src/Pure/library.ML
author wenzelm
Mon Nov 16 11:32:28 1998 +0100 (1998-11-16)
changeset 5893 c755dfd02509
parent 5285 2d1425492fb3
child 5904 e077a0e66563
permissions -rw-r--r--
added oo, ooo (*concatenation: 2 and 3 args*);
wenzelm@41
     1
(*  Title:      Pure/library.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@233
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1992  University of Cambridge
clasohm@0
     5
wenzelm@233
     6
Basic library: functions, options, pairs, booleans, lists, integers,
wenzelm@4212
     7
strings, lists as sets, association lists, generic tables, balanced
wenzelm@4621
     8
trees, orders, I/O and diagnostics, timing, misc.
clasohm@0
     9
*)
clasohm@0
    10
wenzelm@4212
    11
infix |> ~~ \ \\ ins ins_string ins_int orf andf prefix upto downto
wenzelm@4212
    12
  mem mem_int mem_string union union_int union_string inter inter_int
wenzelm@4212
    13
  inter_string subset subset_int subset_string;
clasohm@1364
    14
wenzelm@5893
    15
infix 3 oo ooo;
wenzelm@5893
    16
wenzelm@4621
    17
signature LIBRARY =
wenzelm@4621
    18
sig
wenzelm@4621
    19
  (*functions*)
wenzelm@4621
    20
  val curry: ('a * 'b -> 'c) -> 'a -> 'b -> 'c
wenzelm@4621
    21
  val uncurry: ('a -> 'b -> 'c) -> 'a * 'b -> 'c
wenzelm@4621
    22
  val I: 'a -> 'a
wenzelm@4621
    23
  val K: 'a -> 'b -> 'a
wenzelm@4621
    24
  val |> : 'a * ('a -> 'b) -> 'b
wenzelm@4621
    25
  val apl: 'a * ('a * 'b -> 'c) -> 'b -> 'c
wenzelm@4621
    26
  val apr: ('a * 'b -> 'c) * 'b -> 'a -> 'c
wenzelm@4621
    27
  val funpow: int -> ('a -> 'a) -> 'a -> 'a
wenzelm@5893
    28
  val oo: ('a -> 'b) * ('c -> 'd -> 'a) -> 'c -> 'd -> 'b
wenzelm@5893
    29
  val ooo: ('a -> 'b) * ('c -> 'd -> 'e -> 'a) -> 'c -> 'd -> 'e -> 'b
clasohm@1364
    30
wenzelm@4621
    31
  (*stamps*)
wenzelm@4621
    32
  type stamp
wenzelm@4621
    33
  val stamp: unit -> stamp
wenzelm@4621
    34
wenzelm@4621
    35
  (*options*)
wenzelm@4621
    36
  datatype 'a option = None | Some of 'a
wenzelm@4621
    37
  exception OPTION
wenzelm@4621
    38
  val the: 'a option -> 'a
wenzelm@4621
    39
  val if_none: 'a option -> 'a -> 'a
wenzelm@4621
    40
  val is_some: 'a option -> bool
wenzelm@4621
    41
  val is_none: 'a option -> bool
wenzelm@4621
    42
  val apsome: ('a -> 'b) -> 'a option -> 'b option
wenzelm@4621
    43
  val can: ('a -> 'b) -> 'a -> bool
wenzelm@4621
    44
  val try: ('a -> 'b) -> 'a -> 'b option
wenzelm@4621
    45
wenzelm@4621
    46
  (*pairs*)
wenzelm@4621
    47
  val pair: 'a -> 'b -> 'a * 'b
wenzelm@4621
    48
  val rpair: 'a -> 'b -> 'b * 'a
wenzelm@4621
    49
  val fst: 'a * 'b -> 'a
wenzelm@4621
    50
  val snd: 'a * 'b -> 'b
wenzelm@4621
    51
  val eq_fst: (''a * 'b) * (''a * 'c) -> bool
wenzelm@4621
    52
  val eq_snd: ('a * ''b) * ('c * ''b) -> bool
wenzelm@4621
    53
  val swap: 'a * 'b -> 'b * 'a
wenzelm@4621
    54
  val apfst: ('a -> 'b) -> 'a * 'c -> 'b * 'c
wenzelm@4621
    55
  val apsnd: ('a -> 'b) -> 'c * 'a -> 'c * 'b
wenzelm@4621
    56
  val pairself: ('a -> 'b) -> 'a * 'a -> 'b * 'b
wenzelm@4621
    57
wenzelm@4621
    58
  (*booleans*)
wenzelm@4621
    59
  val equal: ''a -> ''a -> bool
wenzelm@4621
    60
  val not_equal: ''a -> ''a -> bool
wenzelm@4621
    61
  val orf: ('a -> bool) * ('a -> bool) -> 'a -> bool
wenzelm@4621
    62
  val andf: ('a -> bool) * ('a -> bool) -> 'a -> bool
wenzelm@4621
    63
  val exists: ('a -> bool) -> 'a list -> bool
wenzelm@4621
    64
  val forall: ('a -> bool) -> 'a list -> bool
wenzelm@4621
    65
  val set: bool ref -> bool
wenzelm@4621
    66
  val reset: bool ref -> bool
wenzelm@4621
    67
  val toggle: bool ref -> bool
wenzelm@4621
    68
  val setmp: 'a ref -> 'a -> ('b -> 'c) -> 'b -> 'c
wenzelm@4621
    69
wenzelm@4621
    70
  (*lists*)
wenzelm@4621
    71
  exception LIST of string
wenzelm@4621
    72
  val null: 'a list -> bool
wenzelm@4621
    73
  val hd: 'a list -> 'a
wenzelm@4621
    74
  val tl: 'a list -> 'a list
wenzelm@4621
    75
  val cons: 'a -> 'a list -> 'a list
wenzelm@5285
    76
  val single: 'a -> 'a list
wenzelm@4629
    77
  val append: 'a list -> 'a list -> 'a list
wenzelm@4621
    78
  val foldl: ('a * 'b -> 'a) -> 'a * 'b list -> 'a
wenzelm@4621
    79
  val foldr: ('a * 'b -> 'b) -> 'a list * 'b -> 'b
wenzelm@4621
    80
  val foldr1: ('a * 'a -> 'a) -> 'a list -> 'a
wenzelm@4956
    81
  val foldl_map: ('a * 'b -> 'a * 'c) -> 'a * 'b list -> 'a * 'c list
wenzelm@4621
    82
  val length: 'a list -> int
wenzelm@4621
    83
  val take: int * 'a list -> 'a list
wenzelm@4621
    84
  val drop: int * 'a list -> 'a list
nipkow@4713
    85
  val dropwhile: ('a -> bool) -> 'a list -> 'a list
wenzelm@4621
    86
  val nth_elem: int * 'a list -> 'a
wenzelm@4621
    87
  val last_elem: 'a list -> 'a
wenzelm@4621
    88
  val split_last: 'a list -> 'a list * 'a
wenzelm@4893
    89
  val nth_update: 'a -> int * 'a list -> 'a list
wenzelm@4621
    90
  val find_index: ('a -> bool) -> 'a list -> int
wenzelm@4621
    91
  val find_index_eq: ''a -> ''a list -> int
wenzelm@4621
    92
  val find_first: ('a -> bool) -> 'a list -> 'a option
wenzelm@4916
    93
  val get_first: ('a -> 'b option) -> 'a list -> 'b option
wenzelm@4621
    94
  val flat: 'a list list -> 'a list
wenzelm@4621
    95
  val seq: ('a -> unit) -> 'a list -> unit
wenzelm@4621
    96
  val separate: 'a -> 'a list -> 'a list
wenzelm@4621
    97
  val replicate: int -> 'a -> 'a list
wenzelm@4621
    98
  val multiply: 'a list * 'a list list -> 'a list list
wenzelm@4621
    99
  val filter: ('a -> bool) -> 'a list -> 'a list
wenzelm@4621
   100
  val filter_out: ('a -> bool) -> 'a list -> 'a list
wenzelm@4621
   101
  val mapfilter: ('a -> 'b option) -> 'a list -> 'b list
wenzelm@4621
   102
  val map2: ('a * 'b -> 'c) -> 'a list * 'b list -> 'c list
wenzelm@4621
   103
  val exists2: ('a * 'b -> bool) -> 'a list * 'b list -> bool
wenzelm@4621
   104
  val forall2: ('a * 'b -> bool) -> 'a list * 'b list -> bool
wenzelm@4956
   105
  val seq2: ('a * 'b -> unit) -> 'a list * 'b list -> unit
wenzelm@4621
   106
  val ~~ : 'a list * 'b list -> ('a * 'b) list
wenzelm@4621
   107
  val split_list: ('a * 'b) list -> 'a list * 'b list
wenzelm@4621
   108
  val prefix: ''a list * ''a list -> bool
wenzelm@4621
   109
  val take_prefix: ('a -> bool) -> 'a list -> 'a list * 'a list
wenzelm@4621
   110
  val take_suffix: ('a -> bool) -> 'a list -> 'a list * 'a list
wenzelm@4621
   111
wenzelm@4621
   112
  (*integers*)
wenzelm@4621
   113
  val inc: int ref -> int
wenzelm@4621
   114
  val dec: int ref -> int
wenzelm@4621
   115
  val upto: int * int -> int list
wenzelm@4621
   116
  val downto: int * int -> int list
wenzelm@4621
   117
  val downto0: int list * int -> bool
wenzelm@4621
   118
  val radixpand: int * int -> int list
wenzelm@4621
   119
  val radixstring: int * string * int -> string
wenzelm@4621
   120
  val string_of_int: int -> string
wenzelm@4621
   121
  val string_of_indexname: string * int -> string
wenzelm@4621
   122
wenzelm@4621
   123
  (*strings*)
wenzelm@4621
   124
  val enclose: string -> string -> string -> string
wenzelm@4621
   125
  val quote: string -> string
wenzelm@4621
   126
  val space_implode: string -> string list -> string
wenzelm@4621
   127
  val commas: string list -> string
wenzelm@4621
   128
  val commas_quote: string list -> string
wenzelm@4621
   129
  val cat_lines: string list -> string
wenzelm@4621
   130
  val space_explode: string -> string -> string list
wenzelm@4621
   131
  val split_lines: string -> string list
wenzelm@5285
   132
  val suffix: string -> string -> string
wenzelm@5285
   133
  val unsuffix: string -> string -> string
wenzelm@4621
   134
wenzelm@4621
   135
  (*lists as sets*)
wenzelm@4621
   136
  val mem: ''a * ''a list -> bool
wenzelm@4621
   137
  val mem_int: int * int list -> bool
wenzelm@4621
   138
  val mem_string: string * string list -> bool
wenzelm@4621
   139
  val gen_mem: ('a * 'b -> bool) -> 'a * 'b list -> bool
wenzelm@4621
   140
  val ins: ''a * ''a list -> ''a list
wenzelm@4621
   141
  val ins_int: int * int list -> int list
wenzelm@4621
   142
  val ins_string: string * string list -> string list
wenzelm@4621
   143
  val gen_ins: ('a * 'a -> bool) -> 'a * 'a list -> 'a list
wenzelm@4621
   144
  val union: ''a list * ''a list -> ''a list
wenzelm@4621
   145
  val union_int: int list * int list -> int list
wenzelm@4621
   146
  val union_string: string list * string list -> string list
wenzelm@4621
   147
  val gen_union: ('a * 'a -> bool) -> 'a list * 'a list -> 'a list
wenzelm@4621
   148
  val inter: ''a list * ''a list -> ''a list
wenzelm@4621
   149
  val inter_int: int list * int list -> int list
wenzelm@4621
   150
  val inter_string: string list * string list -> string list
wenzelm@4621
   151
  val subset: ''a list * ''a list -> bool
wenzelm@4621
   152
  val subset_int: int list * int list -> bool
wenzelm@4621
   153
  val subset_string: string list * string list -> bool
wenzelm@4621
   154
  val eq_set: ''a list * ''a list -> bool
wenzelm@4621
   155
  val eq_set_string: string list * string list -> bool
wenzelm@4621
   156
  val gen_subset: ('a * 'b -> bool) -> 'a list * 'b list -> bool
wenzelm@4621
   157
  val \ : ''a list * ''a -> ''a list
wenzelm@4621
   158
  val \\ : ''a list * ''a list -> ''a list
wenzelm@4621
   159
  val gen_rem: ('a * 'b -> bool) -> 'a list * 'b -> 'a list
wenzelm@4621
   160
  val gen_rems: ('a * 'b -> bool) -> 'a list * 'b list -> 'a list
wenzelm@4621
   161
  val gen_distinct: ('a * 'a -> bool) -> 'a list -> 'a list
wenzelm@4621
   162
  val distinct: ''a list -> ''a list
wenzelm@4621
   163
  val findrep: ''a list -> ''a list
wenzelm@4621
   164
  val gen_duplicates: ('a * 'a -> bool) -> 'a list -> 'a list
wenzelm@4621
   165
  val duplicates: ''a list -> ''a list
wenzelm@4621
   166
wenzelm@4621
   167
  (*association lists*)
wenzelm@4621
   168
  val assoc: (''a * 'b) list * ''a -> 'b option
wenzelm@4621
   169
  val assoc_int: (int * 'a) list * int -> 'a option
wenzelm@4621
   170
  val assoc_string: (string * 'a) list * string -> 'a option
wenzelm@4621
   171
  val assoc_string_int: ((string * int) * 'a) list * (string * int) -> 'a option
wenzelm@4621
   172
  val assocs: (''a * 'b list) list -> ''a -> 'b list
wenzelm@4621
   173
  val assoc2: (''a * (''b * 'c) list) list * (''a * ''b) -> 'c option
wenzelm@4621
   174
  val gen_assoc: ('a * 'b -> bool) -> ('b * 'c) list * 'a -> 'c option
wenzelm@4621
   175
  val overwrite: (''a * 'b) list * (''a * 'b) -> (''a * 'b) list
wenzelm@4621
   176
  val gen_overwrite: ('a * 'a -> bool) -> ('a * 'b) list * ('a * 'b) -> ('a * 'b) list
wenzelm@4621
   177
wenzelm@4621
   178
  (*generic tables*)
wenzelm@4621
   179
  val generic_extend: ('a * 'a -> bool)
wenzelm@4621
   180
    -> ('b -> 'a list) -> ('a list -> 'b) -> 'b -> 'a list -> 'b
wenzelm@4621
   181
  val generic_merge: ('a * 'a -> bool) -> ('b -> 'a list) -> ('a list -> 'b) -> 'b -> 'b -> 'b
wenzelm@4621
   182
  val extend_list: ''a list -> ''a list -> ''a list
wenzelm@4621
   183
  val merge_lists: ''a list -> ''a list -> ''a list
wenzelm@4692
   184
  val merge_alists: (''a * 'b) list -> (''a * 'b) list -> (''a * 'b) list
wenzelm@4621
   185
  val merge_rev_lists: ''a list -> ''a list -> ''a list
wenzelm@4621
   186
wenzelm@4621
   187
  (*balanced trees*)
wenzelm@4621
   188
  exception Balance
wenzelm@4621
   189
  val fold_bal: ('a * 'a -> 'a) -> 'a list -> 'a
wenzelm@4621
   190
  val access_bal: ('a -> 'a) * ('a -> 'a) * 'a -> int -> int -> 'a
wenzelm@4621
   191
  val accesses_bal: ('a -> 'a) * ('a -> 'a) * 'a -> int -> 'a list
wenzelm@4621
   192
wenzelm@4621
   193
  (*orders*)
wenzelm@4621
   194
  datatype order = EQUAL | GREATER | LESS
wenzelm@4621
   195
  val rev_order: order -> order
wenzelm@4621
   196
  val make_ord: ('a * 'a -> bool) -> 'a * 'a -> order
wenzelm@4621
   197
  val int_ord: int * int -> order
wenzelm@4621
   198
  val string_ord: string * string -> order
wenzelm@4621
   199
  val prod_ord: ('a * 'b -> order) -> ('c * 'd -> order) -> ('a * 'c) * ('b * 'd) -> order
wenzelm@4621
   200
  val dict_ord: ('a * 'b -> order) -> 'a list * 'b list -> order
wenzelm@4621
   201
  val list_ord: ('a * 'b -> order) -> 'a list * 'b list -> order
wenzelm@4621
   202
  val sort: ('a * 'a -> order) -> 'a list -> 'a list
wenzelm@4621
   203
  val sort_strings: string list -> string list
wenzelm@4621
   204
  val sort_wrt: ('a -> string) -> 'a list -> 'a list
wenzelm@4621
   205
wenzelm@4621
   206
  (*I/O and diagnostics*)
wenzelm@4621
   207
  val cd: string -> unit
wenzelm@4621
   208
  val pwd: unit -> string
wenzelm@4621
   209
  val prs_fn: (string -> unit) ref
wenzelm@4621
   210
  val warning_fn: (string -> unit) ref
wenzelm@4621
   211
  val error_fn: (string -> unit) ref
wenzelm@4621
   212
  val prs: string -> unit
wenzelm@4621
   213
  val writeln: string -> unit
wenzelm@4621
   214
  val warning: string -> unit
wenzelm@4621
   215
  exception ERROR
wenzelm@4621
   216
  val error_msg: string -> unit
wenzelm@4621
   217
  val error: string -> 'a
wenzelm@4621
   218
  val sys_error: string -> 'a
wenzelm@4621
   219
  val assert: bool -> string -> unit
wenzelm@4621
   220
  val deny: bool -> string -> unit
wenzelm@4621
   221
  val assert_all: ('a -> bool) -> 'a list -> ('a -> string) -> unit
wenzelm@4621
   222
  datatype 'a error = Error of string | OK of 'a
wenzelm@4621
   223
  val get_error: 'a error -> string option
wenzelm@4621
   224
  val get_ok: 'a error -> 'a option
wenzelm@4621
   225
  val handle_error: ('a -> 'b) -> 'a -> 'b error
wenzelm@4923
   226
  exception ERROR_MESSAGE of string
wenzelm@4923
   227
  val transform_error: ('a -> 'b) -> 'a -> 'b
wenzelm@4621
   228
wenzelm@4621
   229
  (*timing*)
wenzelm@4621
   230
  val cond_timeit: bool -> (unit -> 'a) -> 'a
wenzelm@4621
   231
  val timeit: (unit -> 'a) -> 'a
wenzelm@4621
   232
  val timeap: ('a -> 'b) -> 'a -> 'b
wenzelm@4621
   233
wenzelm@4621
   234
  (*misc*)
wenzelm@4621
   235
  val make_keylist: ('a -> 'b) -> 'a list -> ('a * 'b) list
wenzelm@4621
   236
  val keyfilter: ('a * ''b) list -> ''b -> 'a list
wenzelm@4621
   237
  val partition: ('a -> bool) -> 'a list -> 'a list * 'a list
wenzelm@4621
   238
  val partition_eq: ('a * 'a -> bool) -> 'a list -> 'a list list
wenzelm@4621
   239
  val partition_list: (int -> 'a -> bool) -> int -> int -> 'a list -> 'a list list
wenzelm@4621
   240
  val transitive_closure: (string * string list) list -> (string * string list) list
wenzelm@4621
   241
  val init_gensym: unit -> unit
wenzelm@4621
   242
  val gensym: string -> string
wenzelm@4621
   243
  val bump_int_list: string list -> string list
wenzelm@4621
   244
  val bump_list: string list * string -> string list
wenzelm@4621
   245
  val bump_string: string -> string
wenzelm@4621
   246
  val scanwords: (string -> bool) -> string list -> string list
wenzelm@4621
   247
  datatype 'a mtree = Join of 'a * 'a mtree list
wenzelm@4621
   248
end;
wenzelm@4621
   249
wenzelm@4621
   250
structure Library: LIBRARY =
clasohm@1364
   251
struct
clasohm@0
   252
wenzelm@4995
   253
wenzelm@233
   254
(** functions **)
clasohm@0
   255
wenzelm@233
   256
(*handy combinators*)
wenzelm@233
   257
fun curry f x y = f (x, y);
wenzelm@233
   258
fun uncurry f (x, y) = f x y;
wenzelm@233
   259
fun I x = x;
wenzelm@233
   260
fun K x y = x;
clasohm@0
   261
wenzelm@380
   262
(*reverse apply*)
wenzelm@410
   263
fun (x |> f) = f x;
wenzelm@380
   264
wenzelm@233
   265
(*application of (infix) operator to its left or right argument*)
wenzelm@233
   266
fun apl (x, f) y = f (x, y);
wenzelm@233
   267
fun apr (f, y) x = f (x, y);
clasohm@0
   268
wenzelm@233
   269
(*function exponentiation: f(...(f x)...) with n applications of f*)
wenzelm@233
   270
fun funpow n f x =
wenzelm@233
   271
  let fun rep (0, x) = x
wenzelm@233
   272
        | rep (n, x) = rep (n - 1, f x)
wenzelm@233
   273
  in rep (n, x) end;
wenzelm@160
   274
wenzelm@5893
   275
(*concatenation: 2 and 3 args*)
wenzelm@5893
   276
fun (f oo g) x y = f (g x y);
wenzelm@5893
   277
fun (f ooo g) x y z = f (g x y z);
wenzelm@160
   278
wenzelm@160
   279
wenzelm@2471
   280
(** stamps **)
wenzelm@2471
   281
wenzelm@2471
   282
type stamp = unit ref;
wenzelm@2471
   283
val stamp: unit -> stamp = ref;
wenzelm@2471
   284
wenzelm@2471
   285
wenzelm@2471
   286
wenzelm@233
   287
(** options **)
clasohm@0
   288
clasohm@0
   289
datatype 'a option = None | Some of 'a;
clasohm@0
   290
wenzelm@4139
   291
exception OPTION;
clasohm@0
   292
clasohm@0
   293
fun the (Some x) = x
wenzelm@4139
   294
  | the None = raise OPTION;
clasohm@0
   295
wenzelm@4212
   296
(*strict!*)
wenzelm@255
   297
fun if_none None y = y
wenzelm@255
   298
  | if_none (Some x) _ = x;
wenzelm@255
   299
clasohm@0
   300
fun is_some (Some _) = true
clasohm@0
   301
  | is_some None = false;
clasohm@0
   302
clasohm@0
   303
fun is_none (Some _) = false
clasohm@0
   304
  | is_none None = true;
clasohm@0
   305
wenzelm@233
   306
fun apsome f (Some x) = Some (f x)
wenzelm@233
   307
  | apsome _ None = None;
clasohm@0
   308
wenzelm@4139
   309
(*handle partial functions*)
wenzelm@4181
   310
fun can f x = (f x; true) handle _ => false;
wenzelm@4139
   311
fun try f x = Some (f x) handle _ => None;
wenzelm@4139
   312
wenzelm@4139
   313
wenzelm@4139
   314
wenzelm@233
   315
(** pairs **)
wenzelm@233
   316
wenzelm@233
   317
fun pair x y = (x, y);
wenzelm@233
   318
fun rpair x y = (y, x);
wenzelm@233
   319
wenzelm@233
   320
fun fst (x, y) = x;
wenzelm@233
   321
fun snd (x, y) = y;
wenzelm@233
   322
wenzelm@233
   323
fun eq_fst ((x1, _), (x2, _)) = x1 = x2;
wenzelm@233
   324
fun eq_snd ((_, y1), (_, y2)) = y1 = y2;
wenzelm@233
   325
wenzelm@233
   326
fun swap (x, y) = (y, x);
wenzelm@233
   327
wenzelm@4212
   328
(*apply function to components*)
wenzelm@233
   329
fun apfst f (x, y) = (f x, y);
wenzelm@233
   330
fun apsnd f (x, y) = (x, f y);
wenzelm@4212
   331
fun pairself f (x, y) = (f x, f y);
wenzelm@233
   332
wenzelm@233
   333
wenzelm@233
   334
wenzelm@233
   335
(** booleans **)
wenzelm@233
   336
wenzelm@233
   337
(* equality *)
wenzelm@233
   338
wenzelm@233
   339
fun equal x y = x = y;
wenzelm@233
   340
fun not_equal x y = x <> y;
wenzelm@233
   341
wenzelm@233
   342
wenzelm@233
   343
(* operators for combining predicates *)
wenzelm@233
   344
paulson@2175
   345
fun (p orf q) = fn x => p x orelse q x;
paulson@2175
   346
fun (p andf q) = fn x => p x andalso q x;
wenzelm@233
   347
wenzelm@233
   348
wenzelm@233
   349
(* predicates on lists *)
wenzelm@233
   350
wenzelm@233
   351
(*exists pred [x1, ..., xn] ===> pred x1 orelse ... orelse pred xn*)
wenzelm@233
   352
fun exists (pred: 'a -> bool) : 'a list -> bool =
wenzelm@233
   353
  let fun boolf [] = false
wenzelm@233
   354
        | boolf (x :: xs) = pred x orelse boolf xs
wenzelm@233
   355
  in boolf end;
wenzelm@233
   356
wenzelm@233
   357
(*forall pred [x1, ..., xn] ===> pred x1 andalso ... andalso pred xn*)
wenzelm@233
   358
fun forall (pred: 'a -> bool) : 'a list -> bool =
wenzelm@233
   359
  let fun boolf [] = true
wenzelm@233
   360
        | boolf (x :: xs) = pred x andalso boolf xs
wenzelm@233
   361
  in boolf end;
clasohm@0
   362
wenzelm@233
   363
wenzelm@380
   364
(* flags *)
wenzelm@380
   365
wenzelm@380
   366
fun set flag = (flag := true; true);
wenzelm@380
   367
fun reset flag = (flag := false; false);
wenzelm@380
   368
fun toggle flag = (flag := not (! flag); ! flag);
wenzelm@380
   369
wenzelm@4212
   370
(*temporarily set flag, handling errors*)
wenzelm@2978
   371
fun setmp flag value f x =
wenzelm@2958
   372
  let
wenzelm@2958
   373
    val orig_value = ! flag;
wenzelm@2958
   374
    fun return y = (flag := orig_value; y);
wenzelm@2958
   375
  in
wenzelm@2958
   376
    flag := value;
wenzelm@2958
   377
    return (f x handle exn => (return (); raise exn))
wenzelm@2958
   378
  end;
wenzelm@2958
   379
wenzelm@380
   380
wenzelm@233
   381
wenzelm@233
   382
(** lists **)
wenzelm@233
   383
wenzelm@233
   384
exception LIST of string;
wenzelm@233
   385
wenzelm@233
   386
fun null [] = true
wenzelm@233
   387
  | null (_ :: _) = false;
wenzelm@233
   388
wenzelm@233
   389
fun hd [] = raise LIST "hd"
wenzelm@233
   390
  | hd (x :: _) = x;
wenzelm@233
   391
wenzelm@233
   392
fun tl [] = raise LIST "tl"
wenzelm@233
   393
  | tl (_ :: xs) = xs;
wenzelm@233
   394
wenzelm@233
   395
fun cons x xs = x :: xs;
wenzelm@5285
   396
fun single x = [x];
wenzelm@233
   397
wenzelm@4629
   398
fun append xs ys = xs @ ys;
wenzelm@4629
   399
wenzelm@233
   400
wenzelm@233
   401
(* fold *)
wenzelm@233
   402
wenzelm@233
   403
(*the following versions of fold are designed to fit nicely with infixes*)
clasohm@0
   404
wenzelm@233
   405
(*  (op @) (e, [x1, ..., xn])  ===>  ((e @ x1) @ x2) ... @ xn
wenzelm@233
   406
    for operators that associate to the left (TAIL RECURSIVE)*)
wenzelm@233
   407
fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a =
wenzelm@233
   408
  let fun itl (e, [])  = e
wenzelm@233
   409
        | itl (e, a::l) = itl (f(e, a), l)
wenzelm@233
   410
  in  itl end;
wenzelm@233
   411
wenzelm@233
   412
(*  (op @) ([x1, ..., xn], e)  ===>   x1 @ (x2 ... @ (xn @ e))
wenzelm@233
   413
    for operators that associate to the right (not tail recursive)*)
wenzelm@233
   414
fun foldr f (l, e) =
wenzelm@233
   415
  let fun itr [] = e
wenzelm@233
   416
        | itr (a::l) = f(a, itr l)
wenzelm@233
   417
  in  itr l  end;
wenzelm@233
   418
wenzelm@233
   419
(*  (op @) [x1, ..., xn]  ===>   x1 @ (x2 ... @ (x[n-1] @ xn))
wenzelm@233
   420
    for n > 0, operators that associate to the right (not tail recursive)*)
wenzelm@233
   421
fun foldr1 f l =
wenzelm@4181
   422
  let fun itr [x] = x
wenzelm@233
   423
        | itr (x::l) = f(x, itr l)
wenzelm@233
   424
  in  itr l  end;
wenzelm@233
   425
wenzelm@4956
   426
fun foldl_map _ (x, []) = (x, [])
wenzelm@4956
   427
  | foldl_map f (x, y :: ys) =
wenzelm@4956
   428
      let
wenzelm@4956
   429
        val (x', y') = f (x, y);
wenzelm@4956
   430
        val (x'', ys') = foldl_map f (x', ys);
wenzelm@4956
   431
      in (x'', y' :: ys') end;
wenzelm@4956
   432
wenzelm@233
   433
wenzelm@233
   434
(* basic list functions *)
wenzelm@233
   435
wenzelm@233
   436
(*length of a list, should unquestionably be a standard function*)
wenzelm@233
   437
local fun length1 (n, [])  = n   (*TAIL RECURSIVE*)
wenzelm@233
   438
        | length1 (n, x :: xs) = length1 (n + 1, xs)
wenzelm@233
   439
in  fun length l = length1 (0, l) end;
wenzelm@233
   440
wenzelm@233
   441
(*take the first n elements from a list*)
wenzelm@233
   442
fun take (n, []) = []
wenzelm@233
   443
  | take (n, x :: xs) =
wenzelm@233
   444
      if n > 0 then x :: take (n - 1, xs) else [];
wenzelm@233
   445
wenzelm@233
   446
(*drop the first n elements from a list*)
wenzelm@233
   447
fun drop (n, []) = []
wenzelm@233
   448
  | drop (n, x :: xs) =
wenzelm@233
   449
      if n > 0 then drop (n - 1, xs) else x :: xs;
clasohm@0
   450
nipkow@4713
   451
fun dropwhile P [] = []
nipkow@4713
   452
  | dropwhile P (ys as x::xs) = if P x then dropwhile P xs else ys;
nipkow@4713
   453
wenzelm@233
   454
(*return nth element of a list, where 0 designates the first element;
wenzelm@233
   455
  raise EXCEPTION if list too short*)
wenzelm@233
   456
fun nth_elem NL =
wenzelm@233
   457
  (case drop NL of
wenzelm@233
   458
    [] => raise LIST "nth_elem"
wenzelm@233
   459
  | x :: _ => x);
wenzelm@233
   460
wenzelm@233
   461
(*last element of a list*)
wenzelm@233
   462
fun last_elem [] = raise LIST "last_elem"
wenzelm@233
   463
  | last_elem [x] = x
wenzelm@233
   464
  | last_elem (_ :: xs) = last_elem xs;
wenzelm@233
   465
wenzelm@3762
   466
(*rear decomposition*)
wenzelm@3762
   467
fun split_last [] = raise LIST "split_last"
wenzelm@3762
   468
  | split_last [x] = ([], x)
wenzelm@3762
   469
  | split_last (x :: xs) = apfst (cons x) (split_last xs);
wenzelm@3762
   470
wenzelm@4893
   471
(*update nth element*)
wenzelm@4893
   472
fun nth_update x (n, xs) =
wenzelm@4893
   473
  let
wenzelm@4893
   474
    val prfx = take (n, xs);
wenzelm@4893
   475
    val sffx = drop (n, xs);
wenzelm@4893
   476
  in
wenzelm@4893
   477
    (case sffx of
wenzelm@4893
   478
      [] => raise LIST "nth_update"
wenzelm@4893
   479
    | _ :: sffx' => prfx @ (x :: sffx'))
wenzelm@4893
   480
  end;
wenzelm@4893
   481
wenzelm@4212
   482
(*find the position of an element in a list*)
wenzelm@4212
   483
fun find_index pred =
wenzelm@4212
   484
  let fun find _ [] = ~1
wenzelm@4212
   485
        | find n (x :: xs) = if pred x then n else find (n + 1) xs;
wenzelm@4212
   486
  in find 0 end;
wenzelm@3762
   487
wenzelm@4224
   488
fun find_index_eq x = find_index (equal x);
wenzelm@4212
   489
wenzelm@4212
   490
(*find first element satisfying predicate*)
wenzelm@4212
   491
fun find_first _ [] = None
wenzelm@4212
   492
  | find_first pred (x :: xs) =
wenzelm@4212
   493
      if pred x then Some x else find_first pred xs;
wenzelm@233
   494
wenzelm@4916
   495
(*get first element by lookup function*)
wenzelm@4916
   496
fun get_first _ [] = None
wenzelm@4916
   497
  | get_first f (x :: xs) =
wenzelm@4916
   498
      (case f x of
wenzelm@4916
   499
        None => get_first f xs
wenzelm@4916
   500
      | some => some);
wenzelm@4916
   501
wenzelm@233
   502
(*flatten a list of lists to a list*)
wenzelm@233
   503
fun flat (ls: 'c list list) : 'c list = foldr (op @) (ls, []);
wenzelm@233
   504
wenzelm@233
   505
(*like Lisp's MAPC -- seq proc [x1, ..., xn] evaluates
wenzelm@233
   506
  (proc x1; ...; proc xn) for side effects*)
wenzelm@233
   507
fun seq (proc: 'a -> unit) : 'a list -> unit =
wenzelm@233
   508
  let fun seqf [] = ()
wenzelm@233
   509
        | seqf (x :: xs) = (proc x; seqf xs)
wenzelm@233
   510
  in seqf end;
wenzelm@233
   511
wenzelm@233
   512
(*separate s [x1, x2, ..., xn]  ===>  [x1, s, x2, s, ..., s, xn]*)
wenzelm@233
   513
fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs
wenzelm@233
   514
  | separate _ xs = xs;
wenzelm@233
   515
wenzelm@233
   516
(*make the list [x, x, ..., x] of length n*)
wenzelm@233
   517
fun replicate n (x: 'a) : 'a list =
wenzelm@233
   518
  let fun rep (0, xs) = xs
wenzelm@233
   519
        | rep (n, xs) = rep (n - 1, x :: xs)
wenzelm@233
   520
  in
wenzelm@233
   521
    if n < 0 then raise LIST "replicate"
wenzelm@233
   522
    else rep (n, [])
wenzelm@233
   523
  end;
wenzelm@233
   524
wenzelm@4248
   525
(*multiply [a, b, c, ...] * [xs, ys, zs, ...]*)
wenzelm@4248
   526
fun multiply ([], _) = []
wenzelm@4248
   527
  | multiply (x :: xs, yss) = map (cons x) yss @ multiply (xs, yss);
wenzelm@4248
   528
wenzelm@233
   529
wenzelm@233
   530
(* filter *)
wenzelm@233
   531
wenzelm@233
   532
(*copy the list preserving elements that satisfy the predicate*)
wenzelm@233
   533
fun filter (pred: 'a->bool) : 'a list -> 'a list =
clasohm@0
   534
  let fun filt [] = []
wenzelm@233
   535
        | filt (x :: xs) = if pred x then x :: filt xs else filt xs
wenzelm@233
   536
  in filt end;
clasohm@0
   537
clasohm@0
   538
fun filter_out f = filter (not o f);
clasohm@0
   539
wenzelm@233
   540
fun mapfilter (f: 'a -> 'b option) ([]: 'a list) = [] : 'b list
wenzelm@233
   541
  | mapfilter f (x :: xs) =
wenzelm@233
   542
      (case f x of
wenzelm@233
   543
        None => mapfilter f xs
wenzelm@233
   544
      | Some y => y :: mapfilter f xs);
wenzelm@233
   545
wenzelm@233
   546
wenzelm@233
   547
(* lists of pairs *)
wenzelm@233
   548
wenzelm@380
   549
fun map2 _ ([], []) = []
wenzelm@380
   550
  | map2 f (x :: xs, y :: ys) = (f (x, y) :: map2 f (xs, ys))
wenzelm@380
   551
  | map2 _ _ = raise LIST "map2";
wenzelm@380
   552
wenzelm@380
   553
fun exists2 _ ([], []) = false
wenzelm@380
   554
  | exists2 pred (x :: xs, y :: ys) = pred (x, y) orelse exists2 pred (xs, ys)
wenzelm@380
   555
  | exists2 _ _ = raise LIST "exists2";
wenzelm@380
   556
wenzelm@380
   557
fun forall2 _ ([], []) = true
wenzelm@380
   558
  | forall2 pred (x :: xs, y :: ys) = pred (x, y) andalso forall2 pred (xs, ys)
wenzelm@380
   559
  | forall2 _ _ = raise LIST "forall2";
wenzelm@380
   560
wenzelm@4956
   561
fun seq2 _ ([], []) = ()
wenzelm@4956
   562
  | seq2 f (x :: xs, y :: ys) = (f (x, y); seq2 f (xs, ys))
wenzelm@4956
   563
  | seq2 _ _ = raise LIST "seq2";
wenzelm@4956
   564
wenzelm@233
   565
(*combine two lists forming a list of pairs:
wenzelm@233
   566
  [x1, ..., xn] ~~ [y1, ..., yn]  ===>  [(x1, y1), ..., (xn, yn)]*)
wenzelm@233
   567
fun [] ~~ [] = []
wenzelm@233
   568
  | (x :: xs) ~~ (y :: ys) = (x, y) :: (xs ~~ ys)
wenzelm@233
   569
  | _ ~~ _ = raise LIST "~~";
wenzelm@233
   570
wenzelm@233
   571
(*inverse of ~~; the old 'split':
wenzelm@233
   572
  [(x1, y1), ..., (xn, yn)]  ===>  ([x1, ..., xn], [y1, ..., yn])*)
wenzelm@233
   573
fun split_list (l: ('a * 'b) list) = (map #1 l, map #2 l);
wenzelm@233
   574
wenzelm@233
   575
wenzelm@233
   576
(* prefixes, suffixes *)
wenzelm@233
   577
wenzelm@233
   578
fun [] prefix _ = true
wenzelm@233
   579
  | (x :: xs) prefix (y :: ys) = x = y andalso (xs prefix ys)
wenzelm@233
   580
  | _ prefix _ = false;
wenzelm@233
   581
wenzelm@233
   582
(* [x1, ..., xi, ..., xn]  --->  ([x1, ..., x(i-1)], [xi, ..., xn])
wenzelm@233
   583
   where xi is the first element that does not satisfy the predicate*)
wenzelm@233
   584
fun take_prefix (pred : 'a -> bool)  (xs: 'a list) : 'a list * 'a list =
wenzelm@233
   585
  let fun take (rxs, []) = (rev rxs, [])
wenzelm@255
   586
        | take (rxs, x :: xs) =
wenzelm@255
   587
            if  pred x  then  take(x :: rxs, xs)  else  (rev rxs, x :: xs)
wenzelm@233
   588
  in  take([], xs)  end;
wenzelm@233
   589
wenzelm@233
   590
(* [x1, ..., xi, ..., xn]  --->  ([x1, ..., xi], [x(i+1), ..., xn])
wenzelm@233
   591
   where xi is the last element that does not satisfy the predicate*)
wenzelm@233
   592
fun take_suffix _ [] = ([], [])
wenzelm@233
   593
  | take_suffix pred (x :: xs) =
wenzelm@233
   594
      (case take_suffix pred xs of
wenzelm@233
   595
        ([], sffx) => if pred x then ([], x :: sffx) else ([x], sffx)
wenzelm@233
   596
      | (prfx, sffx) => (x :: prfx, sffx));
wenzelm@233
   597
wenzelm@233
   598
wenzelm@233
   599
wenzelm@233
   600
(** integers **)
wenzelm@233
   601
wenzelm@2958
   602
fun inc i = (i := ! i + 1; ! i);
wenzelm@2958
   603
fun dec i = (i := ! i - 1; ! i);
wenzelm@233
   604
wenzelm@233
   605
wenzelm@233
   606
(* lists of integers *)
wenzelm@233
   607
wenzelm@233
   608
(*make the list [from, from + 1, ..., to]*)
paulson@2175
   609
fun (from upto to) =
wenzelm@233
   610
  if from > to then [] else from :: ((from + 1) upto to);
wenzelm@233
   611
wenzelm@233
   612
(*make the list [from, from - 1, ..., to]*)
paulson@2175
   613
fun (from downto to) =
wenzelm@233
   614
  if from < to then [] else from :: ((from - 1) downto to);
wenzelm@233
   615
wenzelm@233
   616
(*predicate: downto0 (is, n) <=> is = [n, n - 1, ..., 0]*)
wenzelm@233
   617
fun downto0 (i :: is, n) = i = n andalso downto0 (is, n - 1)
wenzelm@233
   618
  | downto0 ([], n) = n = ~1;
wenzelm@233
   619
wenzelm@233
   620
wenzelm@233
   621
(* convert integers to strings *)
wenzelm@233
   622
wenzelm@233
   623
(*expand the number in the given base;
wenzelm@233
   624
  example: radixpand (2, 8) gives [1, 0, 0, 0]*)
wenzelm@233
   625
fun radixpand (base, num) : int list =
wenzelm@233
   626
  let
wenzelm@233
   627
    fun radix (n, tail) =
wenzelm@233
   628
      if n < base then n :: tail
wenzelm@233
   629
      else radix (n div base, (n mod base) :: tail)
wenzelm@233
   630
  in radix (num, []) end;
wenzelm@233
   631
wenzelm@233
   632
(*expands a number into a string of characters starting from "zerochar";
wenzelm@233
   633
  example: radixstring (2, "0", 8) gives "1000"*)
wenzelm@233
   634
fun radixstring (base, zerochar, num) =
wenzelm@233
   635
  let val offset = ord zerochar;
wenzelm@233
   636
      fun chrof n = chr (offset + n)
wenzelm@233
   637
  in implode (map chrof (radixpand (base, num))) end;
wenzelm@233
   638
wenzelm@233
   639
paulson@3407
   640
val string_of_int = Int.toString;
wenzelm@233
   641
paulson@3407
   642
fun string_of_indexname (a,0) = a
paulson@3407
   643
  | string_of_indexname (a,i) = a ^ "_" ^ Int.toString i;
wenzelm@233
   644
wenzelm@233
   645
wenzelm@4212
   646
wenzelm@233
   647
(** strings **)
wenzelm@233
   648
lcp@512
   649
(*enclose in brackets*)
lcp@512
   650
fun enclose lpar rpar str = lpar ^ str ^ rpar;
wenzelm@255
   651
wenzelm@233
   652
(*simple quoting (does not escape special chars)*)
lcp@512
   653
val quote = enclose "\"" "\"";
wenzelm@233
   654
wenzelm@4212
   655
(*space_implode "..." (explode "hello") = "h...e...l...l...o"*)
wenzelm@233
   656
fun space_implode a bs = implode (separate a bs);
wenzelm@233
   657
wenzelm@255
   658
val commas = space_implode ", ";
wenzelm@380
   659
val commas_quote = commas o map quote;
wenzelm@255
   660
wenzelm@233
   661
(*concatenate messages, one per line, into a string*)
wenzelm@255
   662
val cat_lines = space_implode "\n";
wenzelm@233
   663
wenzelm@4212
   664
(*space_explode "." "h.e..l.lo" = ["h", "e", "", "l", "lo"]*)
wenzelm@3832
   665
fun space_explode _ "" = []
wenzelm@3832
   666
  | space_explode sep str =
wenzelm@3832
   667
      let
wenzelm@3832
   668
        fun expl chs =
wenzelm@3832
   669
          (case take_prefix (not_equal sep) chs of
wenzelm@3832
   670
            (cs, []) => [implode cs]
wenzelm@3832
   671
          | (cs, _ :: cs') => implode cs :: expl cs');
wenzelm@3832
   672
      in expl (explode str) end;
wenzelm@3832
   673
wenzelm@3832
   674
val split_lines = space_explode "\n";
wenzelm@3832
   675
wenzelm@5285
   676
(*append suffix*)
wenzelm@5285
   677
fun suffix sfx s = s ^ sfx;
wenzelm@5285
   678
wenzelm@5285
   679
(*remove suffix*)
wenzelm@5285
   680
fun unsuffix sfx s =
wenzelm@5285
   681
  let
wenzelm@5285
   682
    val cs = explode s;
wenzelm@5285
   683
    val prfx_len = size s - size sfx;
wenzelm@5285
   684
  in
wenzelm@5285
   685
    if prfx_len >= 0 andalso implode (drop (prfx_len, cs)) = sfx then
wenzelm@5285
   686
      implode (take (prfx_len, cs))
wenzelm@5285
   687
    else raise LIST "unsuffix"
wenzelm@5285
   688
  end;
wenzelm@5285
   689
wenzelm@3832
   690
wenzelm@233
   691
wenzelm@233
   692
(** lists as sets **)
wenzelm@233
   693
wenzelm@233
   694
(*membership in a list*)
wenzelm@233
   695
fun x mem [] = false
wenzelm@233
   696
  | x mem (y :: ys) = x = y orelse x mem ys;
clasohm@0
   697
paulson@2175
   698
(*membership in a list, optimized version for ints*)
berghofe@1576
   699
fun (x:int) mem_int [] = false
berghofe@1576
   700
  | x mem_int (y :: ys) = x = y orelse x mem_int ys;
berghofe@1576
   701
paulson@2175
   702
(*membership in a list, optimized version for strings*)
berghofe@1576
   703
fun (x:string) mem_string [] = false
berghofe@1576
   704
  | x mem_string (y :: ys) = x = y orelse x mem_string ys;
berghofe@1576
   705
clasohm@0
   706
(*generalized membership test*)
wenzelm@233
   707
fun gen_mem eq (x, []) = false
wenzelm@233
   708
  | gen_mem eq (x, y :: ys) = eq (x, y) orelse gen_mem eq (x, ys);
wenzelm@233
   709
wenzelm@233
   710
wenzelm@233
   711
(*insertion into list if not already there*)
paulson@2175
   712
fun (x ins xs) = if x mem xs then xs else x :: xs;
clasohm@0
   713
paulson@2175
   714
(*insertion into list, optimized version for ints*)
paulson@2175
   715
fun (x ins_int xs) = if x mem_int xs then xs else x :: xs;
berghofe@1576
   716
paulson@2175
   717
(*insertion into list, optimized version for strings*)
paulson@2175
   718
fun (x ins_string xs) = if x mem_string xs then xs else x :: xs;
berghofe@1576
   719
clasohm@0
   720
(*generalized insertion*)
wenzelm@233
   721
fun gen_ins eq (x, xs) = if gen_mem eq (x, xs) then xs else x :: xs;
wenzelm@233
   722
wenzelm@233
   723
wenzelm@233
   724
(*union of sets represented as lists: no repetitions*)
wenzelm@233
   725
fun xs union [] = xs
wenzelm@233
   726
  | [] union ys = ys
wenzelm@233
   727
  | (x :: xs) union ys = xs union (x ins ys);
clasohm@0
   728
paulson@2175
   729
(*union of sets, optimized version for ints*)
berghofe@1576
   730
fun (xs:int list) union_int [] = xs
berghofe@1576
   731
  | [] union_int ys = ys
berghofe@1576
   732
  | (x :: xs) union_int ys = xs union_int (x ins_int ys);
berghofe@1576
   733
paulson@2175
   734
(*union of sets, optimized version for strings*)
berghofe@1576
   735
fun (xs:string list) union_string [] = xs
berghofe@1576
   736
  | [] union_string ys = ys
berghofe@1576
   737
  | (x :: xs) union_string ys = xs union_string (x ins_string ys);
berghofe@1576
   738
clasohm@0
   739
(*generalized union*)
wenzelm@233
   740
fun gen_union eq (xs, []) = xs
wenzelm@233
   741
  | gen_union eq ([], ys) = ys
wenzelm@233
   742
  | gen_union eq (x :: xs, ys) = gen_union eq (xs, gen_ins eq (x, ys));
wenzelm@233
   743
wenzelm@233
   744
wenzelm@233
   745
(*intersection*)
wenzelm@233
   746
fun [] inter ys = []
wenzelm@233
   747
  | (x :: xs) inter ys =
wenzelm@233
   748
      if x mem ys then x :: (xs inter ys) else xs inter ys;
wenzelm@233
   749
paulson@2175
   750
(*intersection, optimized version for ints*)
berghofe@1576
   751
fun ([]:int list) inter_int ys = []
berghofe@1576
   752
  | (x :: xs) inter_int ys =
berghofe@1576
   753
      if x mem_int ys then x :: (xs inter_int ys) else xs inter_int ys;
berghofe@1576
   754
paulson@2175
   755
(*intersection, optimized version for strings *)
berghofe@1576
   756
fun ([]:string list) inter_string ys = []
berghofe@1576
   757
  | (x :: xs) inter_string ys =
berghofe@1576
   758
      if x mem_string ys then x :: (xs inter_string ys) else xs inter_string ys;
berghofe@1576
   759
wenzelm@233
   760
wenzelm@233
   761
(*subset*)
wenzelm@233
   762
fun [] subset ys = true
wenzelm@233
   763
  | (x :: xs) subset ys = x mem ys andalso xs subset ys;
wenzelm@233
   764
paulson@2175
   765
(*subset, optimized version for ints*)
berghofe@1576
   766
fun ([]:int list) subset_int ys = true
berghofe@1576
   767
  | (x :: xs) subset_int ys = x mem_int ys andalso xs subset_int ys;
berghofe@1576
   768
paulson@2175
   769
(*subset, optimized version for strings*)
berghofe@1576
   770
fun ([]:string list) subset_string ys = true
berghofe@1576
   771
  | (x :: xs) subset_string ys = x mem_string ys andalso xs subset_string ys;
berghofe@1576
   772
wenzelm@4363
   773
(*set equality*)
wenzelm@4363
   774
fun eq_set (xs, ys) =
wenzelm@4363
   775
  xs = ys orelse (xs subset ys andalso ys subset xs);
wenzelm@4363
   776
paulson@2182
   777
(*set equality for strings*)
berghofe@1576
   778
fun eq_set_string ((xs:string list), ys) =
berghofe@1576
   779
  xs = ys orelse (xs subset_string ys andalso ys subset_string xs);
berghofe@1576
   780
paulson@2182
   781
fun gen_subset eq (xs, ys) = forall (fn x => gen_mem eq (x, ys)) xs;
paulson@2182
   782
wenzelm@265
   783
wenzelm@233
   784
(*removing an element from a list WITHOUT duplicates*)
wenzelm@233
   785
fun (y :: ys) \ x = if x = y then ys else y :: (ys \ x)
wenzelm@233
   786
  | [] \ x = [];
wenzelm@233
   787
paulson@2243
   788
fun ys \\ xs = foldl (op \) (ys,xs);
clasohm@0
   789
wenzelm@233
   790
(*removing an element from a list -- possibly WITH duplicates*)
wenzelm@233
   791
fun gen_rem eq (xs, y) = filter_out (fn x => eq (x, y)) xs;
wenzelm@233
   792
paulson@2243
   793
fun gen_rems eq = foldl (gen_rem eq);
wenzelm@233
   794
wenzelm@233
   795
wenzelm@233
   796
(*makes a list of the distinct members of the input; preserves order, takes
wenzelm@233
   797
  first of equal elements*)
wenzelm@233
   798
fun gen_distinct eq lst =
wenzelm@233
   799
  let
wenzelm@233
   800
    val memb = gen_mem eq;
clasohm@0
   801
wenzelm@233
   802
    fun dist (rev_seen, []) = rev rev_seen
wenzelm@233
   803
      | dist (rev_seen, x :: xs) =
wenzelm@233
   804
          if memb (x, rev_seen) then dist (rev_seen, xs)
wenzelm@233
   805
          else dist (x :: rev_seen, xs);
wenzelm@233
   806
  in
wenzelm@233
   807
    dist ([], lst)
wenzelm@233
   808
  end;
wenzelm@233
   809
paulson@2243
   810
fun distinct l = gen_distinct (op =) l;
wenzelm@233
   811
wenzelm@233
   812
wenzelm@233
   813
(*returns the tail beginning with the first repeated element, or []*)
wenzelm@233
   814
fun findrep [] = []
wenzelm@233
   815
  | findrep (x :: xs) = if x mem xs then x :: xs else findrep xs;
wenzelm@233
   816
wenzelm@233
   817
wenzelm@255
   818
(*returns a list containing all repeated elements exactly once; preserves
wenzelm@255
   819
  order, takes first of equal elements*)
wenzelm@255
   820
fun gen_duplicates eq lst =
wenzelm@255
   821
  let
wenzelm@255
   822
    val memb = gen_mem eq;
wenzelm@255
   823
wenzelm@255
   824
    fun dups (rev_dups, []) = rev rev_dups
wenzelm@255
   825
      | dups (rev_dups, x :: xs) =
wenzelm@255
   826
          if memb (x, rev_dups) orelse not (memb (x, xs)) then
wenzelm@255
   827
            dups (rev_dups, xs)
wenzelm@255
   828
          else dups (x :: rev_dups, xs);
wenzelm@255
   829
  in
wenzelm@255
   830
    dups ([], lst)
wenzelm@255
   831
  end;
wenzelm@255
   832
paulson@2243
   833
fun duplicates l = gen_duplicates (op =) l;
wenzelm@255
   834
wenzelm@255
   835
wenzelm@233
   836
wenzelm@233
   837
(** association lists **)
clasohm@0
   838
wenzelm@233
   839
(*association list lookup*)
wenzelm@233
   840
fun assoc ([], key) = None
wenzelm@233
   841
  | assoc ((keyi, xi) :: pairs, key) =
wenzelm@233
   842
      if key = keyi then Some xi else assoc (pairs, key);
wenzelm@233
   843
paulson@2175
   844
(*association list lookup, optimized version for ints*)
berghofe@1576
   845
fun assoc_int ([], (key:int)) = None
berghofe@1576
   846
  | assoc_int ((keyi, xi) :: pairs, key) =
berghofe@1576
   847
      if key = keyi then Some xi else assoc_int (pairs, key);
berghofe@1576
   848
paulson@2175
   849
(*association list lookup, optimized version for strings*)
berghofe@1576
   850
fun assoc_string ([], (key:string)) = None
berghofe@1576
   851
  | assoc_string ((keyi, xi) :: pairs, key) =
berghofe@1576
   852
      if key = keyi then Some xi else assoc_string (pairs, key);
berghofe@1576
   853
paulson@2175
   854
(*association list lookup, optimized version for string*ints*)
berghofe@1576
   855
fun assoc_string_int ([], (key:string*int)) = None
berghofe@1576
   856
  | assoc_string_int ((keyi, xi) :: pairs, key) =
berghofe@1576
   857
      if key = keyi then Some xi else assoc_string_int (pairs, key);
berghofe@1576
   858
wenzelm@233
   859
fun assocs ps x =
wenzelm@233
   860
  (case assoc (ps, x) of
wenzelm@233
   861
    None => []
wenzelm@233
   862
  | Some ys => ys);
wenzelm@233
   863
wenzelm@255
   864
(*two-fold association list lookup*)
wenzelm@255
   865
fun assoc2 (aal, (key1, key2)) =
wenzelm@255
   866
  (case assoc (aal, key1) of
wenzelm@255
   867
    Some al => assoc (al, key2)
wenzelm@255
   868
  | None => None);
wenzelm@255
   869
wenzelm@233
   870
(*generalized association list lookup*)
wenzelm@233
   871
fun gen_assoc eq ([], key) = None
wenzelm@233
   872
  | gen_assoc eq ((keyi, xi) :: pairs, key) =
wenzelm@233
   873
      if eq (key, keyi) then Some xi else gen_assoc eq (pairs, key);
wenzelm@233
   874
wenzelm@233
   875
(*association list update*)
wenzelm@233
   876
fun overwrite (al, p as (key, _)) =
wenzelm@233
   877
  let fun over ((q as (keyi, _)) :: pairs) =
wenzelm@233
   878
            if keyi = key then p :: pairs else q :: (over pairs)
wenzelm@233
   879
        | over [] = [p]
wenzelm@233
   880
  in over al end;
wenzelm@233
   881
wenzelm@2522
   882
fun gen_overwrite eq (al, p as (key, _)) =
wenzelm@2522
   883
  let fun over ((q as (keyi, _)) :: pairs) =
wenzelm@2522
   884
            if eq (keyi, key) then p :: pairs else q :: (over pairs)
wenzelm@2522
   885
        | over [] = [p]
wenzelm@2522
   886
  in over al end;
wenzelm@2522
   887
wenzelm@233
   888
wenzelm@233
   889
wenzelm@233
   890
(** generic tables **)
clasohm@0
   891
wenzelm@233
   892
(*Tables are supposed to be 'efficient' encodings of lists of elements distinct
wenzelm@233
   893
  wrt. an equality "eq". The extend and merge operations below are optimized
wenzelm@233
   894
  for long-term space efficiency.*)
wenzelm@233
   895
wenzelm@233
   896
(*append (new) elements to a table*)
wenzelm@233
   897
fun generic_extend _ _ _ tab [] = tab
wenzelm@233
   898
  | generic_extend eq dest_tab mk_tab tab1 lst2 =
wenzelm@233
   899
      let
wenzelm@233
   900
        val lst1 = dest_tab tab1;
wenzelm@233
   901
        val new_lst2 = gen_rems eq (lst2, lst1);
wenzelm@233
   902
      in
wenzelm@233
   903
        if null new_lst2 then tab1
wenzelm@233
   904
        else mk_tab (lst1 @ new_lst2)
wenzelm@233
   905
      end;
clasohm@0
   906
wenzelm@233
   907
(*append (new) elements of 2nd table to 1st table*)
wenzelm@233
   908
fun generic_merge eq dest_tab mk_tab tab1 tab2 =
wenzelm@233
   909
  let
wenzelm@233
   910
    val lst1 = dest_tab tab1;
wenzelm@233
   911
    val lst2 = dest_tab tab2;
wenzelm@233
   912
    val new_lst2 = gen_rems eq (lst2, lst1);
wenzelm@233
   913
  in
wenzelm@233
   914
    if null new_lst2 then tab1
wenzelm@233
   915
    else if gen_subset eq (lst1, lst2) then tab2
wenzelm@233
   916
    else mk_tab (lst1 @ new_lst2)
wenzelm@233
   917
  end;
clasohm@0
   918
wenzelm@233
   919
wenzelm@233
   920
(*lists as tables*)
paulson@2243
   921
fun extend_list tab = generic_extend (op =) I I tab;
paulson@2243
   922
fun merge_lists tab = generic_merge (op =) I I tab;
wenzelm@4692
   923
fun merge_alists tab = generic_merge eq_fst I I tab;
wenzelm@233
   924
wenzelm@380
   925
fun merge_rev_lists xs [] = xs
wenzelm@380
   926
  | merge_rev_lists [] ys = ys
wenzelm@380
   927
  | merge_rev_lists xs (y :: ys) =
wenzelm@380
   928
      (if y mem xs then I else cons y) (merge_rev_lists xs ys);
wenzelm@380
   929
clasohm@0
   930
clasohm@0
   931
wenzelm@233
   932
(** balanced trees **)
wenzelm@233
   933
wenzelm@233
   934
exception Balance;      (*indicates non-positive argument to balancing fun*)
wenzelm@233
   935
wenzelm@233
   936
(*balanced folding; avoids deep nesting*)
wenzelm@233
   937
fun fold_bal f [x] = x
wenzelm@233
   938
  | fold_bal f [] = raise Balance
wenzelm@233
   939
  | fold_bal f xs =
wenzelm@233
   940
      let val k = length xs div 2
wenzelm@233
   941
      in  f (fold_bal f (take(k, xs)),
wenzelm@233
   942
             fold_bal f (drop(k, xs)))
wenzelm@233
   943
      end;
wenzelm@233
   944
wenzelm@233
   945
(*construct something of the form f(...g(...(x)...)) for balanced access*)
wenzelm@233
   946
fun access_bal (f, g, x) n i =
wenzelm@233
   947
  let fun acc n i =     (*1<=i<=n*)
wenzelm@233
   948
          if n=1 then x else
wenzelm@233
   949
          let val n2 = n div 2
wenzelm@233
   950
          in  if i<=n2 then f (acc n2 i)
wenzelm@233
   951
                       else g (acc (n-n2) (i-n2))
wenzelm@233
   952
          end
wenzelm@233
   953
  in  if 1<=i andalso i<=n then acc n i else raise Balance  end;
wenzelm@233
   954
wenzelm@233
   955
(*construct ALL such accesses; could try harder to share recursive calls!*)
wenzelm@233
   956
fun accesses_bal (f, g, x) n =
wenzelm@233
   957
  let fun acc n =
wenzelm@233
   958
          if n=1 then [x] else
wenzelm@233
   959
          let val n2 = n div 2
wenzelm@233
   960
              val acc2 = acc n2
wenzelm@233
   961
          in  if n-n2=n2 then map f acc2 @ map g acc2
wenzelm@233
   962
                         else map f acc2 @ map g (acc (n-n2)) end
wenzelm@233
   963
  in  if 1<=n then acc n else raise Balance  end;
wenzelm@233
   964
wenzelm@233
   965
wenzelm@233
   966
wenzelm@2506
   967
(** orders **)
wenzelm@2506
   968
wenzelm@2506
   969
datatype order = LESS | EQUAL | GREATER;
wenzelm@2506
   970
wenzelm@4445
   971
fun rev_order LESS = GREATER
wenzelm@4445
   972
  | rev_order EQUAL = EQUAL
wenzelm@4445
   973
  | rev_order GREATER = LESS;
wenzelm@4445
   974
wenzelm@4479
   975
(*assume rel is a linear strict order*)
wenzelm@4445
   976
fun make_ord rel (x, y) =
wenzelm@4445
   977
  if rel (x, y) then LESS
wenzelm@4445
   978
  else if rel (y, x) then GREATER
wenzelm@4445
   979
  else EQUAL;
wenzelm@4445
   980
wenzelm@4343
   981
fun int_ord (i, j: int) =
wenzelm@2506
   982
  if i < j then LESS
wenzelm@2506
   983
  else if i = j then EQUAL
wenzelm@2506
   984
  else GREATER;
wenzelm@2506
   985
wenzelm@4343
   986
fun string_ord (a, b: string) =
wenzelm@2506
   987
  if a < b then LESS
wenzelm@2506
   988
  else if a = b then EQUAL
wenzelm@2506
   989
  else GREATER;
wenzelm@2506
   990
wenzelm@4343
   991
(*lexicographic product*)
wenzelm@4343
   992
fun prod_ord a_ord b_ord ((x, y), (x', y')) =
wenzelm@4343
   993
  (case a_ord (x, x') of EQUAL => b_ord (y, y') | ord => ord);
wenzelm@4343
   994
wenzelm@4343
   995
(*dictionary order -- in general NOT well-founded!*)
wenzelm@4343
   996
fun dict_ord _ ([], []) = EQUAL
wenzelm@4343
   997
  | dict_ord _ ([], _ :: _) = LESS
wenzelm@4343
   998
  | dict_ord _ (_ :: _, []) = GREATER
wenzelm@4343
   999
  | dict_ord elem_ord (x :: xs, y :: ys) =
wenzelm@4343
  1000
      (case elem_ord (x, y) of EQUAL => dict_ord elem_ord (xs, ys) | ord => ord);
wenzelm@4343
  1001
wenzelm@4343
  1002
(*lexicographic product of lists*)
wenzelm@4343
  1003
fun list_ord elem_ord (xs, ys) =
wenzelm@4343
  1004
  prod_ord int_ord (dict_ord elem_ord) ((length xs, xs), (length ys, ys));
wenzelm@4343
  1005
wenzelm@2506
  1006
wenzelm@4621
  1007
(* sorting *)
wenzelm@4621
  1008
wenzelm@4621
  1009
(*quicksort (stable, i.e. does not reorder equal elements)*)
wenzelm@4621
  1010
fun sort ord =
wenzelm@4621
  1011
  let
wenzelm@4621
  1012
    fun qsort xs =
wenzelm@4621
  1013
      let val len = length xs in
wenzelm@4621
  1014
        if len <= 1 then xs
wenzelm@4621
  1015
        else
wenzelm@4621
  1016
          let val (lts, eqs, gts) = part (nth_elem (len div 2, xs)) xs in
wenzelm@4621
  1017
            qsort lts @ eqs @ qsort gts
wenzelm@4621
  1018
          end
wenzelm@4621
  1019
      end
wenzelm@4621
  1020
    and part _ [] = ([], [], [])
wenzelm@4621
  1021
      | part pivot (x :: xs) = add (ord (x, pivot)) x (part pivot xs)
wenzelm@4621
  1022
    and add LESS x (lts, eqs, gts) = (x :: lts, eqs, gts)
wenzelm@4621
  1023
      | add EQUAL x (lts, eqs, gts) = (lts, x :: eqs, gts)
wenzelm@4621
  1024
      | add GREATER x (lts, eqs, gts) = (lts, eqs, x :: gts);
wenzelm@4621
  1025
  in qsort end;
wenzelm@4621
  1026
wenzelm@4621
  1027
(*sort strings*)
wenzelm@4621
  1028
val sort_strings = sort string_ord;
wenzelm@4621
  1029
fun sort_wrt sel xs = sort (string_ord o pairself sel) xs;
wenzelm@4621
  1030
wenzelm@4621
  1031
wenzelm@2506
  1032
wenzelm@3525
  1033
(** input / output and diagnostics **)
wenzelm@233
  1034
paulson@2243
  1035
val cd = OS.FileSys.chDir;
wenzelm@2317
  1036
val pwd = OS.FileSys.getDir;
paulson@2243
  1037
wenzelm@3525
  1038
wenzelm@3525
  1039
local
wenzelm@3525
  1040
  fun out s =
wenzelm@3525
  1041
    (TextIO.output (TextIO.stdOut, s); TextIO.flushOut TextIO.stdOut);
wenzelm@3525
  1042
wenzelm@3525
  1043
  fun prefix_lines prfx txt =
wenzelm@3832
  1044
    txt |> split_lines |> map (fn s => prfx ^ s ^ "\n") |> implode;
wenzelm@3525
  1045
in
wenzelm@3525
  1046
wenzelm@3525
  1047
(*hooks for output channels: normal, warning, error*)
wenzelm@3525
  1048
val prs_fn = ref (fn s => out s);
wenzelm@3525
  1049
val warning_fn = ref (fn s => out (prefix_lines "### " s));
wenzelm@3525
  1050
val error_fn = ref (fn s => out (prefix_lines "*** " s));
wenzelm@3525
  1051
wenzelm@3525
  1052
end;
berghofe@1580
  1053
berghofe@1580
  1054
fun prs s = !prs_fn s;
wenzelm@233
  1055
fun writeln s = prs (s ^ "\n");
wenzelm@233
  1056
wenzelm@3525
  1057
fun warning s = !warning_fn s;
wenzelm@233
  1058
wenzelm@233
  1059
(*print error message and abort to top level*)
wenzelm@233
  1060
exception ERROR;
wenzelm@5037
  1061
fun error_msg s = !error_fn s;
wenzelm@3553
  1062
fun error s = (error_msg s; raise ERROR);
wenzelm@4849
  1063
fun sys_error msg = error ("## SYSTEM ERROR ##\n" ^ msg);
wenzelm@233
  1064
wenzelm@233
  1065
fun assert p msg = if p then () else error msg;
wenzelm@233
  1066
fun deny p msg = if p then error msg else ();
wenzelm@233
  1067
lcp@544
  1068
(*Assert pred for every member of l, generating a message if pred fails*)
wenzelm@4212
  1069
fun assert_all pred l msg_fn =
lcp@544
  1070
  let fun asl [] = ()
wenzelm@4212
  1071
        | asl (x::xs) = if pred x then asl xs else error (msg_fn x)
wenzelm@4212
  1072
  in asl l end;
wenzelm@233
  1073
wenzelm@3624
  1074
wenzelm@4212
  1075
(* handle errors capturing messages *)
wenzelm@3699
  1076
wenzelm@3699
  1077
datatype 'a error =
wenzelm@3699
  1078
  Error of string |
wenzelm@3699
  1079
  OK of 'a;
wenzelm@3699
  1080
wenzelm@4248
  1081
fun get_error (Error msg) = Some msg
wenzelm@4248
  1082
  | get_error _ = None;
wenzelm@4248
  1083
wenzelm@4248
  1084
fun get_ok (OK x) = Some x
wenzelm@4248
  1085
  | get_ok _ = None;
wenzelm@4248
  1086
wenzelm@5037
  1087
datatype 'a result =
wenzelm@5037
  1088
  Result of 'a |
wenzelm@5037
  1089
  Exn of exn;
wenzelm@5037
  1090
wenzelm@3699
  1091
fun handle_error f x =
wenzelm@3699
  1092
  let
wenzelm@4945
  1093
    val buffer = ref ([]: string list);
wenzelm@4945
  1094
    fun capture s = buffer := ! buffer @ [s];
wenzelm@5037
  1095
    fun err_msg () = if not (null (! buffer)) then error_msg (cat_lines (! buffer)) else ();
wenzelm@3699
  1096
  in
wenzelm@5037
  1097
    (case Result (setmp error_fn capture f x) handle exn => Exn exn of
wenzelm@5037
  1098
      Result y => (err_msg (); OK y)
wenzelm@5037
  1099
    | Exn ERROR => Error (cat_lines (! buffer))
wenzelm@5037
  1100
    | Exn exn => (err_msg (); raise exn))
wenzelm@3624
  1101
  end;
wenzelm@3624
  1102
wenzelm@3624
  1103
wenzelm@5037
  1104
(* transform ERROR into ERROR_MESSAGE *)
wenzelm@4923
  1105
wenzelm@4923
  1106
exception ERROR_MESSAGE of string;
wenzelm@4923
  1107
wenzelm@4923
  1108
fun transform_error f x =
wenzelm@4923
  1109
  (case handle_error f x of
wenzelm@4923
  1110
    OK y => y
wenzelm@4923
  1111
  | Error msg => raise ERROR_MESSAGE msg);
wenzelm@4923
  1112
wenzelm@4923
  1113
wenzelm@233
  1114
wenzelm@233
  1115
(** timing **)
wenzelm@233
  1116
paulson@4326
  1117
(*a conditional timing function: applies f to () and, if the flag is true,
paulson@4326
  1118
  prints its runtime*)
paulson@4326
  1119
fun cond_timeit flag f =
paulson@4326
  1120
  if flag then
paulson@4326
  1121
    let val start = startTiming()
paulson@4326
  1122
        val result = f ()
paulson@4326
  1123
    in
paulson@4326
  1124
	writeln (endTiming start);  result
paulson@4326
  1125
    end
paulson@4326
  1126
  else f ();
paulson@4326
  1127
wenzelm@233
  1128
(*unconditional timing function*)
paulson@2243
  1129
fun timeit x = cond_timeit true x;
wenzelm@233
  1130
wenzelm@233
  1131
(*timed application function*)
wenzelm@233
  1132
fun timeap f x = timeit (fn () => f x);
wenzelm@233
  1133
berghofe@3606
  1134
wenzelm@233
  1135
wenzelm@4621
  1136
(** misc **)
wenzelm@233
  1137
wenzelm@233
  1138
(*use the keyfun to make a list of (x, key) pairs*)
clasohm@0
  1139
fun make_keylist (keyfun: 'a->'b) : 'a list -> ('a * 'b) list =
wenzelm@233
  1140
  let fun keypair x = (x, keyfun x)
wenzelm@233
  1141
  in map keypair end;
clasohm@0
  1142
wenzelm@233
  1143
(*given a list of (x, key) pairs and a searchkey
clasohm@0
  1144
  return the list of xs from each pair whose key equals searchkey*)
clasohm@0
  1145
fun keyfilter [] searchkey = []
wenzelm@233
  1146
  | keyfilter ((x, key) :: pairs) searchkey =
wenzelm@233
  1147
      if key = searchkey then x :: keyfilter pairs searchkey
wenzelm@233
  1148
      else keyfilter pairs searchkey;
clasohm@0
  1149
clasohm@0
  1150
clasohm@0
  1151
(*Partition list into elements that satisfy predicate and those that don't.
wenzelm@233
  1152
  Preserves order of elements in both lists.*)
clasohm@0
  1153
fun partition (pred: 'a->bool) (ys: 'a list) : ('a list * 'a list) =
clasohm@0
  1154
    let fun part ([], answer) = answer
wenzelm@233
  1155
          | part (x::xs, (ys, ns)) = if pred(x)
wenzelm@233
  1156
            then  part (xs, (x::ys, ns))
wenzelm@233
  1157
            else  part (xs, (ys, x::ns))
wenzelm@233
  1158
    in  part (rev ys, ([], []))  end;
clasohm@0
  1159
clasohm@0
  1160
clasohm@0
  1161
fun partition_eq (eq:'a * 'a -> bool) =
clasohm@0
  1162
    let fun part [] = []
wenzelm@233
  1163
          | part (x::ys) = let val (xs, xs') = partition (apl(x, eq)) ys
wenzelm@233
  1164
                           in (x::xs)::(part xs') end
clasohm@0
  1165
    in part end;
clasohm@0
  1166
clasohm@0
  1167
wenzelm@233
  1168
(*Partition a list into buckets  [ bi, b(i+1), ..., bj ]
clasohm@0
  1169
   putting x in bk if p(k)(x) holds.  Preserve order of elements if possible.*)
clasohm@0
  1170
fun partition_list p i j =
wenzelm@233
  1171
  let fun part k xs =
wenzelm@233
  1172
            if k>j then
clasohm@0
  1173
              (case xs of [] => []
clasohm@0
  1174
                         | _ => raise LIST "partition_list")
clasohm@0
  1175
            else
wenzelm@233
  1176
            let val (ns, rest) = partition (p k) xs;
wenzelm@233
  1177
            in  ns :: part(k+1)rest  end
clasohm@0
  1178
  in  part i end;
clasohm@0
  1179
clasohm@0
  1180
wenzelm@233
  1181
(* transitive closure (not Warshall's algorithm) *)
clasohm@0
  1182
wenzelm@233
  1183
fun transitive_closure [] = []
wenzelm@233
  1184
  | transitive_closure ((x, ys)::ps) =
wenzelm@233
  1185
      let val qs = transitive_closure ps
paulson@2182
  1186
          val zs = foldl (fn (zs, y) => assocs qs y union_string zs) (ys, ys)
paulson@2182
  1187
          fun step(u, us) = (u, if x mem_string us then zs union_string us 
paulson@2243
  1188
                                else us)
wenzelm@233
  1189
      in (x, zs) :: map step qs end;
clasohm@0
  1190
clasohm@0
  1191
wenzelm@233
  1192
(* generating identifiers *)
clasohm@0
  1193
paulson@4063
  1194
(** Freshly generated identifiers; supplied prefix MUST start with a letter **)
clasohm@0
  1195
local
paulson@4063
  1196
(*Maps 0-63 to A-Z, a-z, 0-9 or _ or ' for generating random identifiers*)
paulson@4063
  1197
fun char i =      if i<26 then chr (ord "A" + i)
paulson@4063
  1198
	     else if i<52 then chr (ord "a" + i - 26)
paulson@4063
  1199
	     else if i<62 then chr (ord"0" + i - 52)
paulson@4063
  1200
	     else if i=62 then "_"
paulson@4063
  1201
	     else  (*i=63*)    "'";
paulson@4063
  1202
paulson@4063
  1203
val charVec = Vector.tabulate (64, char);
paulson@4063
  1204
paulson@4063
  1205
fun newid n = 
paulson@4063
  1206
  let 
wenzelm@4284
  1207
  in  implode (map (fn i => Vector.sub(charVec,i)) (radixpand (64,n)))  end;
paulson@2003
  1208
wenzelm@4284
  1209
val seedr = ref 0;
clasohm@0
  1210
paulson@4063
  1211
in
wenzelm@4284
  1212
paulson@4063
  1213
fun init_gensym() = (seedr := 0);
paulson@2003
  1214
wenzelm@4284
  1215
fun gensym pre = pre ^ (#1(newid (!seedr), inc seedr));
paulson@4063
  1216
end;
paulson@4063
  1217
paulson@4063
  1218
paulson@4063
  1219
local
paulson@4063
  1220
(*Identifies those character codes legal in identifiers.
paulson@4063
  1221
  chould use Basis Library character functions if Poly/ML provided characters*)
paulson@4063
  1222
fun idCode k = (ord "a" <= k andalso k < ord "z") orelse 
paulson@4063
  1223
               (ord "A" <= k andalso k < ord "Z") orelse
paulson@4063
  1224
               (ord "0" <= k andalso k < ord "9");
paulson@4063
  1225
paulson@4063
  1226
val idCodeVec = Vector.tabulate (256, idCode);
paulson@4063
  1227
paulson@4063
  1228
in
paulson@2003
  1229
clasohm@0
  1230
(*Increment a list of letters like a reversed base 26 number.
wenzelm@233
  1231
  If head is "z", bumps chars in tail.
clasohm@0
  1232
  Digits are incremented as if they were integers.
clasohm@0
  1233
  "_" and "'" are not changed.
wenzelm@233
  1234
  For making variants of identifiers.*)
clasohm@0
  1235
paulson@4063
  1236
fun bump_int_list(c::cs) = 
paulson@4063
  1237
	if c="9" then "0" :: bump_int_list cs 
paulson@4063
  1238
	else
paulson@4063
  1239
        if "0" <= c andalso c < "9" then chr(ord(c)+1) :: cs
wenzelm@233
  1240
        else "1" :: c :: cs
clasohm@0
  1241
  | bump_int_list([]) = error("bump_int_list: not an identifier");
clasohm@0
  1242
wenzelm@233
  1243
fun bump_list([], d) = [d]
wenzelm@233
  1244
  | bump_list(["'"], d) = [d, "'"]
wenzelm@233
  1245
  | bump_list("z"::cs, _) = "a" :: bump_list(cs, "a")
wenzelm@233
  1246
  | bump_list("Z"::cs, _) = "A" :: bump_list(cs, "A")
wenzelm@233
  1247
  | bump_list("9"::cs, _) = "0" :: bump_int_list cs
paulson@4063
  1248
  | bump_list(c::cs, _) = 
paulson@4063
  1249
        let val k = ord(c)
paulson@4063
  1250
        in if Vector.sub(idCodeVec,k) then chr(k+1) :: cs 
paulson@4063
  1251
	   else
paulson@4063
  1252
           if c="'" orelse c="_" then c :: bump_list(cs, "") 
paulson@4063
  1253
	   else error("bump_list: not legal in identifier: " ^
paulson@4063
  1254
		      implode(rev(c::cs)))
wenzelm@233
  1255
        end;
clasohm@0
  1256
clasohm@0
  1257
end;
clasohm@0
  1258
wenzelm@233
  1259
fun bump_string s : string = implode (rev (bump_list(rev(explode s), "")));
wenzelm@41
  1260
wenzelm@41
  1261
wenzelm@233
  1262
(* lexical scanning *)
clasohm@0
  1263
wenzelm@233
  1264
(*scan a list of characters into "words" composed of "letters" (recognized by
wenzelm@233
  1265
  is_let) and separated by any number of non-"letters"*)
wenzelm@233
  1266
fun scanwords is_let cs =
clasohm@0
  1267
  let fun scan1 [] = []
wenzelm@233
  1268
        | scan1 cs =
wenzelm@233
  1269
            let val (lets, rest) = take_prefix is_let cs
wenzelm@233
  1270
            in implode lets :: scanwords is_let rest end;
wenzelm@233
  1271
  in scan1 (#2 (take_prefix (not o is_let) cs)) end;
clasohm@24
  1272
wenzelm@4212
  1273
wenzelm@4212
  1274
wenzelm@4212
  1275
(* Variable-branching trees: for proof terms etc. *)
wenzelm@4212
  1276
datatype 'a mtree = Join of 'a * 'a mtree list;
wenzelm@4212
  1277
wenzelm@4212
  1278
clasohm@1364
  1279
end;
clasohm@1364
  1280
clasohm@1364
  1281
open Library;