x)"
|
|
357 |
shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)"
|
|
358 |
proof
|
|
359 |
assume "pi\<bullet>x = pi\<bullet>y"
|
|
360 |
hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule at_bij1[OF at])
|
|
361 |
thus "x=y" by (simp only: at_rev_pi[OF at])
|
|
362 |
next
|
|
363 |
assume "x=y"
|
|
364 |
thus "pi\<bullet>x = pi\<bullet>y" by simp
|
|
365 |
qed
|
|
366 |
|
|
367 |
lemma at_supp:
|
|
368 |
fixes x :: "'x"
|
|
369 |
assumes at: "at TYPE('x)"
|
|
370 |
shows "supp x = {x}"
|
|
371 |
proof (simp add: supp_def Collect_conj_eq Collect_imp_eq at_calc[OF at], auto)
|
|
372 |
assume f: "finite {b::'x. b \<noteq> x}"
|
|
373 |
have a1: "{b::'x. b \<noteq> x} = UNIV-{x}" by force
|
|
374 |
have a2: "infinite (UNIV::'x set)" by (rule at4[OF at])
|
|
375 |
from f a1 a2 show False by force
|
|
376 |
qed
|
|
377 |
|
|
378 |
lemma at_fresh:
|
|
379 |
fixes a :: "'x"
|
|
380 |
and b :: "'x"
|
|
381 |
assumes at: "at TYPE('x)"
|
|
382 |
shows "(a\<sharp>b) = (a\<noteq>b)"
|
|
383 |
by (simp add: at_supp[OF at] fresh_def)
|
|
384 |
|
|
385 |
lemma at_prm_fresh[rule_format]:
|
|
386 |
fixes c :: "'x"
|
|
387 |
and pi:: "'x prm"
|
|
388 |
assumes at: "at TYPE('x)"
|
|
389 |
shows "c\<sharp>pi \<longrightarrow> pi\<bullet>c = c"
|
|
390 |
apply(induct pi)
|
|
391 |
apply(simp add: at1[OF at])
|
|
392 |
apply(force simp add: fresh_list_cons at2[OF at] fresh_prod at_fresh[OF at] at3[OF at])
|
|
393 |
done
|
|
394 |
|
|
395 |
lemma at_prm_rev_eq:
|
|
396 |
fixes pi1 :: "'x prm"
|
|
397 |
and pi2 :: "'x prm"
|
|
398 |
assumes at: "at TYPE('x)"
|
|
399 |
shows a: "((rev pi1) \<sim> (rev pi2)) = (pi1 \<sim> pi2)"
|
|
400 |
proof (simp add: prm_eq_def, auto)
|
|
401 |
fix x
|
|
402 |
assume "\<forall>x::'x. (rev pi1)\<bullet>x = (rev pi2)\<bullet>x"
|
|
403 |
hence "(rev (pi1::'x prm))\<bullet>(pi2\<bullet>(x::'x)) = (rev (pi2::'x prm))\<bullet>(pi2\<bullet>x)" by simp
|
|
404 |
hence "(rev (pi1::'x prm))\<bullet>((pi2::'x prm)\<bullet>x) = (x::'x)" by (simp add: at_rev_pi[OF at])
|
|
405 |
hence "(pi2::'x prm)\<bullet>x = (pi1::'x prm)\<bullet>x" by (simp add: at_bij2[OF at])
|
|
406 |
thus "pi1 \<bullet> x = pi2 \<bullet> x" by simp
|
|
407 |
next
|
|
408 |
fix x
|
|
409 |
assume "\<forall>x::'x. pi1\<bullet>x = pi2\<bullet>x"
|
|
410 |
hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>x) = (pi2::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x))" by simp
|
|
411 |
hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x)) = x" by (simp add: at_pi_rev[OF at])
|
|
412 |
hence "(rev pi2)\<bullet>x = (rev pi1)\<bullet>(x::'x)" by (simp add: at_bij1[OF at])
|
|
413 |
thus "(rev pi1)\<bullet>x = (rev pi2)\<bullet>(x::'x)" by simp
|
|
414 |
qed
|
|
415 |
|
|
416 |
lemma at_prm_rev_eq1:
|
|
417 |
fixes pi1 :: "'x prm"
|
|
418 |
and pi2 :: "'x prm"
|
|
419 |
assumes at: "at TYPE('x)"
|
|
420 |
shows "pi1 \<sim> pi2 \<Longrightarrow> (rev pi1) \<sim> (rev pi2)"
|
|
421 |
by (simp add: at_prm_rev_eq[OF at])
|
|
422 |
|
|
423 |
lemma at_ds1:
|
|
424 |
fixes a :: "'x"
|
|
425 |
assumes at: "at TYPE('x)"
|
|
426 |
shows "[(a,a)] \<sim> []"
|
|
427 |
by (force simp add: prm_eq_def at_calc[OF at])
|
|
428 |
|
|
429 |
lemma at_ds2:
|
|
430 |
fixes pi :: "'x prm"
|
|
431 |
and a :: "'x"
|
|
432 |
and b :: "'x"
|
|
433 |
assumes at: "at TYPE('x)"
|
|
434 |
shows "(pi@[((rev pi)\<bullet>a,(rev pi)\<bullet>b)]) \<sim> ([(a,b)]@pi)"
|
|
435 |
by (force simp add: prm_eq_def at_append[OF at] at_bij[OF at] at_pi_rev[OF at]
|
|
436 |
at_rev_pi[OF at] at_calc[OF at])
|
|
437 |
|
|
438 |
lemma at_ds3:
|
|
439 |
fixes a :: "'x"
|
|
440 |
and b :: "'x"
|
|
441 |
and c :: "'x"
|
|
442 |
assumes at: "at TYPE('x)"
|
|
443 |
and a: "distinct [a,b,c]"
|
|
444 |
shows "[(a,c),(b,c),(a,c)] \<sim> [(a,b)]"
|
|
445 |
using a by (force simp add: prm_eq_def at_calc[OF at])
|
|
446 |
|
|
447 |
lemma at_ds4:
|
|
448 |
fixes a :: "'x"
|
|
449 |
and b :: "'x"
|
|
450 |
and pi :: "'x prm"
|
|
451 |
assumes at: "at TYPE('x)"
|
|
452 |
shows "(pi@[(a,(rev pi)\<bullet>b)]) \<sim> ([(pi\<bullet>a,b)]@pi)"
|
|
453 |
by (force simp add: prm_eq_def at_append[OF at] at_calc[OF at] at_bij[OF at]
|
|
454 |
at_pi_rev[OF at] at_rev_pi[OF at])
|
|
455 |
|
|
456 |
lemma at_ds5:
|
|
457 |
fixes a :: "'x"
|
|
458 |
and b :: "'x"
|
|
459 |
assumes at: "at TYPE('x)"
|
|
460 |
shows "[(a,b)] \<sim> [(b,a)]"
|
|
461 |
by (force simp add: prm_eq_def at_calc[OF at])
|
|
462 |
|
|
463 |
lemma at_ds6:
|
|
464 |
fixes a :: "'x"
|
|
465 |
and b :: "'x"
|
|
466 |
and c :: "'x"
|
|
467 |
assumes at: "at TYPE('x)"
|
|
468 |
and a: "distinct [a,b,c]"
|
|
469 |
shows "[(a,c),(a,b)] \<sim> [(b,c),(a,c)]"
|
|
470 |
using a by (force simp add: prm_eq_def at_calc[OF at])
|
|
471 |
|
|
472 |
lemma at_ds7:
|
|
473 |
fixes pi :: "'x prm"
|
|
474 |
assumes at: "at TYPE('x)"
|
|
475 |
shows "((rev pi)@pi) \<sim> []"
|
|
476 |
by (simp add: prm_eq_def at1[OF at] at_append[OF at] at_rev_pi[OF at])
|
|
477 |
|
|
478 |
lemma at_ds8_aux:
|
|
479 |
fixes pi :: "'x prm"
|
|
480 |
and a :: "'x"
|
|
481 |
and b :: "'x"
|
|
482 |
and c :: "'x"
|
|
483 |
assumes at: "at TYPE('x)"
|
|
484 |
shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)"
|
|
485 |
by (force simp add: at_calc[OF at] at_bij[OF at])
|
|
486 |
|
|
487 |
lemma at_ds8:
|
|
488 |
fixes pi1 :: "'x prm"
|
|
489 |
and pi2 :: "'x prm"
|
|
490 |
and a :: "'x"
|
|
491 |
and b :: "'x"
|
|
492 |
assumes at: "at TYPE('x)"
|
|
493 |
shows "(pi1@pi2) \<sim> ((pi1\<bullet>pi2)@pi1)"
|
|
494 |
apply(induct_tac pi2)
|
|
495 |
apply(simp add: prm_eq_def)
|
|
496 |
apply(auto simp add: prm_eq_def)
|
|
497 |
apply(simp add: at2[OF at])
|
|
498 |
apply(drule_tac x="aa" in spec)
|
|
499 |
apply(drule sym)
|
|
500 |
apply(simp)
|
|
501 |
apply(simp add: at_append[OF at])
|
|
502 |
apply(simp add: at2[OF at])
|
|
503 |
apply(simp add: at_ds8_aux[OF at])
|
|
504 |
done
|
|
505 |
|
|
506 |
lemma at_ds9:
|
|
507 |
fixes pi1 :: "'x prm"
|
|
508 |
and pi2 :: "'x prm"
|
|
509 |
and a :: "'x"
|
|
510 |
and b :: "'x"
|
|
511 |
assumes at: "at TYPE('x)"
|
|
512 |
shows " ((rev pi2)@(rev pi1)) \<sim> ((rev pi1)@(rev (pi1\<bullet>pi2)))"
|
|
513 |
apply(induct_tac pi2)
|
|
514 |
apply(simp add: prm_eq_def)
|
|
515 |
apply(auto simp add: prm_eq_def)
|
|
516 |
apply(simp add: at_append[OF at])
|
|
517 |
apply(simp add: at2[OF at] at1[OF at])
|
|
518 |
apply(drule_tac x="swap(pi1\<bullet>a,pi1\<bullet>b) aa" in spec)
|
|
519 |
apply(drule sym)
|
|
520 |
apply(simp)
|
|
521 |
apply(simp add: at_ds8_aux[OF at])
|
|
522 |
apply(simp add: at_rev_pi[OF at])
|
|
523 |
done
|
|
524 |
|
|
525 |
--"there always exists an atom not being in a finite set"
|
|
526 |
lemma ex_in_inf:
|
|
527 |
fixes A::"'x set"
|
|
528 |
assumes at: "at TYPE('x)"
|
|
529 |
and fs: "finite A"
|
|
530 |
shows "\<exists>c::'x. c\<notin>A"
|
|
531 |
proof -
|
|
532 |
from fs at4[OF at] have "infinite ((UNIV::'x set) - A)"
|
|
533 |
by (simp add: Diff_infinite_finite)
|
|
534 |
hence "((UNIV::'x set) - A) \<noteq> ({}::'x set)" by (force simp only:)
|
|
535 |
hence "\<exists>c::'x. c\<in>((UNIV::'x set) - A)" by force
|
|
536 |
thus "\<exists>c::'x. c\<notin>A" by force
|
|
537 |
qed
|
|
538 |
|
|
539 |
--"there always exists a fresh name for an object with finite support"
|
|
540 |
lemma at_exists_fresh:
|
|
541 |
fixes x :: "'a"
|
|
542 |
assumes at: "at TYPE('x)"
|
|
543 |
and fs: "finite ((supp x)::'x set)"
|
|
544 |
shows "\<exists>c::'x. c\<sharp>x"
|
|
545 |
by (simp add: fresh_def, rule ex_in_inf[OF at, OF fs])
|
|
546 |
|
|
547 |
--"the at-props imply the pt-props"
|
|
548 |
lemma at_pt_inst:
|
|
549 |
assumes at: "at TYPE('x)"
|
|
550 |
shows "pt TYPE('x) TYPE('x)"
|
|
551 |
apply(auto simp only: pt_def)
|
|
552 |
apply(simp only: at1[OF at])
|
|
553 |
apply(simp only: at_append[OF at])
|
|
554 |
apply(simp add: prm_eq_def)
|
|
555 |
done
|
|
556 |
|
|
557 |
section {* finite support properties *}
|
|
558 |
(*===================================*)
|
|
559 |
|
|
560 |
lemma fs1:
|
|
561 |
fixes x :: "'a"
|
|
562 |
assumes a: "fs TYPE('a) TYPE('x)"
|
|
563 |
shows "finite ((supp x)::'x set)"
|
|
564 |
using a by (simp add: fs_def)
|
|
565 |
|
|
566 |
lemma fs_at_inst:
|
|
567 |
fixes a :: "'x"
|
|
568 |
assumes at: "at TYPE('x)"
|
|
569 |
shows "fs TYPE('x) TYPE('x)"
|
|
570 |
apply(simp add: fs_def)
|
|
571 |
apply(simp add: at_supp[OF at])
|
|
572 |
done
|
|
573 |
|
|
574 |
lemma fs_unit_inst:
|
|
575 |
shows "fs TYPE(unit) TYPE('x)"
|
|
576 |
apply(simp add: fs_def)
|
|
577 |
apply(simp add: supp_unit)
|
|
578 |
done
|
|
579 |
|
|
580 |
lemma fs_prod_inst:
|
|
581 |
assumes fsa: "fs TYPE('a) TYPE('x)"
|
|
582 |
and fsb: "fs TYPE('b) TYPE('x)"
|
|
583 |
shows "fs TYPE('a\<times>'b) TYPE('x)"
|
|
584 |
apply(unfold fs_def)
|
|
585 |
apply(auto simp add: supp_prod)
|
|
586 |
apply(rule fs1[OF fsa])
|
|
587 |
apply(rule fs1[OF fsb])
|
|
588 |
done
|
|
589 |
|
|
590 |
lemma fs_list_inst:
|
|
591 |
assumes fs: "fs TYPE('a) TYPE('x)"
|
|
592 |
shows "fs TYPE('a list) TYPE('x)"
|
|
593 |
apply(simp add: fs_def, rule allI)
|
|
594 |
apply(induct_tac x)
|
|
595 |
apply(simp add: supp_list_nil)
|
|
596 |
apply(simp add: supp_list_cons)
|
|
597 |
apply(rule fs1[OF fs])
|
|
598 |
done
|
|
599 |
|
|
600 |
lemma fs_bool_inst:
|
|
601 |
shows "fs TYPE(bool) TYPE('x)"
|
|
602 |
apply(simp add: fs_def, rule allI)
|
|
603 |
apply(simp add: supp_bool)
|
|
604 |
done
|
|
605 |
|
|
606 |
lemma fs_int_inst:
|
|
607 |
shows "fs TYPE(int) TYPE('x)"
|
|
608 |
apply(simp add: fs_def, rule allI)
|
|
609 |
apply(simp add: supp_int)
|
|
610 |
done
|
|
611 |
|
|
612 |
section {* Lemmas about the permutation properties *}
|
|
613 |
(*=================================================*)
|
|
614 |
|
|
615 |
lemma pt1:
|
|
616 |
fixes x::"'a"
|
|
617 |
assumes a: "pt TYPE('a) TYPE('x)"
|
|
618 |
shows "([]::'x prm)\<bullet>x = x"
|
|
619 |
using a by (simp add: pt_def)
|
|
620 |
|
|
621 |
lemma pt2:
|
|
622 |
fixes pi1::"'x prm"
|
|
623 |
and pi2::"'x prm"
|
|
624 |
and x ::"'a"
|
|
625 |
assumes a: "pt TYPE('a) TYPE('x)"
|
|
626 |
shows "(pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)"
|
|
627 |
using a by (simp add: pt_def)
|
|
628 |
|
|
629 |
lemma pt3:
|
|
630 |
fixes pi1::"'x prm"
|
|
631 |
and pi2::"'x prm"
|
|
632 |
and x ::"'a"
|
|
633 |
assumes a: "pt TYPE('a) TYPE('x)"
|
|
634 |
shows "pi1 \<sim> pi2 \<Longrightarrow> pi1\<bullet>x = pi2\<bullet>x"
|
|
635 |
using a by (simp add: pt_def)
|
|
636 |
|
|
637 |
lemma pt3_rev:
|
|
638 |
fixes pi1::"'x prm"
|
|
639 |
and pi2::"'x prm"
|
|
640 |
and x ::"'a"
|
|
641 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
642 |
and at: "at TYPE('x)"
|
|
643 |
shows "pi1 \<sim> pi2 \<Longrightarrow> (rev pi1)\<bullet>x = (rev pi2)\<bullet>x"
|
|
644 |
by (rule pt3[OF pt], simp add: at_prm_rev_eq[OF at])
|
|
645 |
|
|
646 |
section {* composition properties *}
|
|
647 |
(* ============================== *)
|
|
648 |
lemma cp1:
|
|
649 |
fixes pi1::"'x prm"
|
|
650 |
and pi2::"'y prm"
|
|
651 |
and x ::"'a"
|
|
652 |
assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
|
|
653 |
shows "pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x)"
|
|
654 |
using cp by (simp add: cp_def)
|
|
655 |
|
|
656 |
lemma cp_pt_inst:
|
|
657 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
658 |
and at: "at TYPE('x)"
|
|
659 |
shows "cp TYPE('a) TYPE('x) TYPE('x)"
|
|
660 |
apply(auto simp add: cp_def pt2[OF pt,symmetric])
|
|
661 |
apply(rule pt3[OF pt])
|
|
662 |
apply(rule at_ds8[OF at])
|
|
663 |
done
|
|
664 |
|
|
665 |
section {* permutation type instances *}
|
|
666 |
(* ===================================*)
|
|
667 |
|
|
668 |
lemma pt_set_inst:
|
|
669 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
670 |
shows "pt TYPE('a set) TYPE('x)"
|
|
671 |
apply(simp add: pt_def)
|
|
672 |
apply(simp_all add: perm_set_def)
|
|
673 |
apply(simp add: pt1[OF pt])
|
|
674 |
apply(force simp add: pt2[OF pt] pt3[OF pt])
|
|
675 |
done
|
|
676 |
|
|
677 |
lemma pt_list_nil:
|
|
678 |
fixes xs :: "'a list"
|
|
679 |
assumes pt: "pt TYPE('a) TYPE ('x)"
|
|
680 |
shows "([]::'x prm)\<bullet>xs = xs"
|
|
681 |
apply(induct_tac xs)
|
|
682 |
apply(simp_all add: pt1[OF pt])
|
|
683 |
done
|
|
684 |
|
|
685 |
lemma pt_list_append:
|
|
686 |
fixes pi1 :: "'x prm"
|
|
687 |
and pi2 :: "'x prm"
|
|
688 |
and xs :: "'a list"
|
|
689 |
assumes pt: "pt TYPE('a) TYPE ('x)"
|
|
690 |
shows "(pi1@pi2)\<bullet>xs = pi1\<bullet>(pi2\<bullet>xs)"
|
|
691 |
apply(induct_tac xs)
|
|
692 |
apply(simp_all add: pt2[OF pt])
|
|
693 |
done
|
|
694 |
|
|
695 |
lemma pt_list_prm_eq:
|
|
696 |
fixes pi1 :: "'x prm"
|
|
697 |
and pi2 :: "'x prm"
|
|
698 |
and xs :: "'a list"
|
|
699 |
assumes pt: "pt TYPE('a) TYPE ('x)"
|
|
700 |
shows "pi1 \<sim> pi2 \<Longrightarrow> pi1\<bullet>xs = pi2\<bullet>xs"
|
|
701 |
apply(induct_tac xs)
|
|
702 |
apply(simp_all add: prm_eq_def pt3[OF pt])
|
|
703 |
done
|
|
704 |
|
|
705 |
lemma pt_list_inst:
|
|
706 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
707 |
shows "pt TYPE('a list) TYPE('x)"
|
|
708 |
apply(auto simp only: pt_def)
|
|
709 |
apply(rule pt_list_nil[OF pt])
|
|
710 |
apply(rule pt_list_append[OF pt])
|
|
711 |
apply(rule pt_list_prm_eq[OF pt],assumption)
|
|
712 |
done
|
|
713 |
|
|
714 |
lemma pt_unit_inst:
|
|
715 |
shows "pt TYPE(unit) TYPE('x)"
|
|
716 |
by (simp add: pt_def)
|
|
717 |
|
|
718 |
lemma pt_prod_inst:
|
|
719 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
720 |
and ptb: "pt TYPE('b) TYPE('x)"
|
|
721 |
shows "pt TYPE('a \<times> 'b) TYPE('x)"
|
|
722 |
apply(auto simp add: pt_def)
|
|
723 |
apply(rule pt1[OF pta])
|
|
724 |
apply(rule pt1[OF ptb])
|
|
725 |
apply(rule pt2[OF pta])
|
|
726 |
apply(rule pt2[OF ptb])
|
|
727 |
apply(rule pt3[OF pta],assumption)
|
|
728 |
apply(rule pt3[OF ptb],assumption)
|
|
729 |
done
|
|
730 |
|
|
731 |
lemma pt_fun_inst:
|
|
732 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
733 |
and ptb: "pt TYPE('b) TYPE('x)"
|
|
734 |
and at: "at TYPE('x)"
|
|
735 |
shows "pt TYPE('a\<Rightarrow>'b) TYPE('x)"
|
|
736 |
apply(auto simp only: pt_def)
|
|
737 |
apply(simp_all add: perm_fun_def)
|
|
738 |
apply(simp add: pt1[OF pta] pt1[OF ptb])
|
|
739 |
apply(simp add: pt2[OF pta] pt2[OF ptb])
|
|
740 |
apply(subgoal_tac "(rev pi1) \<sim> (rev pi2)")(*A*)
|
|
741 |
apply(simp add: pt3[OF pta] pt3[OF ptb])
|
|
742 |
(*A*)
|
|
743 |
apply(simp add: at_prm_rev_eq[OF at])
|
|
744 |
done
|
|
745 |
|
|
746 |
lemma pt_option_inst:
|
|
747 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
748 |
shows "pt TYPE('a option) TYPE('x)"
|
|
749 |
apply(auto simp only: pt_def)
|
|
750 |
apply(case_tac "x")
|
|
751 |
apply(simp_all add: pt1[OF pta])
|
|
752 |
apply(case_tac "x")
|
|
753 |
apply(simp_all add: pt2[OF pta])
|
|
754 |
apply(case_tac "x")
|
|
755 |
apply(simp_all add: pt3[OF pta])
|
|
756 |
done
|
|
757 |
|
|
758 |
lemma pt_noption_inst:
|
|
759 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
760 |
shows "pt TYPE('a nOption) TYPE('x)"
|
|
761 |
apply(auto simp only: pt_def)
|
|
762 |
apply(case_tac "x")
|
|
763 |
apply(simp_all add: pt1[OF pta])
|
|
764 |
apply(case_tac "x")
|
|
765 |
apply(simp_all add: pt2[OF pta])
|
|
766 |
apply(case_tac "x")
|
|
767 |
apply(simp_all add: pt3[OF pta])
|
|
768 |
done
|
|
769 |
|
|
770 |
lemma pt_bool_inst:
|
|
771 |
shows "pt TYPE(bool) TYPE('x)"
|
|
772 |
apply(auto simp add: pt_def)
|
|
773 |
apply(case_tac "x=True", simp add: perm_bool_def, simp add: perm_bool_def)+
|
|
774 |
done
|
|
775 |
|
|
776 |
lemma pt_prm_inst:
|
|
777 |
assumes at: "at TYPE('x)"
|
|
778 |
shows "pt TYPE('x prm) TYPE('x)"
|
|
779 |
apply(rule pt_list_inst)
|
|
780 |
apply(rule pt_prod_inst)
|
|
781 |
apply(rule at_pt_inst[OF at])+
|
|
782 |
done
|
|
783 |
|
|
784 |
section {* further lemmas for permutation types *}
|
|
785 |
(*==============================================*)
|
|
786 |
|
|
787 |
lemma pt_rev_pi:
|
|
788 |
fixes pi :: "'x prm"
|
|
789 |
and x :: "'a"
|
|
790 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
791 |
and at: "at TYPE('x)"
|
|
792 |
shows "(rev pi)\<bullet>(pi\<bullet>x) = x"
|
|
793 |
proof -
|
|
794 |
have "((rev pi)@pi) \<sim> ([]::'x prm)" by (simp add: at_ds7[OF at])
|
|
795 |
hence "((rev pi)@pi)\<bullet>(x::'a) = ([]::'x prm)\<bullet>x" by (simp add: pt3[OF pt])
|
|
796 |
thus ?thesis by (simp add: pt1[OF pt] pt2[OF pt])
|
|
797 |
qed
|
|
798 |
|
|
799 |
lemma pt_pi_rev:
|
|
800 |
fixes pi :: "'x prm"
|
|
801 |
and x :: "'a"
|
|
802 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
803 |
and at: "at TYPE('x)"
|
|
804 |
shows "pi\<bullet>((rev pi)\<bullet>x) = x"
|
|
805 |
by (simp add: pt_rev_pi[OF pt, OF at,of "rev pi" "x",simplified])
|
|
806 |
|
|
807 |
lemma pt_bij1:
|
|
808 |
fixes pi :: "'x prm"
|
|
809 |
and x :: "'a"
|
|
810 |
and y :: "'a"
|
|
811 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
812 |
and at: "at TYPE('x)"
|
|
813 |
and a: "(pi\<bullet>x) = y"
|
|
814 |
shows "x=(rev pi)\<bullet>y"
|
|
815 |
proof -
|
|
816 |
from a have "y=(pi\<bullet>x)" by (rule sym)
|
|
817 |
thus ?thesis by (simp only: pt_rev_pi[OF pt, OF at])
|
|
818 |
qed
|
|
819 |
|
|
820 |
lemma pt_bij2:
|
|
821 |
fixes pi :: "'x prm"
|
|
822 |
and x :: "'a"
|
|
823 |
and y :: "'a"
|
|
824 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
825 |
and at: "at TYPE('x)"
|
|
826 |
and a: "x = (rev pi)\<bullet>y"
|
|
827 |
shows "(pi\<bullet>x)=y"
|
|
828 |
using a by (simp add: pt_pi_rev[OF pt, OF at])
|
|
829 |
|
|
830 |
lemma pt_bij:
|
|
831 |
fixes pi :: "'x prm"
|
|
832 |
and x :: "'a"
|
|
833 |
and y :: "'a"
|
|
834 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
835 |
and at: "at TYPE('x)"
|
|
836 |
shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)"
|
|
837 |
proof
|
|
838 |
assume "pi\<bullet>x = pi\<bullet>y"
|
|
839 |
hence "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule pt_bij1[OF pt, OF at])
|
|
840 |
thus "x=y" by (simp only: pt_rev_pi[OF pt, OF at])
|
|
841 |
next
|
|
842 |
assume "x=y"
|
|
843 |
thus "pi\<bullet>x = pi\<bullet>y" by simp
|
|
844 |
qed
|
|
845 |
|
|
846 |
lemma pt_bij3:
|
|
847 |
fixes pi :: "'x prm"
|
|
848 |
and x :: "'a"
|
|
849 |
and y :: "'a"
|
|
850 |
assumes a: "x=y"
|
|
851 |
shows "(pi\<bullet>x = pi\<bullet>y)"
|
|
852 |
using a by simp
|
|
853 |
|
|
854 |
lemma pt_bij4:
|
|
855 |
fixes pi :: "'x prm"
|
|
856 |
and x :: "'a"
|
|
857 |
and y :: "'a"
|
|
858 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
859 |
and at: "at TYPE('x)"
|
|
860 |
and a: "pi\<bullet>x = pi\<bullet>y"
|
|
861 |
shows "x = y"
|
|
862 |
using a by (simp add: pt_bij[OF pt, OF at])
|
|
863 |
|
|
864 |
lemma pt_swap_bij:
|
|
865 |
fixes a :: "'x"
|
|
866 |
and b :: "'x"
|
|
867 |
and x :: "'a"
|
|
868 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
869 |
and at: "at TYPE('x)"
|
|
870 |
shows "[(a,b)]\<bullet>([(a,b)]\<bullet>x) = x"
|
|
871 |
by (rule pt_bij2[OF pt, OF at], simp)
|
|
872 |
|
|
873 |
lemma pt_set_bij1:
|
|
874 |
fixes pi :: "'x prm"
|
|
875 |
and x :: "'a"
|
|
876 |
and X :: "'a set"
|
|
877 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
878 |
and at: "at TYPE('x)"
|
|
879 |
shows "((pi\<bullet>x)\<in>X) = (x\<in>((rev pi)\<bullet>X))"
|
|
880 |
by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
|
|
881 |
|
|
882 |
lemma pt_set_bij1a:
|
|
883 |
fixes pi :: "'x prm"
|
|
884 |
and x :: "'a"
|
|
885 |
and X :: "'a set"
|
|
886 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
887 |
and at: "at TYPE('x)"
|
|
888 |
shows "(x\<in>(pi\<bullet>X)) = (((rev pi)\<bullet>x)\<in>X)"
|
|
889 |
by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
|
|
890 |
|
|
891 |
lemma pt_set_bij:
|
|
892 |
fixes pi :: "'x prm"
|
|
893 |
and x :: "'a"
|
|
894 |
and X :: "'a set"
|
|
895 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
896 |
and at: "at TYPE('x)"
|
|
897 |
shows "((pi\<bullet>x)\<in>(pi\<bullet>X)) = (x\<in>X)"
|
|
898 |
by (simp add: perm_set_def pt_set_bij1[OF pt, OF at] pt_bij[OF pt, OF at])
|
|
899 |
|
|
900 |
lemma pt_set_bij2:
|
|
901 |
fixes pi :: "'x prm"
|
|
902 |
and x :: "'a"
|
|
903 |
and X :: "'a set"
|
|
904 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
905 |
and at: "at TYPE('x)"
|
|
906 |
and a: "x\<in>X"
|
|
907 |
shows "(pi\<bullet>x)\<in>(pi\<bullet>X)"
|
|
908 |
using a by (simp add: pt_set_bij[OF pt, OF at])
|
|
909 |
|
|
910 |
lemma pt_set_bij3:
|
|
911 |
fixes pi :: "'x prm"
|
|
912 |
and x :: "'a"
|
|
913 |
and X :: "'a set"
|
|
914 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
915 |
and at: "at TYPE('x)"
|
|
916 |
shows "pi\<bullet>(x\<in>X) = (x\<in>X)"
|
|
917 |
apply(case_tac "x\<in>X = True")
|
|
918 |
apply(auto)
|
|
919 |
done
|
|
920 |
|
|
921 |
lemma pt_list_set_pi:
|
|
922 |
fixes pi :: "'x prm"
|
|
923 |
and xs :: "'a list"
|
|
924 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
925 |
shows "pi\<bullet>(set xs) = set (pi\<bullet>xs)"
|
|
926 |
by (induct xs, auto simp add: perm_set_def pt1[OF pt])
|
|
927 |
|
|
928 |
-- "some helper lemmas for the pt_perm_supp_ineq lemma"
|
|
929 |
lemma Collect_permI:
|
|
930 |
fixes pi :: "'x prm"
|
|
931 |
and x :: "'a"
|
|
932 |
assumes a: "\<forall>x. (P1 x = P2 x)"
|
|
933 |
shows "{pi\<bullet>x| x. P1 x} = {pi\<bullet>x| x. P2 x}"
|
|
934 |
using a by force
|
|
935 |
|
|
936 |
lemma Infinite_cong:
|
|
937 |
assumes a: "X = Y"
|
|
938 |
shows "infinite X = infinite Y"
|
|
939 |
using a by (simp)
|
|
940 |
|
|
941 |
lemma pt_set_eq_ineq:
|
|
942 |
fixes pi :: "'y prm"
|
|
943 |
assumes pt: "pt TYPE('x) TYPE('y)"
|
|
944 |
and at: "at TYPE('y)"
|
|
945 |
shows "{pi\<bullet>x| x::'x. P x} = {x::'x. P ((rev pi)\<bullet>x)}"
|
|
946 |
by (force simp only: pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
|
|
947 |
|
|
948 |
lemma pt_inject_on_ineq:
|
|
949 |
fixes X :: "'y set"
|
|
950 |
and pi :: "'x prm"
|
|
951 |
assumes pt: "pt TYPE('y) TYPE('x)"
|
|
952 |
and at: "at TYPE('x)"
|
|
953 |
shows "inj_on (perm pi) X"
|
|
954 |
proof (unfold inj_on_def, intro strip)
|
|
955 |
fix x::"'y" and y::"'y"
|
|
956 |
assume "pi\<bullet>x = pi\<bullet>y"
|
|
957 |
thus "x=y" by (simp add: pt_bij[OF pt, OF at])
|
|
958 |
qed
|
|
959 |
|
|
960 |
lemma pt_set_finite_ineq:
|
|
961 |
fixes X :: "'x set"
|
|
962 |
and pi :: "'y prm"
|
|
963 |
assumes pt: "pt TYPE('x) TYPE('y)"
|
|
964 |
and at: "at TYPE('y)"
|
|
965 |
shows "finite (pi\<bullet>X) = finite X"
|
|
966 |
proof -
|
|
967 |
have image: "(pi\<bullet>X) = (perm pi ` X)" by (force simp only: perm_set_def)
|
|
968 |
show ?thesis
|
|
969 |
proof (rule iffI)
|
|
970 |
assume "finite (pi\<bullet>X)"
|
|
971 |
hence "finite (perm pi ` X)" using image by (simp)
|
|
972 |
thus "finite X" using pt_inject_on_ineq[OF pt, OF at] by (rule finite_imageD)
|
|
973 |
next
|
|
974 |
assume "finite X"
|
|
975 |
hence "finite (perm pi ` X)" by (rule finite_imageI)
|
|
976 |
thus "finite (pi\<bullet>X)" using image by (simp)
|
|
977 |
qed
|
|
978 |
qed
|
|
979 |
|
|
980 |
lemma pt_set_infinite_ineq:
|
|
981 |
fixes X :: "'x set"
|
|
982 |
and pi :: "'y prm"
|
|
983 |
assumes pt: "pt TYPE('x) TYPE('y)"
|
|
984 |
and at: "at TYPE('y)"
|
|
985 |
shows "infinite (pi\<bullet>X) = infinite X"
|
|
986 |
using pt at by (simp add: pt_set_finite_ineq)
|
|
987 |
|
|
988 |
lemma pt_perm_supp_ineq:
|
|
989 |
fixes pi :: "'x prm"
|
|
990 |
and x :: "'a"
|
|
991 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
992 |
and ptb: "pt TYPE('y) TYPE('x)"
|
|
993 |
and at: "at TYPE('x)"
|
|
994 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)"
|
|
995 |
shows "(pi\<bullet>((supp x)::'y set)) = supp (pi\<bullet>x)" (is "?LHS = ?RHS")
|
|
996 |
proof -
|
|
997 |
have "?LHS = {pi\<bullet>a | a. infinite {b. [(a,b)]\<bullet>x \<noteq> x}}" by (simp add: supp_def perm_set_def)
|
|
998 |
also have "\<dots> = {pi\<bullet>a | a. infinite {pi\<bullet>b | b. [(a,b)]\<bullet>x \<noteq> x}}"
|
|
999 |
proof (rule Collect_permI, rule allI, rule iffI)
|
|
1000 |
fix a
|
|
1001 |
assume "infinite {b::'y. [(a,b)]\<bullet>x \<noteq> x}"
|
|
1002 |
hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
|
|
1003 |
thus "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: perm_set_def)
|
|
1004 |
next
|
|
1005 |
fix a
|
|
1006 |
assume "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}"
|
|
1007 |
hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: perm_set_def)
|
|
1008 |
thus "infinite {b::'y. [(a,b)]\<bullet>x \<noteq> x}"
|
|
1009 |
by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
|
|
1010 |
qed
|
|
1011 |
also have "\<dots> = {a. infinite {b::'y. [((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x \<noteq> x}}"
|
|
1012 |
by (simp add: pt_set_eq_ineq[OF ptb, OF at])
|
|
1013 |
also have "\<dots> = {a. infinite {b. pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> (pi\<bullet>x)}}"
|
|
1014 |
by (simp add: pt_bij[OF pta, OF at])
|
|
1015 |
also have "\<dots> = {a. infinite {b. [(a,b)]\<bullet>(pi\<bullet>x) \<noteq> (pi\<bullet>x)}}"
|
|
1016 |
proof (rule Collect_cong, rule Infinite_cong, rule Collect_cong)
|
|
1017 |
fix a::"'y" and b::"'y"
|
|
1018 |
have "pi\<bullet>(([((rev pi)\<bullet>a,(rev pi)\<bullet>b)])\<bullet>x) = [(a,b)]\<bullet>(pi\<bullet>x)"
|
|
1019 |
by (simp add: cp1[OF cp] pt_pi_rev[OF ptb, OF at])
|
|
1020 |
thus "(pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> pi\<bullet>x) = ([(a,b)]\<bullet>(pi\<bullet>x) \<noteq> pi\<bullet>x)" by simp
|
|
1021 |
qed
|
|
1022 |
finally show "?LHS = ?RHS" by (simp add: supp_def)
|
|
1023 |
qed
|
|
1024 |
|
|
1025 |
lemma pt_perm_supp:
|
|
1026 |
fixes pi :: "'x prm"
|
|
1027 |
and x :: "'a"
|
|
1028 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1029 |
and at: "at TYPE('x)"
|
|
1030 |
shows "(pi\<bullet>((supp x)::'x set)) = supp (pi\<bullet>x)"
|
|
1031 |
apply(rule pt_perm_supp_ineq)
|
|
1032 |
apply(rule pt)
|
|
1033 |
apply(rule at_pt_inst)
|
|
1034 |
apply(rule at)+
|
|
1035 |
apply(rule cp_pt_inst)
|
|
1036 |
apply(rule pt)
|
|
1037 |
apply(rule at)
|
|
1038 |
done
|
|
1039 |
|
|
1040 |
lemma pt_supp_finite_pi:
|
|
1041 |
fixes pi :: "'x prm"
|
|
1042 |
and x :: "'a"
|
|
1043 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1044 |
and at: "at TYPE('x)"
|
|
1045 |
and f: "finite ((supp x)::'x set)"
|
|
1046 |
shows "finite ((supp (pi\<bullet>x))::'x set)"
|
|
1047 |
apply(simp add: pt_perm_supp[OF pt, OF at, symmetric])
|
|
1048 |
apply(simp add: pt_set_finite_ineq[OF at_pt_inst[OF at], OF at])
|
|
1049 |
apply(rule f)
|
|
1050 |
done
|
|
1051 |
|
|
1052 |
lemma pt_fresh_left_ineq:
|
|
1053 |
fixes pi :: "'x prm"
|
|
1054 |
and x :: "'a"
|
|
1055 |
and a :: "'y"
|
|
1056 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
1057 |
and ptb: "pt TYPE('y) TYPE('x)"
|
|
1058 |
and at: "at TYPE('x)"
|
|
1059 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)"
|
|
1060 |
shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x"
|
|
1061 |
apply(simp add: fresh_def)
|
|
1062 |
apply(simp add: pt_set_bij1[OF ptb, OF at])
|
|
1063 |
apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp])
|
|
1064 |
done
|
|
1065 |
|
|
1066 |
lemma pt_fresh_right_ineq:
|
|
1067 |
fixes pi :: "'x prm"
|
|
1068 |
and x :: "'a"
|
|
1069 |
and a :: "'y"
|
|
1070 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
1071 |
and ptb: "pt TYPE('y) TYPE('x)"
|
|
1072 |
and at: "at TYPE('x)"
|
|
1073 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)"
|
|
1074 |
shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)"
|
|
1075 |
apply(simp add: fresh_def)
|
|
1076 |
apply(simp add: pt_set_bij1[OF ptb, OF at])
|
|
1077 |
apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp])
|
|
1078 |
done
|
|
1079 |
|
|
1080 |
lemma pt_fresh_bij_ineq:
|
|
1081 |
fixes pi :: "'x prm"
|
|
1082 |
and x :: "'a"
|
|
1083 |
and a :: "'y"
|
|
1084 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
1085 |
and ptb: "pt TYPE('y) TYPE('x)"
|
|
1086 |
and at: "at TYPE('x)"
|
|
1087 |
and cp: "cp TYPE('a) TYPE('x) TYPE('y)"
|
|
1088 |
shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x"
|
|
1089 |
apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp])
|
|
1090 |
apply(simp add: pt_rev_pi[OF ptb, OF at])
|
|
1091 |
done
|
|
1092 |
|
|
1093 |
lemma pt_fresh_left:
|
|
1094 |
fixes pi :: "'x prm"
|
|
1095 |
and x :: "'a"
|
|
1096 |
and a :: "'x"
|
|
1097 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1098 |
and at: "at TYPE('x)"
|
|
1099 |
shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x"
|
|
1100 |
apply(rule pt_fresh_left_ineq)
|
|
1101 |
apply(rule pt)
|
|
1102 |
apply(rule at_pt_inst)
|
|
1103 |
apply(rule at)+
|
|
1104 |
apply(rule cp_pt_inst)
|
|
1105 |
apply(rule pt)
|
|
1106 |
apply(rule at)
|
|
1107 |
done
|
|
1108 |
|
|
1109 |
lemma pt_fresh_right:
|
|
1110 |
fixes pi :: "'x prm"
|
|
1111 |
and x :: "'a"
|
|
1112 |
and a :: "'x"
|
|
1113 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1114 |
and at: "at TYPE('x)"
|
|
1115 |
shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)"
|
|
1116 |
apply(rule pt_fresh_right_ineq)
|
|
1117 |
apply(rule pt)
|
|
1118 |
apply(rule at_pt_inst)
|
|
1119 |
apply(rule at)+
|
|
1120 |
apply(rule cp_pt_inst)
|
|
1121 |
apply(rule pt)
|
|
1122 |
apply(rule at)
|
|
1123 |
done
|
|
1124 |
|
|
1125 |
lemma pt_fresh_bij:
|
|
1126 |
fixes pi :: "'x prm"
|
|
1127 |
and x :: "'a"
|
|
1128 |
and a :: "'x"
|
|
1129 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1130 |
and at: "at TYPE('x)"
|
|
1131 |
shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x"
|
|
1132 |
apply(rule pt_fresh_bij_ineq)
|
|
1133 |
apply(rule pt)
|
|
1134 |
apply(rule at_pt_inst)
|
|
1135 |
apply(rule at)+
|
|
1136 |
apply(rule cp_pt_inst)
|
|
1137 |
apply(rule pt)
|
|
1138 |
apply(rule at)
|
|
1139 |
done
|
|
1140 |
|
|
1141 |
lemma pt_fresh_bij1:
|
|
1142 |
fixes pi :: "'x prm"
|
|
1143 |
and x :: "'a"
|
|
1144 |
and a :: "'x"
|
|
1145 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1146 |
and at: "at TYPE('x)"
|
|
1147 |
and a: "a\<sharp>x"
|
|
1148 |
shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x)"
|
|
1149 |
using a by (simp add: pt_fresh_bij[OF pt, OF at])
|
|
1150 |
|
|
1151 |
lemma pt_perm_fresh1:
|
|
1152 |
fixes a :: "'x"
|
|
1153 |
and b :: "'x"
|
|
1154 |
and x :: "'a"
|
|
1155 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1156 |
and at: "at TYPE ('x)"
|
|
1157 |
and a1: "\<not>(a\<sharp>x)"
|
|
1158 |
and a2: "b\<sharp>x"
|
|
1159 |
shows "[(a,b)]\<bullet>x \<noteq> x"
|
|
1160 |
proof
|
|
1161 |
assume neg: "[(a,b)]\<bullet>x = x"
|
|
1162 |
from a1 have a1':"a\<in>(supp x)" by (simp add: fresh_def)
|
|
1163 |
from a2 have a2':"b\<notin>(supp x)" by (simp add: fresh_def)
|
|
1164 |
from a1' a2' have a3: "a\<noteq>b" by force
|
|
1165 |
from a1' have "([(a,b)]\<bullet>a)\<in>([(a,b)]\<bullet>(supp x))"
|
|
1166 |
by (simp only: pt_set_bij[OF at_pt_inst[OF at], OF at])
|
|
1167 |
hence "b\<in>([(a,b)]\<bullet>(supp x))" by (simp add: at_append[OF at] at_calc[OF at])
|
|
1168 |
hence "b\<in>(supp ([(a,b)]\<bullet>x))" by (simp add: pt_perm_supp[OF pt,OF at])
|
|
1169 |
with a2' neg show False by simp
|
|
1170 |
qed
|
|
1171 |
|
|
1172 |
-- "three helper lemmas for the perm_fresh_fresh-lemma"
|
|
1173 |
lemma comprehension_neg_UNIV: "{b. \<not> P b} = UNIV - {b. P b}"
|
|
1174 |
by (auto)
|
|
1175 |
|
|
1176 |
lemma infinite_or_neg_infinite:
|
|
1177 |
assumes h:"infinite (UNIV::'a set)"
|
|
1178 |
shows "infinite {b::'a. P b} \<or> infinite {b::'a. \<not> P b}"
|
|
1179 |
proof (subst comprehension_neg_UNIV, case_tac "finite {b. P b}")
|
|
1180 |
assume j:"finite {b::'a. P b}"
|
|
1181 |
have "infinite ((UNIV::'a set) - {b::'a. P b})"
|
|
1182 |
using Diff_infinite_finite[OF j h] by auto
|
|
1183 |
thus "infinite {b::'a. P b} \<or> infinite (UNIV - {b::'a. P b})" ..
|
|
1184 |
next
|
|
1185 |
assume j:"infinite {b::'a. P b}"
|
|
1186 |
thus "infinite {b::'a. P b} \<or> infinite (UNIV - {b::'a. P b})" by simp
|
|
1187 |
qed
|
|
1188 |
|
|
1189 |
--"the co-set of a finite set is infinte"
|
|
1190 |
lemma finite_infinite:
|
|
1191 |
assumes a: "finite {b::'x. P b}"
|
|
1192 |
and b: "infinite (UNIV::'x set)"
|
|
1193 |
shows "infinite {b. \<not>P b}"
|
|
1194 |
using a and infinite_or_neg_infinite[OF b] by simp
|
|
1195 |
|
|
1196 |
lemma pt_fresh_fresh:
|
|
1197 |
fixes x :: "'a"
|
|
1198 |
and a :: "'x"
|
|
1199 |
and b :: "'x"
|
|
1200 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1201 |
and at: "at TYPE ('x)"
|
|
1202 |
and a1: "a\<sharp>x" and a2: "b\<sharp>x"
|
|
1203 |
shows "[(a,b)]\<bullet>x=x"
|
|
1204 |
proof (cases "a=b")
|
|
1205 |
assume c1: "a=b"
|
|
1206 |
have "[(a,a)] \<sim> []" by (rule at_ds1[OF at])
|
|
1207 |
hence "[(a,b)] \<sim> []" using c1 by simp
|
|
1208 |
hence "[(a,b)]\<bullet>x=([]::'x prm)\<bullet>x" by (rule pt3[OF pt])
|
|
1209 |
thus ?thesis by (simp only: pt1[OF pt])
|
|
1210 |
next
|
|
1211 |
assume c2: "a\<noteq>b"
|
|
1212 |
from a1 have f1: "finite {c. [(a,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
|
|
1213 |
from a2 have f2: "finite {c. [(b,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
|
|
1214 |
from f1 and f2 have f3: "finite {c. perm [(a,c)] x \<noteq> x \<or> perm [(b,c)] x \<noteq> x}"
|
|
1215 |
by (force simp only: Collect_disj_eq)
|
|
1216 |
have "infinite {c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}"
|
|
1217 |
by (simp add: finite_infinite[OF f3,OF at4[OF at], simplified])
|
|
1218 |
hence "infinite ({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})"
|
|
1219 |
by (force dest: Diff_infinite_finite)
|
|
1220 |
hence "({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b}) \<noteq> {}"
|
|
1221 |
by (auto iff del: finite_Diff_insert Diff_eq_empty_iff)
|
|
1222 |
hence "\<exists>c. c\<in>({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" by (force)
|
|
1223 |
then obtain c
|
|
1224 |
where eq1: "[(a,c)]\<bullet>x = x"
|
|
1225 |
and eq2: "[(b,c)]\<bullet>x = x"
|
|
1226 |
and ineq: "a\<noteq>c \<and> b\<noteq>c"
|
|
1227 |
by (force)
|
|
1228 |
hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>x)) = x" by simp
|
|
1229 |
hence eq3: "[(a,c),(b,c),(a,c)]\<bullet>x = x" by (simp add: pt2[OF pt,symmetric])
|
|
1230 |
from c2 ineq have "[(a,c),(b,c),(a,c)] \<sim> [(a,b)]" by (simp add: at_ds3[OF at])
|
|
1231 |
hence "[(a,c),(b,c),(a,c)]\<bullet>x = [(a,b)]\<bullet>x" by (rule pt3[OF pt])
|
|
1232 |
thus ?thesis using eq3 by simp
|
|
1233 |
qed
|
|
1234 |
|
|
1235 |
lemma pt_perm_compose:
|
|
1236 |
fixes pi1 :: "'x prm"
|
|
1237 |
and pi2 :: "'x prm"
|
|
1238 |
and x :: "'a"
|
|
1239 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1240 |
and at: "at TYPE('x)"
|
|
1241 |
shows "pi2\<bullet>(pi1\<bullet>x) = (pi2\<bullet>pi1)\<bullet>(pi2\<bullet>x)"
|
|
1242 |
proof -
|
|
1243 |
have "(pi2@pi1) \<sim> ((pi2\<bullet>pi1)@pi2)" by (rule at_ds8)
|
|
1244 |
hence "(pi2@pi1)\<bullet>x = ((pi2\<bullet>pi1)@pi2)\<bullet>x" by (rule pt3[OF pt])
|
|
1245 |
thus ?thesis by (simp add: pt2[OF pt])
|
|
1246 |
qed
|
|
1247 |
|
|
1248 |
lemma pt_perm_compose_rev:
|
|
1249 |
fixes pi1 :: "'x prm"
|
|
1250 |
and pi2 :: "'x prm"
|
|
1251 |
and x :: "'a"
|
|
1252 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1253 |
and at: "at TYPE('x)"
|
|
1254 |
shows "(rev pi2)\<bullet>((rev pi1)\<bullet>x) = (rev pi1)\<bullet>(rev (pi1\<bullet>pi2)\<bullet>x)"
|
|
1255 |
proof -
|
|
1256 |
have "((rev pi2)@(rev pi1)) \<sim> ((rev pi1)@(rev (pi1\<bullet>pi2)))" by (rule at_ds9[OF at])
|
|
1257 |
hence "((rev pi2)@(rev pi1))\<bullet>x = ((rev pi1)@(rev (pi1\<bullet>pi2)))\<bullet>x" by (rule pt3[OF pt])
|
|
1258 |
thus ?thesis by (simp add: pt2[OF pt])
|
|
1259 |
qed
|
|
1260 |
|
|
1261 |
section {* facts about supports *}
|
|
1262 |
(*==============================*)
|
|
1263 |
|
|
1264 |
lemma supports_subset:
|
|
1265 |
fixes x :: "'a"
|
|
1266 |
and S1 :: "'x set"
|
|
1267 |
and S2 :: "'x set"
|
|
1268 |
assumes a: "S1 supports x"
|
|
1269 |
and b: "S1\<subseteq>S2"
|
|
1270 |
shows "S2 supports x"
|
|
1271 |
using a b
|
|
1272 |
by (force simp add: "op supports_def")
|
|
1273 |
|
|
1274 |
lemma supp_supports:
|
|
1275 |
fixes x :: "'a"
|
|
1276 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1277 |
and at: "at TYPE ('x)"
|
|
1278 |
shows "((supp x)::'x set) supports x"
|
|
1279 |
proof (unfold "op supports_def", intro strip)
|
|
1280 |
fix a b
|
|
1281 |
assume "(a::'x)\<notin>(supp x) \<and> (b::'x)\<notin>(supp x)"
|
|
1282 |
hence "a\<sharp>x" and "b\<sharp>x" by (auto simp add: fresh_def)
|
|
1283 |
thus "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pt, OF at])
|
|
1284 |
qed
|
|
1285 |
|
|
1286 |
lemma supp_is_subset:
|
|
1287 |
fixes S :: "'x set"
|
|
1288 |
and x :: "'a"
|
|
1289 |
assumes a1: "S supports x"
|
|
1290 |
and a2: "finite S"
|
|
1291 |
shows "(supp x)\<subseteq>S"
|
|
1292 |
proof (rule ccontr)
|
|
1293 |
assume "\<not>(supp x \<subseteq> S)"
|
|
1294 |
hence "\<exists>a. a\<in>(supp x) \<and> a\<notin>S" by force
|
|
1295 |
then obtain a where b1: "a\<in>supp x" and b2: "a\<notin>S" by force
|
|
1296 |
from a1 b2 have "\<forall>b. (b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x = x))" by (unfold "op supports_def", force)
|
|
1297 |
with a1 have "{b. [(a,b)]\<bullet>x \<noteq> x}\<subseteq>S" by (unfold "op supports_def", force)
|
|
1298 |
with a2 have "finite {b. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: finite_subset)
|
|
1299 |
hence "a\<notin>(supp x)" by (unfold supp_def, auto)
|
|
1300 |
with b1 show False by simp
|
|
1301 |
qed
|
|
1302 |
|
|
1303 |
lemma supports_finite:
|
|
1304 |
fixes S :: "'x set"
|
|
1305 |
and x :: "'a"
|
|
1306 |
assumes a1: "S supports x"
|
|
1307 |
and a2: "finite S"
|
|
1308 |
shows "finite ((supp x)::'x set)"
|
|
1309 |
proof -
|
|
1310 |
have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
|
|
1311 |
thus ?thesis using a2 by (simp add: finite_subset)
|
|
1312 |
qed
|
|
1313 |
|
|
1314 |
lemma supp_is_inter:
|
|
1315 |
fixes x :: "'a"
|
|
1316 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1317 |
and at: "at TYPE ('x)"
|
|
1318 |
and fs: "fs TYPE('a) TYPE('x)"
|
|
1319 |
shows "((supp x)::'x set) = (\<Inter> {S. finite S \<and> S supports x})"
|
|
1320 |
proof (rule equalityI)
|
|
1321 |
show "((supp x)::'x set) \<subseteq> (\<Inter> {S. finite S \<and> S supports x})"
|
|
1322 |
proof (clarify)
|
|
1323 |
fix S c
|
|
1324 |
assume b: "c\<in>((supp x)::'x set)" and "finite (S::'x set)" and "S supports x"
|
|
1325 |
hence "((supp x)::'x set)\<subseteq>S" by (simp add: supp_is_subset)
|
|
1326 |
with b show "c\<in>S" by force
|
|
1327 |
qed
|
|
1328 |
next
|
|
1329 |
show "(\<Inter> {S. finite S \<and> S supports x}) \<subseteq> ((supp x)::'x set)"
|
|
1330 |
proof (clarify, simp)
|
|
1331 |
fix c
|
|
1332 |
assume d: "\<forall>(S::'x set). finite S \<and> S supports x \<longrightarrow> c\<in>S"
|
|
1333 |
have "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at])
|
|
1334 |
with d fs1[OF fs] show "c\<in>supp x" by force
|
|
1335 |
qed
|
|
1336 |
qed
|
|
1337 |
|
|
1338 |
lemma supp_is_least_supports:
|
|
1339 |
fixes S :: "'x set"
|
|
1340 |
and x :: "'a"
|
|
1341 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1342 |
and at: "at TYPE ('x)"
|
|
1343 |
and a1: "S supports x"
|
|
1344 |
and a2: "finite S"
|
|
1345 |
and a3: "\<forall>S'. (finite S' \<and> S' supports x) \<longrightarrow> S\<subseteq>S'"
|
|
1346 |
shows "S = (supp x)"
|
|
1347 |
proof (rule equalityI)
|
|
1348 |
show "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
|
|
1349 |
next
|
|
1350 |
have s1: "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at])
|
|
1351 |
have "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
|
|
1352 |
hence "finite ((supp x)::'x set)" using a2 by (simp add: finite_subset)
|
|
1353 |
with s1 a3 show "S\<subseteq>supp x" by force
|
|
1354 |
qed
|
|
1355 |
|
|
1356 |
lemma supports_set:
|
|
1357 |
fixes S :: "'x set"
|
|
1358 |
and X :: "'a set"
|
|
1359 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1360 |
and at: "at TYPE ('x)"
|
|
1361 |
and a: "\<forall>x\<in>X. (\<forall>(a::'x) (b::'x). a\<notin>S\<and>b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x)\<in>X)"
|
|
1362 |
shows "S supports X"
|
|
1363 |
using a
|
|
1364 |
apply(auto simp add: "op supports_def")
|
|
1365 |
apply(simp add: pt_set_bij1a[OF pt, OF at])
|
|
1366 |
apply(force simp add: pt_swap_bij[OF pt, OF at])
|
|
1367 |
apply(simp add: pt_set_bij1a[OF pt, OF at])
|
|
1368 |
done
|
|
1369 |
|
|
1370 |
lemma supports_fresh:
|
|
1371 |
fixes S :: "'x set"
|
|
1372 |
and a :: "'x"
|
|
1373 |
and x :: "'a"
|
|
1374 |
assumes a1: "S supports x"
|
|
1375 |
and a2: "finite S"
|
|
1376 |
and a3: "a\<notin>S"
|
|
1377 |
shows "a\<sharp>x"
|
|
1378 |
proof (simp add: fresh_def)
|
|
1379 |
have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
|
|
1380 |
thus "a\<notin>(supp x)" using a3 by force
|
|
1381 |
qed
|
|
1382 |
|
|
1383 |
lemma at_fin_set_supports:
|
|
1384 |
fixes X::"'x set"
|
|
1385 |
assumes at: "at TYPE('x)"
|
|
1386 |
shows "X supports X"
|
|
1387 |
proof (simp add: "op supports_def", intro strip)
|
|
1388 |
fix a b
|
|
1389 |
assume "a\<notin>X \<and> b\<notin>X"
|
|
1390 |
thus "[(a,b)]\<bullet>X = X" by (force simp add: perm_set_def at_calc[OF at])
|
|
1391 |
qed
|
|
1392 |
|
|
1393 |
lemma at_fin_set_supp:
|
|
1394 |
fixes X::"'x set"
|
|
1395 |
assumes at: "at TYPE('x)"
|
|
1396 |
and fs: "finite X"
|
|
1397 |
shows "(supp X) = X"
|
|
1398 |
proof -
|
|
1399 |
have pt_set: "pt TYPE('x set) TYPE('x)"
|
|
1400 |
by (rule pt_set_inst[OF at_pt_inst[OF at]])
|
|
1401 |
have X_supports_X: "X supports X" by (rule at_fin_set_supports[OF at])
|
|
1402 |
show ?thesis using pt_set at X_supports_X fs
|
|
1403 |
proof (rule supp_is_least_supports[symmetric])
|
|
1404 |
show "\<forall>S'. finite S' \<and> S' supports X \<longrightarrow> X \<subseteq> S'"
|
|
1405 |
proof (auto)
|
|
1406 |
fix S'::"'x set" and x::"'x"
|
|
1407 |
assume f: "finite S'"
|
|
1408 |
and s: "S' supports X"
|
|
1409 |
and e1: "x\<in>X"
|
|
1410 |
show "x\<in>S'"
|
|
1411 |
proof (rule ccontr)
|
|
1412 |
assume e2: "x\<notin>S'"
|
|
1413 |
have "\<exists>b. b\<notin>(X\<union>S')" by (force intro: ex_in_inf[OF at] simp only: fs f)
|
|
1414 |
then obtain b where b1: "b\<notin>X" and b2: "b\<notin>S'" by (auto)
|
|
1415 |
from s e2 b2 have c1: "[(x,b)]\<bullet>X=X" by (simp add: "op supports_def")
|
|
1416 |
from e1 b1 have c2: "[(x,b)]\<bullet>X\<noteq>X" by (force simp add: perm_set_def at_calc[OF at])
|
|
1417 |
show "False" using c1 c2 by simp
|
|
1418 |
qed
|
|
1419 |
qed
|
|
1420 |
qed
|
|
1421 |
qed
|
|
1422 |
|
|
1423 |
section {* Permutations acting on Functions *}
|
|
1424 |
(*==========================================*)
|
|
1425 |
|
|
1426 |
lemma pt_fun_app_eq:
|
|
1427 |
fixes f :: "'a\<Rightarrow>'b"
|
|
1428 |
and x :: "'a"
|
|
1429 |
and pi :: "'x prm"
|
|
1430 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1431 |
and at: "at TYPE('x)"
|
|
1432 |
shows "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)"
|
|
1433 |
by (simp add: perm_fun_def pt_rev_pi[OF pt, OF at])
|
|
1434 |
|
|
1435 |
|
|
1436 |
--"sometimes pt_fun_app_eq does to much; this lemma 'corrects it'"
|
|
1437 |
lemma pt_perm:
|
|
1438 |
fixes x :: "'a"
|
|
1439 |
and pi1 :: "'x prm"
|
|
1440 |
and pi2 :: "'x prm"
|
|
1441 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1442 |
and at: "at TYPE ('x)"
|
|
1443 |
shows "(pi1\<bullet>perm pi2)(pi1\<bullet>x) = pi1\<bullet>(pi2\<bullet>x)"
|
|
1444 |
by (simp add: pt_fun_app_eq[OF pt, OF at])
|
|
1445 |
|
|
1446 |
|
|
1447 |
lemma pt_fun_eq:
|
|
1448 |
fixes f :: "'a\<Rightarrow>'b"
|
|
1449 |
and pi :: "'x prm"
|
|
1450 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1451 |
and at: "at TYPE('x)"
|
|
1452 |
shows "(pi\<bullet>f = f) = (\<forall> x. pi\<bullet>(f x) = f (pi\<bullet>x))" (is "?LHS = ?RHS")
|
|
1453 |
proof
|
|
1454 |
assume a: "?LHS"
|
|
1455 |
show "?RHS"
|
|
1456 |
proof
|
|
1457 |
fix x
|
|
1458 |
have "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pt, OF at])
|
|
1459 |
also have "\<dots> = f (pi\<bullet>x)" using a by simp
|
|
1460 |
finally show "pi\<bullet>(f x) = f (pi\<bullet>x)" by simp
|
|
1461 |
qed
|
|
1462 |
next
|
|
1463 |
assume b: "?RHS"
|
|
1464 |
show "?LHS"
|
|
1465 |
proof (rule ccontr)
|
|
1466 |
assume "(pi\<bullet>f) \<noteq> f"
|
|
1467 |
hence "\<exists>c. (pi\<bullet>f) c \<noteq> f c" by (simp add: expand_fun_eq)
|
|
1468 |
then obtain c where b1: "(pi\<bullet>f) c \<noteq> f c" by force
|
|
1469 |
from b have "pi\<bullet>(f ((rev pi)\<bullet>c)) = f (pi\<bullet>((rev pi)\<bullet>c))" by force
|
|
1470 |
hence "(pi\<bullet>f)(pi\<bullet>((rev pi)\<bullet>c)) = f (pi\<bullet>((rev pi)\<bullet>c))"
|
|
1471 |
by (simp add: pt_fun_app_eq[OF pt, OF at])
|
|
1472 |
hence "(pi\<bullet>f) c = f c" by (simp add: pt_pi_rev[OF pt, OF at])
|
|
1473 |
with b1 show "False" by simp
|
|
1474 |
qed
|
|
1475 |
qed
|
|
1476 |
|
|
1477 |
-- "two helper lemmas for the equivariance of functions"
|
|
1478 |
lemma pt_swap_eq_aux:
|
|
1479 |
fixes y :: "'a"
|
|
1480 |
and pi :: "'x prm"
|
|
1481 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1482 |
and a: "\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y"
|
|
1483 |
shows "pi\<bullet>y = y"
|
|
1484 |
proof(induct pi)
|
|
1485 |
case Nil show ?case by (simp add: pt1[OF pt])
|
|
1486 |
next
|
|
1487 |
case (Cons x xs)
|
|
1488 |
have "\<exists>a b. x=(a,b)" by force
|
|
1489 |
then obtain a b where p: "x=(a,b)" by force
|
|
1490 |
assume i: "xs\<bullet>y = y"
|
|
1491 |
have "x#xs = [x]@xs" by simp
|
|
1492 |
hence "(x#xs)\<bullet>y = ([x]@xs)\<bullet>y" by simp
|
|
1493 |
hence "(x#xs)\<bullet>y = [x]\<bullet>(xs\<bullet>y)" by (simp only: pt2[OF pt])
|
|
1494 |
thus ?case using a i p by (force)
|
|
1495 |
qed
|
|
1496 |
|
|
1497 |
lemma pt_swap_eq:
|
|
1498 |
fixes y :: "'a"
|
|
1499 |
assumes pt: "pt TYPE('a) TYPE('x)"
|
|
1500 |
shows "(\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y) = (\<forall>pi::'x prm. pi\<bullet>y = y)"
|
|
1501 |
by (force intro: pt_swap_eq_aux[OF pt])
|
|
1502 |
|
|
1503 |
lemma pt_eqvt_fun1a:
|
|
1504 |
fixes f :: "'a\<Rightarrow>'b"
|
|
1505 |
assumes pta: "pt TYPE('a) TYPE('x)"
|
|
1506 |
and ptb: "pt TYPE('b) TYPE('x)"
|
|
1507 |
and at: "at TYPE('x)"
|
|
1508 |
and a: "((supp f)::'x set)={}"
|
|
1509 |
shows "\<forall>(pi::'x prm). pi\<bullet>f = f"
|
|
1510 |
proof (intro strip)
|
|
1511 |
fix pi
|
|