src/HOL/Hyperreal/NthRoot.thy
author nipkow
Mon, 16 Aug 2004 14:22:27 +0200
changeset 15131 c69542757a4d
parent 15085 5693a977a767
child 15140 322485b816ac
permissions -rw-r--r--
New theory header syntax.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     1
(*  Title       : NthRoot.thy
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     2
    Author      : Jacques D. Fleuriot
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     3
    Copyright   : 1998  University of Cambridge
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
     7
header{*Existence of Nth Root*}
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15085
diff changeset
     9
theory NthRoot
c69542757a4d New theory header syntax.
nipkow
parents: 15085
diff changeset
    10
import SEQ HSeries
c69542757a4d New theory header syntax.
nipkow
parents: 15085
diff changeset
    11
begin
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    12
14767
d2b071e65e4c tuned document;
wenzelm
parents: 14477
diff changeset
    13
text {*
d2b071e65e4c tuned document;
wenzelm
parents: 14477
diff changeset
    14
  Various lemmas needed for this result. We follow the proof given by
d2b071e65e4c tuned document;
wenzelm
parents: 14477
diff changeset
    15
  John Lindsay Orr (\texttt{jorr@math.unl.edu}) in his Analysis
d2b071e65e4c tuned document;
wenzelm
parents: 14477
diff changeset
    16
  Webnotes available at \url{http://www.math.unl.edu/~webnotes}.
d2b071e65e4c tuned document;
wenzelm
parents: 14477
diff changeset
    17
d2b071e65e4c tuned document;
wenzelm
parents: 14477
diff changeset
    18
  Lemmas about sequences of reals are used to reach the result.
d2b071e65e4c tuned document;
wenzelm
parents: 14477
diff changeset
    19
*}
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    20
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    21
lemma lemma_nth_realpow_non_empty:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    22
     "[| (0::real) < a; 0 < n |] ==> \<exists>s. s : {x. x ^ n <= a & 0 < x}"
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    23
apply (case_tac "1 <= a")
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    24
apply (rule_tac x = 1 in exI)
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
    25
apply (drule_tac [2] linorder_not_le [THEN iffD1])
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    26
apply (drule_tac [2] less_not_refl2 [THEN not0_implies_Suc], simp) 
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
    27
apply (force intro!: realpow_Suc_le_self simp del: realpow_Suc)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    28
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    29
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
    30
text{*Used only just below*}
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
    31
lemma realpow_ge_self2: "[| (1::real) \<le> r; 0 < n |] ==> r \<le> r ^ n"
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
    32
by (insert power_increasing [of 1 n r], simp)
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
    33
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    34
lemma lemma_nth_realpow_isUb_ex:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    35
     "[| (0::real) < a; 0 < n |]  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    36
      ==> \<exists>u. isUb (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    37
apply (case_tac "1 <= a")
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    38
apply (rule_tac x = a in exI)
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
    39
apply (drule_tac [2] linorder_not_le [THEN iffD1])
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    40
apply (rule_tac [2] x = 1 in exI)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    41
apply (rule_tac [!] setleI [THEN isUbI], safe)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    42
apply (simp_all (no_asm))
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    43
apply (rule_tac [!] ccontr)
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
    44
apply (drule_tac [!] linorder_not_le [THEN iffD1])
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    45
apply (drule realpow_ge_self2, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    46
apply (drule_tac n = n in realpow_less)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    47
apply (assumption+)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    48
apply (drule real_le_trans, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    49
apply (drule_tac y = "y ^ n" in order_less_le_trans, assumption, simp) 
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    50
apply (drule_tac n = n in zero_less_one [THEN realpow_less], auto)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    51
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    52
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    53
lemma nth_realpow_isLub_ex:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    54
     "[| (0::real) < a; 0 < n |]  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    55
      ==> \<exists>u. isLub (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14355
diff changeset
    56
by (blast intro: lemma_nth_realpow_isUb_ex lemma_nth_realpow_non_empty reals_complete)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14355
diff changeset
    57
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    58
 
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    59
subsection{*First Half -- Lemmas First*}
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    60
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    61
lemma lemma_nth_realpow_seq:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    62
     "isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    63
           ==> u + inverse(real (Suc k)) ~: {x. x ^ n <= a & 0 < x}"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    64
apply (safe, drule isLubD2, blast)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14355
diff changeset
    65
apply (simp add: linorder_not_less [symmetric])
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    66
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    67
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    68
lemma lemma_nth_realpow_isLub_gt_zero:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    69
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    70
         0 < a; 0 < n |] ==> 0 < u"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    71
apply (drule lemma_nth_realpow_non_empty, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    72
apply (drule_tac y = s in isLub_isUb [THEN isUbD])
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    73
apply (auto intro: order_less_le_trans)
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    74
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    75
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    76
lemma lemma_nth_realpow_isLub_ge:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    77
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    78
         0 < a; 0 < n |] ==> ALL k. a <= (u + inverse(real (Suc k))) ^ n"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    79
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    80
apply (frule lemma_nth_realpow_seq, safe)
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 14767
diff changeset
    81
apply (auto elim: order_less_asym simp add: linorder_not_less [symmetric]
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 14767
diff changeset
    82
            iff: real_0_less_add_iff) --{*legacy iff rule!*}
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14355
diff changeset
    83
apply (simp add: linorder_not_less)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    84
apply (rule order_less_trans [of _ 0])
14325
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
    85
apply (auto intro: lemma_nth_realpow_isLub_gt_zero)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    86
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    87
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    88
text{*First result we want*}
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    89
lemma realpow_nth_ge:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    90
     "[| (0::real) < a; 0 < n;  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    91
     isLub (UNIV::real set)  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    92
     {x. x ^ n <= a & 0 < x} u |] ==> a <= u ^ n"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
    93
apply (frule lemma_nth_realpow_isLub_ge, safe)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    94
apply (rule LIMSEQ_inverse_real_of_nat_add [THEN LIMSEQ_pow, THEN LIMSEQ_le_const])
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
    95
apply (auto simp add: real_of_nat_def)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    96
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    97
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    98
subsection{*Second Half*}
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
    99
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   100
lemma less_isLub_not_isUb:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   101
     "[| isLub (UNIV::real set) S u; x < u |]  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   102
           ==> ~ isUb (UNIV::real set) S x"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   103
apply safe
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   104
apply (drule isLub_le_isUb, assumption)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   105
apply (drule order_less_le_trans, auto)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   106
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   107
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   108
lemma not_isUb_less_ex:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   109
     "~ isUb (UNIV::real set) S u ==> \<exists>x \<in> S. u < x"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   110
apply (rule ccontr, erule swap)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   111
apply (rule setleI [THEN isUbI])
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14355
diff changeset
   112
apply (auto simp add: linorder_not_less [symmetric])
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   113
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   114
14325
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
   115
lemma real_mult_less_self: "0 < r ==> r * (1 + -inverse(real (Suc n))) < r"
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
   116
apply (simp (no_asm) add: right_distrib)
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
   117
apply (rule add_less_cancel_left [of "-r", THEN iffD1])
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
   118
apply (auto intro: mult_pos
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
   119
            simp add: add_assoc [symmetric] neg_less_0_iff_less)
14325
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
   120
done
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
   121
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
   122
lemma real_mult_add_one_minus_ge_zero:
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
   123
     "0 < r ==>  0 <= r*(1 + -inverse(real (Suc n)))"
15085
5693a977a767 removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents: 14767
diff changeset
   124
by (simp add: zero_le_mult_iff real_of_nat_inverse_le_iff real_0_le_add_iff)
14325
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
   125
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   126
lemma lemma_nth_realpow_isLub_le:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   127
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
14325
94ac3895822f removing real_of_posnat
paulson
parents: 14324
diff changeset
   128
       0 < a; 0 < n |] ==> ALL k. (u*(1 + -inverse(real (Suc k)))) ^ n <= a"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   129
apply safe
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   130
apply (frule less_isLub_not_isUb [THEN not_isUb_less_ex])
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   131
apply (rule_tac n = k in real_mult_less_self)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   132
apply (blast intro: lemma_nth_realpow_isLub_gt_zero, safe)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   133
apply (drule_tac n = k in
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   134
        lemma_nth_realpow_isLub_gt_zero [THEN real_mult_add_one_minus_ge_zero], assumption+)
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
   135
apply (blast intro: order_trans order_less_imp_le power_mono) 
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   136
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   137
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   138
text{*Second result we want*}
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   139
lemma realpow_nth_le:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   140
     "[| (0::real) < a; 0 < n;  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   141
     isLub (UNIV::real set)  
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   142
     {x. x ^ n <= a & 0 < x} u |] ==> u ^ n <= a"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   143
apply (frule lemma_nth_realpow_isLub_le, safe)
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
   144
apply (rule LIMSEQ_inverse_real_of_nat_add_minus_mult
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
   145
                [THEN LIMSEQ_pow, THEN LIMSEQ_le_const2])
14334
6137d24eef79 tweaking of lemmas in RealDef, RealOrd
paulson
parents: 14325
diff changeset
   146
apply (auto simp add: real_of_nat_def)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   147
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   148
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14334
diff changeset
   149
text{*The theorem at last!*}
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   150
lemma realpow_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. r ^ n = a"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   151
apply (frule nth_realpow_isLub_ex, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   152
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   153
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   154
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   155
(* positive only *)
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   156
lemma realpow_pos_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. 0 < r & r ^ n = a"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   157
apply (frule nth_realpow_isLub_ex, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   158
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym lemma_nth_realpow_isLub_gt_zero)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   159
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   160
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   161
lemma realpow_pos_nth2: "(0::real) < a  ==> \<exists>r. 0 < r & r ^ Suc n = a"
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   162
by (blast intro: realpow_pos_nth)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   163
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   164
(* uniqueness of nth positive root *)
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   165
lemma realpow_pos_nth_unique:
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   166
     "[| (0::real) < a; 0 < n |] ==> EX! r. 0 < r & r ^ n = a"
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   167
apply (auto intro!: realpow_pos_nth)
14477
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   168
apply (cut_tac x = r and y = y in linorder_less_linear, auto)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   169
apply (drule_tac x = r in realpow_less)
cc61fd03e589 conversion of Hyperreal/Lim to new-style
paulson
parents: 14365
diff changeset
   170
apply (drule_tac [4] x = y in realpow_less, auto)
14324
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   171
done
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   172
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   173
ML
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   174
{*
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   175
val nth_realpow_isLub_ex = thm"nth_realpow_isLub_ex";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   176
val realpow_nth_ge = thm"realpow_nth_ge";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   177
val less_isLub_not_isUb = thm"less_isLub_not_isUb";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   178
val not_isUb_less_ex = thm"not_isUb_less_ex";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   179
val realpow_nth_le = thm"realpow_nth_le";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   180
val realpow_nth = thm"realpow_nth";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   181
val realpow_pos_nth = thm"realpow_pos_nth";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   182
val realpow_pos_nth2 = thm"realpow_pos_nth2";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   183
val realpow_pos_nth_unique = thm"realpow_pos_nth_unique";
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   184
*}
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   185
c9c6832f9b22 converting Hyperreal/NthRoot to Isar
paulson
parents: 14268
diff changeset
   186
end