author  wenzelm 
Wed, 06 Dec 2006 01:12:36 +0100  
changeset 21669  c68717c16013 
parent 21549  12eff58b56a0 
child 21819  8eb82ffcdd15 
permissions  rwrr 
923  1 
(* Title: HOL/Set.thy 
2 
ID: $Id$ 

12257  3 
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel 
923  4 
*) 
5 

11979  6 
header {* Set theory for higherorder logic *} 
7 

15131  8 
theory Set 
21333  9 
imports Lattices 
15131  10 
begin 
11979  11 

12 
text {* A set in HOL is simply a predicate. *} 

923  13 

2261  14 

11979  15 
subsection {* Basic syntax *} 
2261  16 

3947  17 
global 
18 

11979  19 
typedecl 'a set 
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12257
diff
changeset

20 
arities set :: (type) type 
3820  21 

923  22 
consts 
11979  23 
"{}" :: "'a set" ("{}") 
24 
UNIV :: "'a set" 

25 
insert :: "'a => 'a set => 'a set" 

26 
Collect :: "('a => bool) => 'a set"  "comprehension" 

27 
Int :: "'a set => 'a set => 'a set" (infixl 70) 

28 
Un :: "'a set => 'a set => 'a set" (infixl 65) 

29 
UNION :: "'a set => ('a => 'b set) => 'b set"  "general union" 

30 
INTER :: "'a set => ('a => 'b set) => 'b set"  "general intersection" 

31 
Union :: "'a set set => 'a set"  "union of a set" 

32 
Inter :: "'a set set => 'a set"  "intersection of a set" 

33 
Pow :: "'a set => 'a set set"  "powerset" 

34 
Ball :: "'a set => ('a => bool) => bool"  "bounded universal quantifiers" 

35 
Bex :: "'a set => ('a => bool) => bool"  "bounded existential quantifiers" 

20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

36 
Bex1 :: "'a set => ('a => bool) => bool"  "bounded unique existential quantifiers" 
11979  37 
image :: "('a => 'b) => 'a set => 'b set" (infixr "`" 90) 
19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

38 
"op :" :: "'a => 'a set => bool"  "membership" 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

39 

21210  40 
notation 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

41 
"op :" ("op :") and 
19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

42 
"op :" ("(_/ : _)" [50, 51] 50) 
11979  43 

44 
local 

45 

923  46 

11979  47 
subsection {* Additional concrete syntax *} 
2261  48 

19363  49 
abbreviation 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

50 
range :: "('a => 'b) => 'b set" where  "of function" 
19363  51 
"range f == f ` UNIV" 
19323  52 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

53 
abbreviation 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

54 
"not_mem x A == ~ (x : A)"  "nonmembership" 
19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

55 

21210  56 
notation 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

57 
not_mem ("op ~:") and 
19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

58 
not_mem ("(_/ ~: _)" [50, 51] 50) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

59 

21210  60 
notation (xsymbols) 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

61 
"op Int" (infixl "\<inter>" 70) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

62 
"op Un" (infixl "\<union>" 65) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

63 
"op :" ("op \<in>") and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

64 
"op :" ("(_/ \<in> _)" [50, 51] 50) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

65 
not_mem ("op \<notin>") and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

66 
not_mem ("(_/ \<notin> _)" [50, 51] 50) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

67 
Union ("\<Union>_" [90] 90) and 
19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

68 
Inter ("\<Inter>_" [90] 90) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

69 

21210  70 
notation (HTML output) 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

71 
"op Int" (infixl "\<inter>" 70) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

72 
"op Un" (infixl "\<union>" 65) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

73 
"op :" ("op \<in>") and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

74 
"op :" ("(_/ \<in> _)" [50, 51] 50) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

75 
not_mem ("op \<notin>") and 
19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

76 
not_mem ("(_/ \<notin> _)" [50, 51] 50) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

77 

923  78 
syntax 
11979  79 
"@Finset" :: "args => 'a set" ("{(_)}") 
80 
"@Coll" :: "pttrn => bool => 'a set" ("(1{_./ _})") 

81 
"@SetCompr" :: "'a => idts => bool => 'a set" ("(1{_ /_./ _})") 

15535  82 
"@Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ :/ _./ _})") 
11979  83 
"@INTER1" :: "pttrns => 'b set => 'b set" ("(3INT _./ _)" 10) 
84 
"@UNION1" :: "pttrns => 'b set => 'b set" ("(3UN _./ _)" 10) 

85 
"@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3INT _:_./ _)" 10) 

86 
"@UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3UN _:_./ _)" 10) 

87 
"_Ball" :: "pttrn => 'a set => bool => bool" ("(3ALL _:_./ _)" [0, 0, 10] 10) 

88 
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3EX _:_./ _)" [0, 0, 10] 10) 

20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

89 
"_Bex1" :: "pttrn => 'a set => bool => bool" ("(3EX! _:_./ _)" [0, 0, 10] 10) 
18674  90 
"_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST _:_./ _)" [0, 0, 10] 10) 
91 

7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
5931
diff
changeset

92 
syntax (HOL) 
11979  93 
"_Ball" :: "pttrn => 'a set => bool => bool" ("(3! _:_./ _)" [0, 0, 10] 10) 
94 
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3? _:_./ _)" [0, 0, 10] 10) 

20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

95 
"_Bex1" :: "pttrn => 'a set => bool => bool" ("(3?! _:_./ _)" [0, 0, 10] 10) 
923  96 

97 
translations 

98 
"{x, xs}" == "insert x {xs}" 

99 
"{x}" == "insert x {}" 

13764  100 
"{x. P}" == "Collect (%x. P)" 
15535  101 
"{x:A. P}" => "{x. x:A & P}" 
4159
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
paulson
parents:
4151
diff
changeset

102 
"UN x y. B" == "UN x. UN y. B" 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
paulson
parents:
4151
diff
changeset

103 
"UN x. B" == "UNION UNIV (%x. B)" 
13858  104 
"UN x. B" == "UN x:UNIV. B" 
7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
5931
diff
changeset

105 
"INT x y. B" == "INT x. INT y. B" 
4159
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
paulson
parents:
4151
diff
changeset

106 
"INT x. B" == "INTER UNIV (%x. B)" 
13858  107 
"INT x. B" == "INT x:UNIV. B" 
13764  108 
"UN x:A. B" == "UNION A (%x. B)" 
109 
"INT x:A. B" == "INTER A (%x. B)" 

110 
"ALL x:A. P" == "Ball A (%x. P)" 

111 
"EX x:A. P" == "Bex A (%x. P)" 

20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

112 
"EX! x:A. P" == "Bex1 A (%x. P)" 
18674  113 
"LEAST x:A. P" => "LEAST x. x:A & P" 
114 

12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
12023
diff
changeset

115 
syntax (xsymbols) 
14381
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents:
14335
diff
changeset

116 
"_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10) 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents:
14335
diff
changeset

117 
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10) 
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

118 
"_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10) 
18674  119 
"_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10) 
14381
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents:
14335
diff
changeset

120 

14565  121 
syntax (HTML output) 
122 
"_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10) 

123 
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10) 

20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

124 
"_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10) 
14565  125 

15120  126 
syntax (xsymbols) 
15535  127 
"@Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ \<in>/ _./ _})") 
11979  128 
"@UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>_./ _)" 10) 
129 
"@INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>_./ _)" 10) 

130 
"@UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>_\<in>_./ _)" 10) 

131 
"@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>_\<in>_./ _)" 10) 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

132 

15120  133 
syntax (latex output) 
134 
"@UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" 10) 

135 
"@INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" 10) 

136 
"@UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10) 

137 
"@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" 10) 

138 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

139 
text{* 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

140 
Note the difference between ordinary xsymbol syntax of indexed 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

141 
unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}) 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

142 
and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

143 
former does not make the index expression a subscript of the 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

144 
union/intersection symbol because this leads to problems with nested 
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

145 
subscripts in Proof General. *} 
2261  146 

21333  147 
instance set :: (type) ord 
148 
subset_def: "A <= B == \<forall>x\<in>A. x \<in> B" 

149 
psubset_def: "A < B == (A::'a set) <= B & ~ A=B" .. 

150 

151 
abbreviation 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

152 
subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where 
21333  153 
"subset == less" 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

154 

eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

155 
abbreviation 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

156 
subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where 
21333  157 
"subset_eq == less_eq" 
158 

159 
notation (output) 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

160 
subset ("op <") and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

161 
subset ("(_/ < _)" [50, 51] 50) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

162 
subset_eq ("op <=") and 
21333  163 
subset_eq ("(_/ <= _)" [50, 51] 50) 
164 

165 
notation (xsymbols) 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

166 
subset ("op \<subset>") and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

167 
subset ("(_/ \<subset> _)" [50, 51] 50) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

168 
subset_eq ("op \<subseteq>") and 
21333  169 
subset_eq ("(_/ \<subseteq> _)" [50, 51] 50) 
170 

171 
notation (HTML output) 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

172 
subset ("op \<subset>") and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

173 
subset ("(_/ \<subset> _)" [50, 51] 50) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

174 
subset_eq ("op \<subseteq>") and 
21333  175 
subset_eq ("(_/ \<subseteq> _)" [50, 51] 50) 
176 

177 
abbreviation (input) 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

178 
supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infixl "\<supset>" 50) where 
21333  179 
"supset == greater" 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

180 

eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

181 
abbreviation (input) 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

182 
supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infixl "\<supseteq>" 50) where 
21333  183 
"supset_eq == greater_eq" 
184 

14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

185 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

186 
subsubsection "Bounded quantifiers" 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

187 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

188 
syntax (output) 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

189 
"_setlessAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

190 
"_setlessEx" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

191 
"_setleAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

192 
"_setleEx" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) 
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

193 
"_setleEx1" :: "[idt, 'a, bool] => bool" ("(3EX! _<=_./ _)" [0, 0, 10] 10) 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

194 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

195 
syntax (xsymbols) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

196 
"_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

197 
"_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

198 
"_setleAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

199 
"_setleEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10) 
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

200 
"_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10) 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

201 

19656
09be06943252
tuned concrete syntax  abbreviation/const_syntax;
wenzelm
parents:
19637
diff
changeset

202 
syntax (HOL output) 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

203 
"_setlessAll" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

204 
"_setlessEx" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

205 
"_setleAll" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

206 
"_setleEx" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) 
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

207 
"_setleEx1" :: "[idt, 'a, bool] => bool" ("(3?! _<=_./ _)" [0, 0, 10] 10) 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

208 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

209 
syntax (HTML output) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

210 
"_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

211 
"_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

212 
"_setleAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

213 
"_setleEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10) 
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

214 
"_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10) 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

215 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

216 
translations 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

217 
"\<forall>A\<subset>B. P" => "ALL A. A \<subset> B > P" 
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

218 
"\<exists>A\<subset>B. P" => "EX A. A \<subset> B & P" 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

219 
"\<forall>A\<subseteq>B. P" => "ALL A. A \<subseteq> B > P" 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

220 
"\<exists>A\<subseteq>B. P" => "EX A. A \<subseteq> B & P" 
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

221 
"\<exists>!A\<subseteq>B. P" => "EX! A. A \<subseteq> B & P" 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

222 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21384
diff
changeset

223 
(* FIXME reuse version in Orderings.thy *) 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

224 
print_translation {* 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

225 
let 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

226 
fun 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

227 
all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
19637  228 
Const("op >",_) $ (Const ("less",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

229 
(if v=v' andalso T="set" 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

230 
then Syntax.const "_setlessAll" $ Syntax.mark_bound v' $ n $ P 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

231 
else raise Match) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

232 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

233 
 all_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
19637  234 
Const("op >",_) $ (Const ("less_eq",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

235 
(if v=v' andalso T="set" 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

236 
then Syntax.const "_setleAll" $ Syntax.mark_bound v' $ n $ P 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

237 
else raise Match); 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

238 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

239 
fun 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

240 
ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
19637  241 
Const("op &",_) $ (Const ("less",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

242 
(if v=v' andalso T="set" 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

243 
then Syntax.const "_setlessEx" $ Syntax.mark_bound v' $ n $ P 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

244 
else raise Match) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

245 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

246 
 ex_tr' [Const ("_bound",_) $ Free (v,Type(T,_)), 
19637  247 
Const("op &",_) $ (Const ("less_eq",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

248 
(if v=v' andalso T="set" 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

249 
then Syntax.const "_setleEx" $ Syntax.mark_bound v' $ n $ P 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

250 
else raise Match) 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

251 
in 
21524  252 
[("All_binder", all_tr'), ("Ex_binder", ex_tr')] 
14804
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

253 
end 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

254 
*} 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

255 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

256 

8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
nipkow
parents:
14752
diff
changeset

257 

11979  258 
text {* 
259 
\medskip Translate between @{text "{e  x1...xn. P}"} and @{text 

260 
"{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is 

261 
only translated if @{text "[0..n] subset bvs(e)"}. 

262 
*} 

263 

264 
parse_translation {* 

265 
let 

266 
val ex_tr = snd (mk_binder_tr ("EX ", "Ex")); 

3947  267 

11979  268 
fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1 
269 
 nvars _ = 1; 

270 

271 
fun setcompr_tr [e, idts, b] = 

272 
let 

273 
val eq = Syntax.const "op =" $ Bound (nvars idts) $ e; 

274 
val P = Syntax.const "op &" $ eq $ b; 

275 
val exP = ex_tr [idts, P]; 

17784  276 
in Syntax.const "Collect" $ Term.absdummy (dummyT, exP) end; 
11979  277 

278 
in [("@SetCompr", setcompr_tr)] end; 

279 
*} 

923  280 

13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

281 
(* To avoid etacontraction of body: *) 
11979  282 
print_translation {* 
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

283 
let 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

284 
fun btr' syn [A,Abs abs] = 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

285 
let val (x,t) = atomic_abs_tr' abs 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

286 
in Syntax.const syn $ x $ A $ t end 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

287 
in 
13858  288 
[("Ball", btr' "_Ball"),("Bex", btr' "_Bex"), 
289 
("UNION", btr' "@UNION"),("INTER", btr' "@INTER")] 

13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

290 
end 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

291 
*} 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

292 

f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

293 
print_translation {* 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

294 
let 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

295 
val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY")); 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

296 

f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

297 
fun setcompr_tr' [Abs (abs as (_, _, P))] = 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

298 
let 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

299 
fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1) 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

300 
 check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) = 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

301 
n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

302 
((0 upto (n  1)) subset add_loose_bnos (e, 0, [])) 
13764  303 
 check _ = false 
923  304 

11979  305 
fun tr' (_ $ abs) = 
306 
let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs] 

307 
in Syntax.const "@SetCompr" $ e $ idts $ Q end; 

13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

308 
in if check (P, 0) then tr' P 
15535  309 
else let val (x as _ $ Free(xN,_), t) = atomic_abs_tr' abs 
310 
val M = Syntax.const "@Coll" $ x $ t 

311 
in case t of 

312 
Const("op &",_) 

313 
$ (Const("op :",_) $ (Const("_bound",_) $ Free(yN,_)) $ A) 

314 
$ P => 

315 
if xN=yN then Syntax.const "@Collect" $ x $ A $ P else M 

316 
 _ => M 

317 
end 

13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13653
diff
changeset

318 
end; 
11979  319 
in [("Collect", setcompr_tr')] end; 
320 
*} 

321 

322 

323 
subsection {* Rules and definitions *} 

324 

325 
text {* Isomorphisms between predicates and sets. *} 

923  326 

11979  327 
axioms 
17085  328 
mem_Collect_eq: "(a : {x. P(x)}) = P(a)" 
329 
Collect_mem_eq: "{x. x:A} = A" 

17702  330 
finalconsts 
331 
Collect 

332 
"op :" 

11979  333 

334 
defs 

335 
Ball_def: "Ball A P == ALL x. x:A > P(x)" 

336 
Bex_def: "Bex A P == EX x. x:A & P(x)" 

20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19870
diff
changeset

337 
Bex1_def: "Bex1 A P == EX! x. x:A & P(x)" 
11979  338 

21333  339 
instance set :: (type) minus 
11979  340 
Compl_def: " A == {x. ~x:A}" 
21333  341 
set_diff_def: "A  B == {x. x:A & ~x:B}" .. 
923  342 

343 
defs 

11979  344 
Un_def: "A Un B == {x. x:A  x:B}" 
345 
Int_def: "A Int B == {x. x:A & x:B}" 

346 
INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}" 

347 
UNION_def: "UNION A B == {y. EX x:A. y: B(x)}" 

348 
Inter_def: "Inter S == (INT x:S. x)" 

349 
Union_def: "Union S == (UN x:S. x)" 

350 
Pow_def: "Pow A == {B. B <= A}" 

351 
empty_def: "{} == {x. False}" 

352 
UNIV_def: "UNIV == {x. True}" 

353 
insert_def: "insert a B == {x. x=a} Un B" 

354 
image_def: "f`A == {y. EX x:A. y = f(x)}" 

355 

356 

357 
subsection {* Lemmas and proof tool setup *} 

358 

359 
subsubsection {* Relating predicates and sets *} 

360 

17085  361 
declare mem_Collect_eq [iff] Collect_mem_eq [simp] 
362 

12257  363 
lemma CollectI: "P(a) ==> a : {x. P(x)}" 
11979  364 
by simp 
365 

366 
lemma CollectD: "a : {x. P(x)} ==> P(a)" 

367 
by simp 

368 

369 
lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}" 

370 
by simp 

371 

12257  372 
lemmas CollectE = CollectD [elim_format] 
11979  373 

374 

375 
subsubsection {* Bounded quantifiers *} 

376 

377 
lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" 

378 
by (simp add: Ball_def) 

379 

380 
lemmas strip = impI allI ballI 

381 

382 
lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" 

383 
by (simp add: Ball_def) 

384 

385 
lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" 

386 
by (unfold Ball_def) blast 

14098  387 
ML {* bind_thm("rev_ballE",permute_prems 1 1 (thm "ballE")) *} 
11979  388 

389 
text {* 

390 
\medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and 

391 
@{prop "a:A"}; creates assumption @{prop "P a"}. 

392 
*} 

393 

394 
ML {* 

395 
local val ballE = thm "ballE" 

396 
in fun ball_tac i = etac ballE i THEN contr_tac (i + 1) end; 

397 
*} 

398 

399 
text {* 

400 
Gives better instantiation for bound: 

401 
*} 

402 

403 
ML_setup {* 

17875  404 
change_claset (fn cs => cs addbefore ("bspec", datac (thm "bspec") 1)); 
11979  405 
*} 
406 

407 
lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" 

408 
 {* Normally the best argument order: @{prop "P x"} constrains the 

409 
choice of @{prop "x:A"}. *} 

410 
by (unfold Bex_def) blast 

411 

13113  412 
lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" 
11979  413 
 {* The best argument order when there is only one @{prop "x:A"}. *} 
414 
by (unfold Bex_def) blast 

415 

416 
lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" 

417 
by (unfold Bex_def) blast 

418 

419 
lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" 

420 
by (unfold Bex_def) blast 

421 

422 
lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) > P)" 

423 
 {* Trival rewrite rule. *} 

424 
by (simp add: Ball_def) 

425 

426 
lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" 

427 
 {* Dual form for existentials. *} 

428 
by (simp add: Bex_def) 

429 

430 
lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" 

431 
by blast 

432 

433 
lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" 

434 
by blast 

435 

436 
lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" 

437 
by blast 

438 

439 
lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" 

440 
by blast 

441 

442 
lemma ball_one_point1 [simp]: "(ALL x:A. x = a > P x) = (a:A > P a)" 

443 
by blast 

444 

445 
lemma ball_one_point2 [simp]: "(ALL x:A. a = x > P x) = (a:A > P a)" 

446 
by blast 

447 

448 
ML_setup {* 

13462  449 
local 
18328  450 
val unfold_bex_tac = unfold_tac [thm "Bex_def"]; 
451 
fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac; 

11979  452 
val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac; 
453 

18328  454 
val unfold_ball_tac = unfold_tac [thm "Ball_def"]; 
455 
fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac; 

11979  456 
val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac; 
457 
in 

18328  458 
val defBEX_regroup = Simplifier.simproc (the_context ()) 
13462  459 
"defined BEX" ["EX x:A. P x & Q x"] rearrange_bex; 
18328  460 
val defBALL_regroup = Simplifier.simproc (the_context ()) 
13462  461 
"defined BALL" ["ALL x:A. P x > Q x"] rearrange_ball; 
11979  462 
end; 
13462  463 

464 
Addsimprocs [defBALL_regroup, defBEX_regroup]; 

11979  465 
*} 
466 

467 

468 
subsubsection {* Congruence rules *} 

469 

16636
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

470 
lemma ball_cong: 
11979  471 
"A = B ==> (!!x. x:B ==> P x = Q x) ==> 
472 
(ALL x:A. P x) = (ALL x:B. Q x)" 

473 
by (simp add: Ball_def) 

474 

16636
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

475 
lemma strong_ball_cong [cong]: 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

476 
"A = B ==> (!!x. x:B =simp=> P x = Q x) ==> 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

477 
(ALL x:A. P x) = (ALL x:B. Q x)" 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

478 
by (simp add: simp_implies_def Ball_def) 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

479 

1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

480 
lemma bex_cong: 
11979  481 
"A = B ==> (!!x. x:B ==> P x = Q x) ==> 
482 
(EX x:A. P x) = (EX x:B. Q x)" 

483 
by (simp add: Bex_def cong: conj_cong) 

1273  484 

16636
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

485 
lemma strong_bex_cong [cong]: 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

486 
"A = B ==> (!!x. x:B =simp=> P x = Q x) ==> 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

487 
(EX x:A. P x) = (EX x:B. Q x)" 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

488 
by (simp add: simp_implies_def Bex_def cong: conj_cong) 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
berghofe
parents:
15950
diff
changeset

489 

7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
5931
diff
changeset

490 

11979  491 
subsubsection {* Subsets *} 
492 

19295  493 
lemma subsetI [atp,intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B" 
11979  494 
by (simp add: subset_def) 
495 

496 
text {* 

497 
\medskip Map the type @{text "'a set => anything"} to just @{typ 

498 
'a}; for overloading constants whose first argument has type @{typ 

499 
"'a set"}. 

500 
*} 

501 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

502 
lemma subsetD [elim]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" 
11979  503 
 {* Rule in Modus Ponens style. *} 
504 
by (unfold subset_def) blast 

505 

506 
declare subsetD [intro?]  FIXME 

507 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

508 
lemma rev_subsetD: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" 
11979  509 
 {* The same, with reversed premises for use with @{text erule}  
510 
cf @{text rev_mp}. *} 

511 
by (rule subsetD) 

512 

513 
declare rev_subsetD [intro?]  FIXME 

514 

515 
text {* 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

516 
\medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}. 
11979  517 
*} 
518 

519 
ML {* 

520 
local val rev_subsetD = thm "rev_subsetD" 

521 
in fun impOfSubs th = th RSN (2, rev_subsetD) end; 

522 
*} 

523 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

524 
lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" 
11979  525 
 {* Classical elimination rule. *} 
526 
by (unfold subset_def) blast 

527 

528 
text {* 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

529 
\medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

530 
creates the assumption @{prop "c \<in> B"}. 
11979  531 
*} 
532 

533 
ML {* 

534 
local val subsetCE = thm "subsetCE" 

535 
in fun set_mp_tac i = etac subsetCE i THEN mp_tac i end; 

536 
*} 

537 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

538 
lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" 
11979  539 
by blast 
540 

19175  541 
lemma subset_refl [simp,atp]: "A \<subseteq> A" 
11979  542 
by fast 
543 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

544 
lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" 
11979  545 
by blast 
923  546 

2261  547 

11979  548 
subsubsection {* Equality *} 
549 

13865  550 
lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B" 
551 
apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals]) 

552 
apply (rule Collect_mem_eq) 

553 
apply (rule Collect_mem_eq) 

554 
done 

555 

15554  556 
(* Due to Brian Huffman *) 
557 
lemma expand_set_eq: "(A = B) = (ALL x. (x:A) = (x:B))" 

558 
by(auto intro:set_ext) 

559 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

560 
lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" 
11979  561 
 {* Antisymmetry of the subset relation. *} 
17589  562 
by (iprover intro: set_ext subsetD) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

563 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

564 
lemmas equalityI [intro!] = subset_antisym 
11979  565 

566 
text {* 

567 
\medskip Equality rules from ZF set theory  are they appropriate 

568 
here? 

569 
*} 

570 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

571 
lemma equalityD1: "A = B ==> A \<subseteq> B" 
11979  572 
by (simp add: subset_refl) 
573 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

574 
lemma equalityD2: "A = B ==> B \<subseteq> A" 
11979  575 
by (simp add: subset_refl) 
576 

577 
text {* 

578 
\medskip Be careful when adding this to the claset as @{text 

579 
subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{} 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

580 
\<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}! 
11979  581 
*} 
582 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

583 
lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" 
11979  584 
by (simp add: subset_refl) 
923  585 

11979  586 
lemma equalityCE [elim]: 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

587 
"A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" 
11979  588 
by blast 
589 

590 
lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" 

591 
by simp 

592 

13865  593 
lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" 
594 
by simp 

595 

11979  596 

597 
subsubsection {* The universal set  UNIV *} 

598 

599 
lemma UNIV_I [simp]: "x : UNIV" 

600 
by (simp add: UNIV_def) 

601 

602 
declare UNIV_I [intro]  {* unsafe makes it less likely to cause problems *} 

603 

604 
lemma UNIV_witness [intro?]: "EX x. x : UNIV" 

605 
by simp 

606 

18144
4edcb5fdc3b0
duplicate axioms in ATP linkup, and general fixes
paulson
parents:
17875
diff
changeset

607 
lemma subset_UNIV [simp]: "A \<subseteq> UNIV" 
11979  608 
by (rule subsetI) (rule UNIV_I) 
2388  609 

11979  610 
text {* 
611 
\medskip Etacontracting these two rules (to remove @{text P}) 

612 
causes them to be ignored because of their interaction with 

613 
congruence rules. 

614 
*} 

615 

616 
lemma ball_UNIV [simp]: "Ball UNIV P = All P" 

617 
by (simp add: Ball_def) 

618 

619 
lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" 

620 
by (simp add: Bex_def) 

621 

622 

623 
subsubsection {* The empty set *} 

624 

625 
lemma empty_iff [simp]: "(c : {}) = False" 

626 
by (simp add: empty_def) 

627 

628 
lemma emptyE [elim!]: "a : {} ==> P" 

629 
by simp 

630 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

631 
lemma empty_subsetI [iff]: "{} \<subseteq> A" 
11979  632 
 {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *} 
633 
by blast 

634 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

635 
lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}" 
11979  636 
by blast 
2388  637 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

638 
lemma equals0D: "A = {} ==> a \<notin> A" 
11979  639 
 {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *} 
640 
by blast 

641 

642 
lemma ball_empty [simp]: "Ball {} P = True" 

643 
by (simp add: Ball_def) 

644 

645 
lemma bex_empty [simp]: "Bex {} P = False" 

646 
by (simp add: Bex_def) 

647 

648 
lemma UNIV_not_empty [iff]: "UNIV ~= {}" 

649 
by (blast elim: equalityE) 

650 

651 

12023  652 
subsubsection {* The Powerset operator  Pow *} 
11979  653 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

654 
lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" 
11979  655 
by (simp add: Pow_def) 
656 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

657 
lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" 
11979  658 
by (simp add: Pow_def) 
659 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

660 
lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" 
11979  661 
by (simp add: Pow_def) 
662 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

663 
lemma Pow_bottom: "{} \<in> Pow B" 
11979  664 
by simp 
665 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

666 
lemma Pow_top: "A \<in> Pow A" 
11979  667 
by (simp add: subset_refl) 
2684  668 

2388  669 

11979  670 
subsubsection {* Set complement *} 
671 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

672 
lemma Compl_iff [simp]: "(c \<in> A) = (c \<notin> A)" 
11979  673 
by (unfold Compl_def) blast 
674 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

675 
lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> A" 
11979  676 
by (unfold Compl_def) blast 
677 

678 
text {* 

679 
\medskip This form, with negated conclusion, works well with the 

680 
Classical prover. Negated assumptions behave like formulae on the 

681 
right side of the notional turnstile ... *} 

682 

17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
17002
diff
changeset

683 
lemma ComplD [dest!]: "c : A ==> c~:A" 
11979  684 
by (unfold Compl_def) blast 
685 

17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
17002
diff
changeset

686 
lemmas ComplE = ComplD [elim_format] 
11979  687 

688 

689 
subsubsection {* Binary union  Un *} 

923  690 

11979  691 
lemma Un_iff [simp]: "(c : A Un B) = (c:A  c:B)" 
692 
by (unfold Un_def) blast 

693 

694 
lemma UnI1 [elim?]: "c:A ==> c : A Un B" 

695 
by simp 

696 

697 
lemma UnI2 [elim?]: "c:B ==> c : A Un B" 

698 
by simp 

923  699 

11979  700 
text {* 
701 
\medskip Classical introduction rule: no commitment to @{prop A} vs 

702 
@{prop B}. 

703 
*} 

704 

705 
lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" 

706 
by auto 

707 

708 
lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" 

709 
by (unfold Un_def) blast 

710 

711 

12023  712 
subsubsection {* Binary intersection  Int *} 
923  713 

11979  714 
lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" 
715 
by (unfold Int_def) blast 

716 

717 
lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" 

718 
by simp 

719 

720 
lemma IntD1: "c : A Int B ==> c:A" 

721 
by simp 

722 

723 
lemma IntD2: "c : A Int B ==> c:B" 

724 
by simp 

725 

726 
lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" 

727 
by simp 

728 

729 

12023  730 
subsubsection {* Set difference *} 
11979  731 

732 
lemma Diff_iff [simp]: "(c : A  B) = (c:A & c~:B)" 

733 
by (unfold set_diff_def) blast 

923  734 

11979  735 
lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A  B" 
736 
by simp 

737 

738 
lemma DiffD1: "c : A  B ==> c : A" 

739 
by simp 

740 

741 
lemma DiffD2: "c : A  B ==> c : B ==> P" 

742 
by simp 

743 

744 
lemma DiffE [elim!]: "c : A  B ==> (c:A ==> c~:B ==> P) ==> P" 

745 
by simp 

746 

747 

748 
subsubsection {* Augmenting a set  insert *} 

749 

750 
lemma insert_iff [simp]: "(a : insert b A) = (a = b  a:A)" 

751 
by (unfold insert_def) blast 

752 

753 
lemma insertI1: "a : insert a B" 

754 
by simp 

755 

756 
lemma insertI2: "a : B ==> a : insert b B" 

757 
by simp 

923  758 

11979  759 
lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" 
760 
by (unfold insert_def) blast 

761 

762 
lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" 

763 
 {* Classical introduction rule. *} 

764 
by auto 

765 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

766 
lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A  {x} \<subseteq> B else A \<subseteq> B)" 
11979  767 
by auto 
768 

769 

770 
subsubsection {* Singletons, using insert *} 

771 

772 
lemma singletonI [intro!]: "a : {a}" 

773 
 {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *} 

774 
by (rule insertI1) 

775 

17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
17002
diff
changeset

776 
lemma singletonD [dest!]: "b : {a} ==> b = a" 
11979  777 
by blast 
778 

17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
17002
diff
changeset

779 
lemmas singletonE = singletonD [elim_format] 
11979  780 

781 
lemma singleton_iff: "(b : {a}) = (b = a)" 

782 
by blast 

783 

784 
lemma singleton_inject [dest!]: "{a} = {b} ==> a = b" 

785 
by blast 

786 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

787 
lemma singleton_insert_inj_eq [iff]: "({b} = insert a A) = (a = b & A \<subseteq> {b})" 
11979  788 
by blast 
789 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

790 
lemma singleton_insert_inj_eq' [iff]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})" 
11979  791 
by blast 
792 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

793 
lemma subset_singletonD: "A \<subseteq> {x} ==> A = {}  A = {x}" 
11979  794 
by fast 
795 

796 
lemma singleton_conv [simp]: "{x. x = a} = {a}" 

797 
by blast 

798 

799 
lemma singleton_conv2 [simp]: "{x. a = x} = {a}" 

800 
by blast 

923  801 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

802 
lemma diff_single_insert: "A  {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B" 
11979  803 
by blast 
804 

19870  805 
lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d  a=d & b=c)" 
806 
by (blast elim: equalityE) 

807 

11979  808 

809 
subsubsection {* Unions of families *} 

810 

811 
text {* 

812 
@{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}. 

813 
*} 

814 

815 
lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)" 

816 
by (unfold UNION_def) blast 

817 

818 
lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)" 

819 
 {* The order of the premises presupposes that @{term A} is rigid; 

820 
@{term b} may be flexible. *} 

821 
by auto 

822 

823 
lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R" 

824 
by (unfold UNION_def) blast 

923  825 

11979  826 
lemma UN_cong [cong]: 
827 
"A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)" 

828 
by (simp add: UNION_def) 

829 

830 

831 
subsubsection {* Intersections of families *} 

832 

833 
text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *} 

834 

835 
lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)" 

836 
by (unfold INTER_def) blast 

923  837 

11979  838 
lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)" 
839 
by (unfold INTER_def) blast 

840 

841 
lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a" 

842 
by auto 

843 

844 
lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R" 

845 
 {* "Classical" elimination  by the Excluded Middle on @{prop "a:A"}. *} 

846 
by (unfold INTER_def) blast 

847 

848 
lemma INT_cong [cong]: 

849 
"A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)" 

850 
by (simp add: INTER_def) 

7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
5931
diff
changeset

851 

923  852 

11979  853 
subsubsection {* Union *} 
854 

855 
lemma Union_iff [simp]: "(A : Union C) = (EX X:C. A:X)" 

856 
by (unfold Union_def) blast 

857 

858 
lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C" 

859 
 {* The order of the premises presupposes that @{term C} is rigid; 

860 
@{term A} may be flexible. *} 

861 
by auto 

862 

863 
lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R" 

864 
by (unfold Union_def) blast 

865 

866 

867 
subsubsection {* Inter *} 

868 

869 
lemma Inter_iff [simp]: "(A : Inter C) = (ALL X:C. A:X)" 

870 
by (unfold Inter_def) blast 

871 

872 
lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C" 

873 
by (simp add: Inter_def) 

874 

875 
text {* 

876 
\medskip A ``destruct'' rule  every @{term X} in @{term C} 

877 
contains @{term A} as an element, but @{prop "A:X"} can hold when 

878 
@{prop "X:C"} does not! This rule is analogous to @{text spec}. 

879 
*} 

880 

881 
lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X" 

882 
by auto 

883 

884 
lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R" 

885 
 {* ``Classical'' elimination rule  does not require proving 

886 
@{prop "X:C"}. *} 

887 
by (unfold Inter_def) blast 

888 

889 
text {* 

890 
\medskip Image of a set under a function. Frequently @{term b} does 

891 
not have the syntactic form of @{term "f x"}. 

892 
*} 

893 

894 
lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A" 

895 
by (unfold image_def) blast 

896 

897 
lemma imageI: "x : A ==> f x : f ` A" 

898 
by (rule image_eqI) (rule refl) 

899 

900 
lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A" 

901 
 {* This version's more effective when we already have the 

902 
required @{term x}. *} 

903 
by (unfold image_def) blast 

904 

905 
lemma imageE [elim!]: 

906 
"b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P" 

907 
 {* The etaexpansion gives variablename preservation. *} 

908 
by (unfold image_def) blast 

909 

910 
lemma image_Un: "f`(A Un B) = f`A Un f`B" 

911 
by blast 

912 

913 
lemma image_iff: "(z : f`A) = (EX x:A. z = f x)" 

914 
by blast 

915 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

916 
lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)" 
11979  917 
 {* This rewrite rule would confuse users if made default. *} 
918 
by blast 

919 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

920 
lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)" 
11979  921 
apply safe 
922 
prefer 2 apply fast 

14208  923 
apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast) 
11979  924 
done 
925 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

926 
lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B" 
11979  927 
 {* Replaces the three steps @{text subsetI}, @{text imageE}, 
928 
@{text hypsubst}, but breaks too many existing proofs. *} 

929 
by blast 

930 

931 
text {* 

932 
\medskip Range of a function  just a translation for image! 

933 
*} 

934 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

935 
lemma range_eqI: "b = f x ==> b \<in> range f" 
11979  936 
by simp 
937 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

938 
lemma rangeI: "f x \<in> range f" 
11979  939 
by simp 
940 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

941 
lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P" 
11979  942 
by blast 
943 

944 

945 
subsubsection {* Set reasoning tools *} 

946 

947 
text {* 

948 
Rewrite rules for boolean casesplitting: faster than @{text 

949 
"split_if [split]"}. 

950 
*} 

951 

952 
lemma split_if_eq1: "((if Q then x else y) = b) = ((Q > x = b) & (~ Q > y = b))" 

953 
by (rule split_if) 

954 

955 
lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q > a = x) & (~ Q > a = y))" 

956 
by (rule split_if) 

957 

958 
text {* 

959 
Split ifs on either side of the membership relation. Not for @{text 

960 
"[simp]"}  can cause goals to blow up! 

961 
*} 

962 

963 
lemma split_if_mem1: "((if Q then x else y) : b) = ((Q > x : b) & (~ Q > y : b))" 

964 
by (rule split_if) 

965 

966 
lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q > a : x) & (~ Q > a : y))" 

967 
by (rule split_if) 

968 

969 
lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 

970 

971 
lemmas mem_simps = 

972 
insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff 

973 
mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff 

974 
 {* Each of these has ALREADY been added @{text "[simp]"} above. *} 

975 

976 
(*Would like to add these, but the existing code only searches for the 

977 
outerlevel constant, which in this case is just "op :"; we instead need 

978 
to use termnets to associate patterns with rules. Also, if a rule fails to 

979 
apply, then the formula should be kept. 

19233
77ca20b0ed77
renamed HOL +  * etc. to HOL.plus HOL.minus HOL.times etc.
haftmann
parents:
19175
diff
changeset

980 
[("HOL.uminus", Compl_iff RS iffD1), ("HOL.minus", [Diff_iff RS iffD1]), 
11979  981 
("op Int", [IntD1,IntD2]), 
982 
("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])] 

983 
*) 

984 

985 
ML_setup {* 

986 
val mksimps_pairs = [("Ball", [thm "bspec"])] @ mksimps_pairs; 

17875  987 
change_simpset (fn ss => ss setmksimps (mksimps mksimps_pairs)); 
11979  988 
*} 
989 

990 

991 
subsubsection {* The ``proper subset'' relation *} 

992 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

993 
lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" 
11979  994 
by (unfold psubset_def) blast 
995 

13624  996 
lemma psubsetE [elim!]: 
997 
"[A \<subset> B; [A \<subseteq> B; ~ (B\<subseteq>A)] ==> R] ==> R" 

998 
by (unfold psubset_def) blast 

999 

11979  1000 
lemma psubset_insert_iff: 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1001 
"(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A  {x} \<subset> B else A \<subseteq> B)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1002 
by (auto simp add: psubset_def subset_insert_iff) 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1003 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1004 
lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" 
11979  1005 
by (simp only: psubset_def) 
1006 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1007 
lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" 
11979  1008 
by (simp add: psubset_eq) 
1009 

14335  1010 
lemma psubset_trans: "[ A \<subset> B; B \<subset> C ] ==> A \<subset> C" 
1011 
apply (unfold psubset_def) 

1012 
apply (auto dest: subset_antisym) 

1013 
done 

1014 

1015 
lemma psubsetD: "[ A \<subset> B; c \<in> A ] ==> c \<in> B" 

1016 
apply (unfold psubset_def) 

1017 
apply (auto dest: subsetD) 

1018 
done 

1019 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1020 
lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" 
11979  1021 
by (auto simp add: psubset_eq) 
1022 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1023 
lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" 
11979  1024 
by (auto simp add: psubset_eq) 
1025 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1026 
lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B  A)" 
11979  1027 
by (unfold psubset_def) blast 
1028 

1029 
lemma atomize_ball: 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1030 
"(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" 
11979  1031 
by (simp only: Ball_def atomize_all atomize_imp) 
1032 

18832  1033 
lemmas [symmetric, rulify] = atomize_ball 
1034 
and [symmetric, defn] = atomize_ball 

11979  1035 

1036 

1037 
subsection {* Further settheory lemmas *} 

1038 

21384  1039 
instance set :: (type) order 
1040 
by (intro_classes, 

1041 
(assumption  rule subset_refl subset_trans subset_antisym psubset_eq)+) 

1042 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1043 
subsubsection {* Derived rules involving subsets. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1044 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1045 
text {* @{text insert}. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1046 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1047 
lemma subset_insertI: "B \<subseteq> insert a B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1048 
apply (rule subsetI) 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1049 
apply (erule insertI2) 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1050 
done 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1051 

14302  1052 
lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" 
1053 
by blast 

1054 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1055 
lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1056 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1057 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1058 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1059 
text {* \medskip Big Union  least upper bound of a set. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1060 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1061 
lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A" 
17589  1062 
by (iprover intro: subsetI UnionI) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1063 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1064 
lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C" 
17589  1065 
by (iprover intro: subsetI elim: UnionE dest: subsetD) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1066 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1067 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1068 
text {* \medskip General union. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1069 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1070 
lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1071 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1072 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1073 
lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C" 
17589  1074 
by (iprover intro: subsetI elim: UN_E dest: subsetD) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1075 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1076 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1077 
text {* \medskip Big Intersection  greatest lower bound of a set. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1078 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1079 
lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1080 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1081 

14551  1082 
lemma Inter_subset: 
1083 
"[ !!X. X \<in> A ==> X \<subseteq> B; A ~= {} ] ==> \<Inter>A \<subseteq> B" 

1084 
by blast 

1085 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1086 
lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A" 
17589  1087 
by (iprover intro: InterI subsetI dest: subsetD) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1088 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1089 
lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1090 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1091 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1092 
lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)" 
17589  1093 
by (iprover intro: INT_I subsetI dest: subsetD) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1094 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1095 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1096 
text {* \medskip Finite Union  the least upper bound of two sets. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1097 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1098 
lemma Un_upper1: "A \<subseteq> A \<union> B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1099 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1100 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1101 
lemma Un_upper2: "B \<subseteq> A \<union> B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1102 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1103 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1104 
lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1105 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1106 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1107 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1108 
text {* \medskip Finite Intersection  the greatest lower bound of two sets. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1109 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1110 
lemma Int_lower1: "A \<inter> B \<subseteq> A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1111 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1112 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1113 
lemma Int_lower2: "A \<inter> B \<subseteq> B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1114 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1115 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1116 
lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1117 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1118 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1119 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1120 
text {* \medskip Set difference. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1121 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1122 
lemma Diff_subset: "A  B \<subseteq> A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1123 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1124 

14302  1125 
lemma Diff_subset_conv: "(A  B \<subseteq> C) = (A \<subseteq> B \<union> C)" 
1126 
by blast 

1127 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1128 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1129 
text {* \medskip Monotonicity. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1130 

15206
09d78ec709c7
Modified locales: improved implementation of "includes".
ballarin
parents:
15140
diff
changeset

1131 
lemma mono_Un: "mono f ==> f A \<union> f B \<subseteq> f (A \<union> B)" 
16773  1132 
by (auto simp add: mono_def) 
15206
09d78ec709c7
Modified locales: improved implementation of "includes".
ballarin
parents:
15140
diff
changeset

1133 

09d78ec709c7
Modified locales: improved implementation of "includes".
ballarin
parents:
15140
diff
changeset

1134 
lemma mono_Int: "mono f ==> f (A \<inter> B) \<subseteq> f A \<inter> f B" 
16773  1135 
by (auto simp add: mono_def) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1136 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1137 
subsubsection {* Equalities involving union, intersection, inclusion, etc. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1138 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1139 
text {* @{text "{}"}. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1140 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1141 
lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1142 
 {* supersedes @{text "Collect_False_empty"} *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1143 
by auto 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1144 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1145 
lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1146 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1147 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1148 
lemma not_psubset_empty [iff]: "\<not> (A < {})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1149 
by (unfold psubset_def) blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1150 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1151 
lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)" 
18423  1152 
by blast 
1153 

1154 
lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)" 

1155 
by blast 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1156 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1157 
lemma Collect_neg_eq: "{x. \<not> P x} =  {x. P x}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1158 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1159 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1160 
lemma Collect_disj_eq: "{x. P x  Q x} = {x. P x} \<union> {x. Q x}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1161 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1162 

14812  1163 
lemma Collect_imp_eq: "{x. P x > Q x} = {x. P x} \<union> {x. Q x}" 
1164 
by blast 

1165 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1166 
lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1167 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1168 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1169 
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1170 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1171 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1172 
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1173 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1174 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1175 
lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1176 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1177 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1178 
lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1179 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1180 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1181 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1182 
text {* \medskip @{text insert}. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1183 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1184 
lemma insert_is_Un: "insert a A = {a} Un A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1185 
 {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1186 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1187 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1188 
lemma insert_not_empty [simp]: "insert a A \<noteq> {}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1189 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1190 

17715  1191 
lemmas empty_not_insert = insert_not_empty [symmetric, standard] 
1192 
declare empty_not_insert [simp] 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1193 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1194 
lemma insert_absorb: "a \<in> A ==> insert a A = A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1195 
 {* @{text "[simp]"} causes recursive calls when there are nested inserts *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1196 
 {* with \emph{quadratic} running time *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1197 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1198 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1199 
lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1200 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1201 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1202 
lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1203 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1204 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1205 
lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1206 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1207 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1208 
lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1209 
 {* use new @{text B} rather than @{text "A  {a}"} to avoid infinite unfolding *} 
14208  1210 
apply (rule_tac x = "A  {a}" in exI, blast) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1211 
done 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1212 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1213 
lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a > P u}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1214 
by auto 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1215 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1216 
lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1217 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1218 

14302  1219 
lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" 
14742  1220 
by blast 
14302  1221 

13103
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents:
12937
diff
changeset

1222 
lemma insert_disjoint[simp]: 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents:
12937
diff
changeset

1223 
"(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})" 
14742  1224 
"({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)" 
16773  1225 
by auto 
13103
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents:
12937
diff
changeset

1226 

66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents:
12937
diff
changeset

1227 
lemma disjoint_insert[simp]: 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents:
12937
diff
changeset

1228 
"(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})" 
14742  1229 
"({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)" 
16773  1230 
by auto 
14742  1231 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1232 
text {* \medskip @{text image}. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1233 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1234 
lemma image_empty [simp]: "f`{} = {}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1235 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1236 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1237 
lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1238 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1239 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1240 
lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}" 
16773  1241 
by auto 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1242 

21316  1243 
lemma image_constant_conv: "(%x. c) ` A = (if A = {} then {} else {c})" 
21312  1244 
by auto 
1245 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1246 
lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1247 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1248 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1249 
lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1250 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1251 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1252 
lemma image_is_empty [iff]: "(f`A = {}) = (A = {})" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1253 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1254 

16773  1255 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1256 
lemma image_Collect: "f ` {x. P x} = {f x  x. P x}" 
16773  1257 
 {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS, 
1258 
with its implicit quantifier and conjunction. Also image enjoys better 

1259 
equational properties than does the RHS. *} 

12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1260 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1261 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1262 
lemma if_image_distrib [simp]: 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1263 
"(\<lambda>x. if P x then f x else g x) ` S 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1264 
= (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1265 
by (auto simp add: image_def) 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1266 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1267 
lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1268 
by (simp add: image_def) 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1269 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1270 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1271 
text {* \medskip @{text range}. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1272 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1273 
lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1274 
by auto 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1275 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1276 
lemma range_composition [simp]: "range (\<lambda>x. f (g x)) = f`range g" 
14208  1277 
by (subst image_image, simp) 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1278 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1279 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1280 
text {* \medskip @{text Int} *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1281 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1282 
lemma Int_absorb [simp]: "A \<inter> A = A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1283 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1284 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1285 
lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1286 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1287 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1288 
lemma Int_commute: "A \<inter> B = B \<inter> A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1289 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1290 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1291 
lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1292 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1293 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1294 
lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1295 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1296 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1297 
lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1298 
 {* Intersection is an ACoperator *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1299 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1300 
lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1301 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1302 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1303 
lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1304 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1305 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1306 
lemma Int_empty_left [simp]: "{} \<inter> B = {}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1307 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1308 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1309 
lemma Int_empty_right [simp]: "A \<inter> {} = {}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1310 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1311 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1312 
lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> B)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1313 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1314 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1315 
lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1316 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1317 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1318 
lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1319 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1320 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1321 
lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1322 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1323 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1324 
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1325 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1326 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1327 
lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1328 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1329 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1330 
lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1331 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1332 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1333 
lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1334 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1335 

15102  1336 
lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" 
12897
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1337 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1338 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1339 
lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1340 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1341 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1342 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1343 
text {* \medskip @{text Un}. *} 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1344 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1345 
lemma Un_absorb [simp]: "A \<union> A = A" 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1346 
by blast 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
12633
diff
changeset

1347 

f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents:
1263 