author | wenzelm |
Mon, 10 Feb 2014 17:23:13 +0100 | |
changeset 55381 | ca31f042414f |
parent 51717 | 9e7d1c139569 |
child 62175 | 8ffc4d0e652d |
permissions | -rw-r--r-- |
2570 | 1 |
(* Specification of the following loop back device |
2 |
||
3 |
||
17291 | 4 |
g |
2570 | 5 |
-------------------- |
6 |
| ------- | |
|
7 |
x | | | | y |
|
17291 | 8 |
------|---->| |------| -----> |
2570 | 9 |
| z | f | z | |
10 |
| -->| |--- | |
|
11 |
| | | | | | |
|
12 |
| | ------- | | |
|
13 |
| | | | |
|
14 |
| <-------------- | |
|
17291 | 15 |
| | |
2570 | 16 |
-------------------- |
17 |
||
18 |
||
19 |
First step: Notation in Agent Network Description Language (ANDL) |
|
20 |
----------------------------------------------------------------- |
|
21 |
||
22 |
agent f |
|
17291 | 23 |
input channel i1:'b i2: ('b,'c) tc |
24 |
output channel o1:'c o2: ('b,'c) tc |
|
2570 | 25 |
is |
17291 | 26 |
Rf(i1,i2,o1,o2) (left open in the example) |
2570 | 27 |
end f |
28 |
||
29 |
agent g |
|
17291 | 30 |
input channel x:'b |
31 |
output channel y:'c |
|
2570 | 32 |
is network |
35916 | 33 |
(y,z) = f$(x,z) |
2570 | 34 |
end network |
35 |
end g |
|
36 |
||
37 |
||
38 |
Remark: the type of the feedback depends at most on the types of the input and |
|
39 |
output of g. (No type miracles inside g) |
|
40 |
||
41 |
Second step: Translation of ANDL specification to HOLCF Specification |
|
42 |
--------------------------------------------------------------------- |
|
43 |
||
44 |
Specification of agent f ist translated to predicate is_f |
|
45 |
||
17291 | 46 |
is_f :: ('b stream * ('b,'c) tc stream -> |
47 |
'c stream * ('b,'c) tc stream) => bool |
|
2570 | 48 |
|
17291 | 49 |
is_f f = !i1 i2 o1 o2. |
35916 | 50 |
f$(i1,i2) = (o1,o2) --> Rf(i1,i2,o1,o2) |
2570 | 51 |
|
52 |
Specification of agent g is translated to predicate is_g which uses |
|
53 |
predicate is_net_g |
|
54 |
||
55 |
is_net_g :: ('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) => |
|
17291 | 56 |
'b stream => 'c stream => bool |
2570 | 57 |
|
17291 | 58 |
is_net_g f x y = |
35916 | 59 |
? z. (y,z) = f$(x,z) & |
60 |
!oy hz. (oy,hz) = f$(x,hz) --> z << hz |
|
2570 | 61 |
|
62 |
||
63 |
is_g :: ('b stream -> 'c stream) => bool |
|
64 |
||
10835 | 65 |
is_g g = ? f. is_f f & (!x y. g$x = y --> is_net_g f x y |
17291 | 66 |
|
2570 | 67 |
Third step: (show conservativity) |
68 |
----------- |
|
69 |
||
70 |
Suppose we have a model for the theory TH1 which contains the axiom |
|
71 |
||
17291 | 72 |
? f. is_f f |
2570 | 73 |
|
74 |
In this case there is also a model for the theory TH2 that enriches TH1 by |
|
75 |
axiom |
|
76 |
||
17291 | 77 |
? g. is_g g |
2570 | 78 |
|
79 |
The result is proved by showing that there is a definitional extension |
|
80 |
that extends TH1 by a definition of g. |
|
81 |
||
82 |
||
83 |
We define: |
|
84 |
||
17291 | 85 |
def_g g = |
86 |
(? f. is_f f & |
|
35916 | 87 |
g = (LAM x. fst (f$(x,fix$(LAM k. snd (f$(x,k)))))) ) |
17291 | 88 |
|
2570 | 89 |
Now we prove: |
90 |
||
17291 | 91 |
(? f. is_f f ) --> (? g. is_g g) |
2570 | 92 |
|
93 |
using the theorems |
|
94 |
||
17291 | 95 |
loopback_eq) def_g = is_g (real work) |
2570 | 96 |
|
17291 | 97 |
L1) (? f. is_f f ) --> (? g. def_g g) (trivial) |
2570 | 98 |
|
99 |
*) |
|
100 |
||
17291 | 101 |
theory Focus_ex |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
40774
diff
changeset
|
102 |
imports "~~/src/HOL/HOLCF/Library/Stream" |
17291 | 103 |
begin |
2570 | 104 |
|
17291 | 105 |
typedecl ('a, 'b) tc |
55381 | 106 |
axiomatization where tc_arity: "OFCLASS(('a::pcpo, 'b::pcpo) tc, pcop_class)" |
107 |
instance tc :: (pcpo, pcpo) pcpo by (rule tc_arity) |
|
2570 | 108 |
|
25135
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
21404
diff
changeset
|
109 |
axiomatization |
19763 | 110 |
Rf :: "('b stream * ('b,'c) tc stream * 'c stream * ('b,'c) tc stream) => bool" |
2570 | 111 |
|
19763 | 112 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19763
diff
changeset
|
113 |
is_f :: "('b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) => bool" where |
35916 | 114 |
"is_f f = (!i1 i2 o1 o2. f$(i1,i2) = (o1,o2) --> Rf(i1,i2,o1,o2))" |
2570 | 115 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19763
diff
changeset
|
116 |
definition |
19763 | 117 |
is_net_g :: "('b stream *('b,'c) tc stream -> 'c stream * ('b,'c) tc stream) => |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19763
diff
changeset
|
118 |
'b stream => 'c stream => bool" where |
19763 | 119 |
"is_net_g f x y == (? z. |
35916 | 120 |
(y,z) = f$(x,z) & |
121 |
(!oy hz. (oy,hz) = f$(x,hz) --> z << hz))" |
|
2570 | 122 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19763
diff
changeset
|
123 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19763
diff
changeset
|
124 |
is_g :: "('b stream -> 'c stream) => bool" where |
19763 | 125 |
"is_g g == (? f. is_f f & (!x y. g$x = y --> is_net_g f x y))" |
2570 | 126 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19763
diff
changeset
|
127 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19763
diff
changeset
|
128 |
def_g :: "('b stream -> 'c stream) => bool" where |
35916 | 129 |
"def_g g == (? f. is_f f & g = (LAM x. fst (f$(x,fix$(LAM k. snd (f$(x,k)))))))" |
17291 | 130 |
|
19742 | 131 |
|
132 |
(* first some logical trading *) |
|
133 |
||
134 |
lemma lemma1: |
|
135 |
"is_g(g) = |
|
35916 | 136 |
(? f. is_f(f) & (!x.(? z. (g$x,z) = f$(x,z) & |
137 |
(! w y. (y,w) = f$(x,w) --> z << w))))" |
|
19763 | 138 |
apply (simp add: is_g_def is_net_g_def) |
19742 | 139 |
apply fast |
140 |
done |
|
141 |
||
142 |
lemma lemma2: |
|
35916 | 143 |
"(? f. is_f(f) & (!x. (? z. (g$x,z) = f$(x,z) & |
144 |
(!w y. (y,w) = f$(x,w) --> z << w)))) |
|
19742 | 145 |
= |
146 |
(? f. is_f(f) & (!x. ? z. |
|
35916 | 147 |
g$x = fst (f$(x,z)) & |
148 |
z = snd (f$(x,z)) & |
|
149 |
(! w y. (y,w) = f$(x,w) --> z << w)))" |
|
19742 | 150 |
apply (rule iffI) |
151 |
apply (erule exE) |
|
152 |
apply (rule_tac x = "f" in exI) |
|
153 |
apply (erule conjE)+ |
|
154 |
apply (erule conjI) |
|
155 |
apply (intro strip) |
|
156 |
apply (erule allE) |
|
157 |
apply (erule exE) |
|
158 |
apply (rule_tac x = "z" in exI) |
|
159 |
apply (erule conjE)+ |
|
160 |
apply (rule conjI) |
|
161 |
apply (rule_tac [2] conjI) |
|
162 |
prefer 3 apply (assumption) |
|
163 |
apply (drule sym) |
|
40028 | 164 |
apply (simp) |
19742 | 165 |
apply (drule sym) |
40028 | 166 |
apply (simp) |
19742 | 167 |
apply (erule exE) |
168 |
apply (rule_tac x = "f" in exI) |
|
169 |
apply (erule conjE)+ |
|
170 |
apply (erule conjI) |
|
171 |
apply (intro strip) |
|
172 |
apply (erule allE) |
|
173 |
apply (erule exE) |
|
174 |
apply (rule_tac x = "z" in exI) |
|
175 |
apply (erule conjE)+ |
|
176 |
apply (rule conjI) |
|
177 |
prefer 2 apply (assumption) |
|
35916 | 178 |
apply (rule prod_eqI) |
179 |
apply simp |
|
180 |
apply simp |
|
19742 | 181 |
done |
182 |
||
183 |
lemma lemma3: "def_g(g) --> is_g(g)" |
|
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
41413
diff
changeset
|
184 |
apply (tactic {* simp_tac (put_simpset HOL_ss @{context} |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
41413
diff
changeset
|
185 |
addsimps [@{thm def_g_def}, @{thm lemma1}, @{thm lemma2}]) 1 *}) |
19742 | 186 |
apply (rule impI) |
187 |
apply (erule exE) |
|
188 |
apply (rule_tac x = "f" in exI) |
|
189 |
apply (erule conjE)+ |
|
190 |
apply (erule conjI) |
|
191 |
apply (intro strip) |
|
35916 | 192 |
apply (rule_tac x = "fix$ (LAM k. snd (f$(x,k)))" in exI) |
19742 | 193 |
apply (rule conjI) |
40028 | 194 |
apply (simp) |
35916 | 195 |
apply (rule prod_eqI, simp, simp) |
19742 | 196 |
apply (rule trans) |
197 |
apply (rule fix_eq) |
|
198 |
apply (simp (no_asm)) |
|
199 |
apply (intro strip) |
|
200 |
apply (rule fix_least) |
|
201 |
apply (simp (no_asm)) |
|
202 |
apply (erule exE) |
|
203 |
apply (drule sym) |
|
204 |
back |
|
205 |
apply simp |
|
206 |
done |
|
207 |
||
208 |
lemma lemma4: "is_g(g) --> def_g(g)" |
|
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
41413
diff
changeset
|
209 |
apply (tactic {* simp_tac (put_simpset HOL_ss @{context} |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
41413
diff
changeset
|
210 |
delsimps (@{thms HOL.ex_simps} @ @{thms HOL.all_simps}) |
39159 | 211 |
addsimps [@{thm lemma1}, @{thm lemma2}, @{thm def_g_def}]) 1 *}) |
19742 | 212 |
apply (rule impI) |
213 |
apply (erule exE) |
|
214 |
apply (rule_tac x = "f" in exI) |
|
215 |
apply (erule conjE)+ |
|
216 |
apply (erule conjI) |
|
40002
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
huffman
parents:
39159
diff
changeset
|
217 |
apply (rule cfun_eqI) |
19742 | 218 |
apply (erule_tac x = "x" in allE) |
219 |
apply (erule exE) |
|
220 |
apply (erule conjE)+ |
|
35916 | 221 |
apply (subgoal_tac "fix$ (LAM k. snd (f$(x, k))) = z") |
19742 | 222 |
apply simp |
35916 | 223 |
apply (subgoal_tac "! w y. f$(x, w) = (y, w) --> z << w") |
19742 | 224 |
apply (rule fix_eqI) |
225 |
apply simp |
|
35916 | 226 |
apply (subgoal_tac "f$(x, za) = (fst (f$(x,za)) ,za)") |
19742 | 227 |
apply fast |
35916 | 228 |
apply (rule prod_eqI, simp, simp) |
19742 | 229 |
apply (intro strip) |
230 |
apply (erule allE)+ |
|
231 |
apply (erule mp) |
|
232 |
apply (erule sym) |
|
233 |
done |
|
234 |
||
235 |
(* now we assemble the result *) |
|
236 |
||
237 |
lemma loopback_eq: "def_g = is_g" |
|
238 |
apply (rule ext) |
|
239 |
apply (rule iffI) |
|
240 |
apply (erule lemma3 [THEN mp]) |
|
241 |
apply (erule lemma4 [THEN mp]) |
|
242 |
done |
|
243 |
||
244 |
lemma L2: |
|
245 |
"(? f. |
|
246 |
is_f(f::'b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream)) |
|
247 |
--> |
|
248 |
(? g. def_g(g::'b stream -> 'c stream ))" |
|
19763 | 249 |
apply (simp add: def_g_def) |
19742 | 250 |
done |
251 |
||
252 |
theorem conservative_loopback: |
|
253 |
"(? f. |
|
254 |
is_f(f::'b stream * ('b,'c) tc stream -> 'c stream * ('b,'c) tc stream)) |
|
255 |
--> |
|
256 |
(? g. is_g(g::'b stream -> 'c stream ))" |
|
257 |
apply (rule loopback_eq [THEN subst]) |
|
258 |
apply (rule L2) |
|
259 |
done |
|
2570 | 260 |
|
261 |
end |