author | haftmann |
Thu, 02 Sep 2010 09:13:28 +0200 | |
changeset 39016 | caad9d509bc4 |
parent 39014 | e820beaf7d8c |
parent 39015 | 81a70e2835b6 |
child 39033 | e8b68ec3bb9c |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/HOL.thy |
11750 | 2 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson |
3 |
*) |
|
923 | 4 |
|
11750 | 5 |
header {* The basis of Higher-Order Logic *} |
923 | 6 |
|
15131 | 7 |
theory HOL |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
8 |
imports Pure "~~/src/Tools/Code_Generator" |
23163 | 9 |
uses |
28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
28856
diff
changeset
|
10 |
("Tools/hologic.ML") |
23171 | 11 |
"~~/src/Tools/IsaPlanner/zipper.ML" |
12 |
"~~/src/Tools/IsaPlanner/isand.ML" |
|
13 |
"~~/src/Tools/IsaPlanner/rw_tools.ML" |
|
14 |
"~~/src/Tools/IsaPlanner/rw_inst.ML" |
|
30165
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
wenzelm
parents:
30160
diff
changeset
|
15 |
"~~/src/Tools/intuitionistic.ML" |
30160
5f7b17941730
moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
wenzelm
parents:
30063
diff
changeset
|
16 |
"~~/src/Tools/project_rule.ML" |
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
17 |
"~~/src/Tools/cong_tac.ML" |
37781
2fbbf0a48cef
moved misc legacy stuff from OldGoals to Misc_Legacy;
wenzelm
parents:
37767
diff
changeset
|
18 |
"~~/src/Tools/misc_legacy.ML" |
23263 | 19 |
"~~/src/Provers/hypsubst.ML" |
20 |
"~~/src/Provers/splitter.ML" |
|
23163 | 21 |
"~~/src/Provers/classical.ML" |
22 |
"~~/src/Provers/blast.ML" |
|
23 |
"~~/src/Provers/clasimp.ML" |
|
30160
5f7b17941730
moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
wenzelm
parents:
30063
diff
changeset
|
24 |
"~~/src/Tools/coherent.ML" |
5f7b17941730
moved some generic tools to src/Tools/ -- src/Provers is essentially obsolete;
wenzelm
parents:
30063
diff
changeset
|
25 |
"~~/src/Tools/eqsubst.ML" |
23163 | 26 |
"~~/src/Provers/quantifier1.ML" |
28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
28856
diff
changeset
|
27 |
("Tools/simpdata.ML") |
25741 | 28 |
"~~/src/Tools/random_word.ML" |
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
29 |
"~~/src/Tools/atomize_elim.ML" |
24901
d3cbf79769b9
added first version of user-space type system for class target
haftmann
parents:
24844
diff
changeset
|
30 |
"~~/src/Tools/induct.ML" |
27326
d3beec370964
moved src/HOL/Tools/induct_tacs.ML to src/Tools/induct_tacs.ML;
wenzelm
parents:
27212
diff
changeset
|
31 |
("~~/src/Tools/induct_tacs.ML") |
29505 | 32 |
("Tools/recfun_codegen.ML") |
38990 | 33 |
"Tools/async_manager.ML" |
38944 | 34 |
"Tools/try.ML" |
15131 | 35 |
begin |
2260 | 36 |
|
31299 | 37 |
setup {* Intuitionistic.method_setup @{binding iprover} *} |
33316 | 38 |
|
30165
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
wenzelm
parents:
30160
diff
changeset
|
39 |
|
11750 | 40 |
subsection {* Primitive logic *} |
41 |
||
42 |
subsubsection {* Core syntax *} |
|
2260 | 43 |
|
14854 | 44 |
classes type |
36452 | 45 |
default_sort type |
35625 | 46 |
setup {* Object_Logic.add_base_sort @{sort type} *} |
25460
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
47 |
|
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
48 |
arities |
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
49 |
"fun" :: (type, type) type |
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
50 |
itself :: (type) type |
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
51 |
|
7357 | 52 |
typedecl bool |
923 | 53 |
|
11750 | 54 |
judgment |
55 |
Trueprop :: "bool => prop" ("(_)" 5) |
|
923 | 56 |
|
11750 | 57 |
consts |
7357 | 58 |
True :: bool |
59 |
False :: bool |
|
38547 | 60 |
Not :: "bool => bool" ("~ _" [40] 40) |
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
61 |
|
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
62 |
conj :: "[bool, bool] => bool" (infixr "&" 35) |
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
63 |
disj :: "[bool, bool] => bool" (infixr "|" 30) |
38786
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
haftmann
parents:
38773
diff
changeset
|
64 |
implies :: "[bool, bool] => bool" (infixr "-->" 25) |
38555 | 65 |
|
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
66 |
eq :: "['a, 'a] => bool" (infixl "=" 50) |
38708
8915e3ce8655
discontinued obsolete 'global' and 'local' commands;
wenzelm
parents:
38669
diff
changeset
|
67 |
|
11432
8a203ae6efe3
added "The" (definite description operator) (by Larry);
wenzelm
parents:
10489
diff
changeset
|
68 |
The :: "('a => bool) => 'a" |
7357 | 69 |
All :: "('a => bool) => bool" (binder "ALL " 10) |
70 |
Ex :: "('a => bool) => bool" (binder "EX " 10) |
|
71 |
Ex1 :: "('a => bool) => bool" (binder "EX! " 10) |
|
923 | 72 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
73 |
|
11750 | 74 |
subsubsection {* Additional concrete syntax *} |
2260 | 75 |
|
21210 | 76 |
notation (output) |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
77 |
eq (infix "=" 50) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
78 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
79 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
80 |
not_equal :: "['a, 'a] => bool" (infixl "~=" 50) where |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
81 |
"x ~= y == ~ (x = y)" |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
82 |
|
21210 | 83 |
notation (output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
84 |
not_equal (infix "~=" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
85 |
|
21210 | 86 |
notation (xsymbols) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
87 |
Not ("\<not> _" [40] 40) and |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
88 |
conj (infixr "\<and>" 35) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
89 |
disj (infixr "\<or>" 30) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
90 |
implies (infixr "\<longrightarrow>" 25) and |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
91 |
not_equal (infix "\<noteq>" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
92 |
|
21210 | 93 |
notation (HTML output) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
94 |
Not ("\<not> _" [40] 40) and |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
95 |
conj (infixr "\<and>" 35) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
96 |
disj (infixr "\<or>" 30) and |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
97 |
not_equal (infix "\<noteq>" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
98 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
99 |
abbreviation (iff) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
100 |
iff :: "[bool, bool] => bool" (infixr "<->" 25) where |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
101 |
"A <-> B == A = B" |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
102 |
|
21210 | 103 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
104 |
iff (infixr "\<longleftrightarrow>" 25) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
105 |
|
4868 | 106 |
nonterminals |
923 | 107 |
letbinds letbind |
108 |
case_syn cases_syn |
|
109 |
||
110 |
syntax |
|
11432
8a203ae6efe3
added "The" (definite description operator) (by Larry);
wenzelm
parents:
10489
diff
changeset
|
111 |
"_The" :: "[pttrn, bool] => 'a" ("(3THE _./ _)" [0, 10] 10) |
923 | 112 |
|
7357 | 113 |
"_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10) |
114 |
"" :: "letbind => letbinds" ("_") |
|
115 |
"_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _") |
|
36363 | 116 |
"_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" [0, 10] 10) |
923 | 117 |
|
9060
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
wenzelm
parents:
8959
diff
changeset
|
118 |
"_case_syntax":: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10) |
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
wenzelm
parents:
8959
diff
changeset
|
119 |
"_case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10) |
7357 | 120 |
"" :: "case_syn => cases_syn" ("_") |
9060
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
wenzelm
parents:
8959
diff
changeset
|
121 |
"_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ | _") |
923 | 122 |
|
123 |
translations |
|
35115 | 124 |
"THE x. P" == "CONST The (%x. P)" |
923 | 125 |
|
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13723
diff
changeset
|
126 |
print_translation {* |
35115 | 127 |
[(@{const_syntax The}, fn [Abs abs] => |
128 |
let val (x, t) = atomic_abs_tr' abs |
|
129 |
in Syntax.const @{syntax_const "_The"} $ x $ t end)] |
|
130 |
*} -- {* To avoid eta-contraction of body *} |
|
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13723
diff
changeset
|
131 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
12023
diff
changeset
|
132 |
syntax (xsymbols) |
11687 | 133 |
"_case1" :: "['a, 'b] => case_syn" ("(2_ \<Rightarrow>/ _)" 10) |
21524 | 134 |
|
135 |
notation (xsymbols) |
|
136 |
All (binder "\<forall>" 10) and |
|
137 |
Ex (binder "\<exists>" 10) and |
|
138 |
Ex1 (binder "\<exists>!" 10) |
|
2372 | 139 |
|
21524 | 140 |
notation (HTML output) |
141 |
All (binder "\<forall>" 10) and |
|
142 |
Ex (binder "\<exists>" 10) and |
|
143 |
Ex1 (binder "\<exists>!" 10) |
|
6340 | 144 |
|
21524 | 145 |
notation (HOL) |
146 |
All (binder "! " 10) and |
|
147 |
Ex (binder "? " 10) and |
|
148 |
Ex1 (binder "?! " 10) |
|
7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset
|
149 |
|
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset
|
150 |
|
11750 | 151 |
subsubsection {* Axioms and basic definitions *} |
2260 | 152 |
|
7357 | 153 |
axioms |
15380 | 154 |
refl: "t = (t::'a)" |
28513 | 155 |
subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" |
15380 | 156 |
ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)" |
157 |
-- {*Extensionality is built into the meta-logic, and this rule expresses |
|
158 |
a related property. It is an eta-expanded version of the traditional |
|
159 |
rule, and similar to the ABS rule of HOL*} |
|
6289 | 160 |
|
11432
8a203ae6efe3
added "The" (definite description operator) (by Larry);
wenzelm
parents:
10489
diff
changeset
|
161 |
the_eq_trivial: "(THE x. x = a) = (a::'a)" |
923 | 162 |
|
15380 | 163 |
impI: "(P ==> Q) ==> P-->Q" |
164 |
mp: "[| P-->Q; P |] ==> Q" |
|
165 |
||
166 |
||
923 | 167 |
defs |
7357 | 168 |
True_def: "True == ((%x::bool. x) = (%x. x))" |
169 |
All_def: "All(P) == (P = (%x. True))" |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11438
diff
changeset
|
170 |
Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q" |
7357 | 171 |
False_def: "False == (!P. P)" |
172 |
not_def: "~ P == P-->False" |
|
173 |
and_def: "P & Q == !R. (P-->Q-->R) --> R" |
|
174 |
or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R" |
|
175 |
Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" |
|
923 | 176 |
|
7357 | 177 |
axioms |
178 |
iff: "(P-->Q) --> (Q-->P) --> (P=Q)" |
|
179 |
True_or_False: "(P=True) | (P=False)" |
|
923 | 180 |
|
14223
0ee05eef881b
Added support for making constants final, that is, ensuring that no
skalberg
parents:
14208
diff
changeset
|
181 |
finalconsts |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
182 |
eq |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
183 |
implies |
14223
0ee05eef881b
Added support for making constants final, that is, ensuring that no
skalberg
parents:
14208
diff
changeset
|
184 |
The |
22481
79c2724c36b5
added class "default" and expansion axioms for undefined
haftmann
parents:
22473
diff
changeset
|
185 |
|
38525 | 186 |
definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10) where |
187 |
"If P x y \<equiv> (THE z::'a. (P=True --> z=x) & (P=False --> z=y))" |
|
188 |
||
189 |
definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b" where |
|
190 |
"Let s f \<equiv> f s" |
|
191 |
||
192 |
translations |
|
193 |
"_Let (_binds b bs) e" == "_Let b (_Let bs e)" |
|
194 |
"let x = a in e" == "CONST Let a (%x. e)" |
|
195 |
||
22481
79c2724c36b5
added class "default" and expansion axioms for undefined
haftmann
parents:
22473
diff
changeset
|
196 |
axiomatization |
79c2724c36b5
added class "default" and expansion axioms for undefined
haftmann
parents:
22473
diff
changeset
|
197 |
undefined :: 'a |
79c2724c36b5
added class "default" and expansion axioms for undefined
haftmann
parents:
22473
diff
changeset
|
198 |
|
29608 | 199 |
class default = |
24901
d3cbf79769b9
added first version of user-space type system for class target
haftmann
parents:
24844
diff
changeset
|
200 |
fixes default :: 'a |
4868 | 201 |
|
11750 | 202 |
|
20944 | 203 |
subsection {* Fundamental rules *} |
204 |
||
20973 | 205 |
subsubsection {* Equality *} |
20944 | 206 |
|
18457 | 207 |
lemma sym: "s = t ==> t = s" |
208 |
by (erule subst) (rule refl) |
|
15411 | 209 |
|
18457 | 210 |
lemma ssubst: "t = s ==> P s ==> P t" |
211 |
by (drule sym) (erule subst) |
|
15411 | 212 |
|
213 |
lemma trans: "[| r=s; s=t |] ==> r=t" |
|
18457 | 214 |
by (erule subst) |
15411 | 215 |
|
20944 | 216 |
lemma meta_eq_to_obj_eq: |
217 |
assumes meq: "A == B" |
|
218 |
shows "A = B" |
|
219 |
by (unfold meq) (rule refl) |
|
15411 | 220 |
|
21502 | 221 |
text {* Useful with @{text erule} for proving equalities from known equalities. *} |
20944 | 222 |
(* a = b |
15411 | 223 |
| | |
224 |
c = d *) |
|
225 |
lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d" |
|
226 |
apply (rule trans) |
|
227 |
apply (rule trans) |
|
228 |
apply (rule sym) |
|
229 |
apply assumption+ |
|
230 |
done |
|
231 |
||
15524
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
232 |
text {* For calculational reasoning: *} |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
233 |
|
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
234 |
lemma forw_subst: "a = b ==> P b ==> P a" |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
235 |
by (rule ssubst) |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
236 |
|
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
237 |
lemma back_subst: "P a ==> a = b ==> P b" |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
238 |
by (rule subst) |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
239 |
|
15411 | 240 |
|
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
241 |
subsubsection {* Congruence rules for application *} |
15411 | 242 |
|
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
243 |
text {* Similar to @{text AP_THM} in Gordon's HOL. *} |
15411 | 244 |
lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)" |
245 |
apply (erule subst) |
|
246 |
apply (rule refl) |
|
247 |
done |
|
248 |
||
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
249 |
text {* Similar to @{text AP_TERM} in Gordon's HOL and FOL's @{text subst_context}. *} |
15411 | 250 |
lemma arg_cong: "x=y ==> f(x)=f(y)" |
251 |
apply (erule subst) |
|
252 |
apply (rule refl) |
|
253 |
done |
|
254 |
||
15655 | 255 |
lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d" |
256 |
apply (erule ssubst)+ |
|
257 |
apply (rule refl) |
|
258 |
done |
|
259 |
||
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
260 |
lemma cong: "[| f = g; (x::'a) = y |] ==> f x = g y" |
15411 | 261 |
apply (erule subst)+ |
262 |
apply (rule refl) |
|
263 |
done |
|
264 |
||
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
265 |
ML {* val cong_tac = Cong_Tac.cong_tac @{thm cong} *} |
15411 | 266 |
|
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
267 |
|
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
268 |
subsubsection {* Equality of booleans -- iff *} |
15411 | 269 |
|
21504 | 270 |
lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q" |
271 |
by (iprover intro: iff [THEN mp, THEN mp] impI assms) |
|
15411 | 272 |
|
273 |
lemma iffD2: "[| P=Q; Q |] ==> P" |
|
18457 | 274 |
by (erule ssubst) |
15411 | 275 |
|
276 |
lemma rev_iffD2: "[| Q; P=Q |] ==> P" |
|
18457 | 277 |
by (erule iffD2) |
15411 | 278 |
|
21504 | 279 |
lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" |
280 |
by (drule sym) (rule iffD2) |
|
281 |
||
282 |
lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" |
|
283 |
by (drule sym) (rule rev_iffD2) |
|
15411 | 284 |
|
285 |
lemma iffE: |
|
286 |
assumes major: "P=Q" |
|
21504 | 287 |
and minor: "[| P --> Q; Q --> P |] ==> R" |
18457 | 288 |
shows R |
289 |
by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) |
|
15411 | 290 |
|
291 |
||
20944 | 292 |
subsubsection {*True*} |
15411 | 293 |
|
294 |
lemma TrueI: "True" |
|
21504 | 295 |
unfolding True_def by (rule refl) |
15411 | 296 |
|
21504 | 297 |
lemma eqTrueI: "P ==> P = True" |
18457 | 298 |
by (iprover intro: iffI TrueI) |
15411 | 299 |
|
21504 | 300 |
lemma eqTrueE: "P = True ==> P" |
301 |
by (erule iffD2) (rule TrueI) |
|
15411 | 302 |
|
303 |
||
20944 | 304 |
subsubsection {*Universal quantifier*} |
15411 | 305 |
|
21504 | 306 |
lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)" |
307 |
unfolding All_def by (iprover intro: ext eqTrueI assms) |
|
15411 | 308 |
|
309 |
lemma spec: "ALL x::'a. P(x) ==> P(x)" |
|
310 |
apply (unfold All_def) |
|
311 |
apply (rule eqTrueE) |
|
312 |
apply (erule fun_cong) |
|
313 |
done |
|
314 |
||
315 |
lemma allE: |
|
316 |
assumes major: "ALL x. P(x)" |
|
21504 | 317 |
and minor: "P(x) ==> R" |
318 |
shows R |
|
319 |
by (iprover intro: minor major [THEN spec]) |
|
15411 | 320 |
|
321 |
lemma all_dupE: |
|
322 |
assumes major: "ALL x. P(x)" |
|
21504 | 323 |
and minor: "[| P(x); ALL x. P(x) |] ==> R" |
324 |
shows R |
|
325 |
by (iprover intro: minor major major [THEN spec]) |
|
15411 | 326 |
|
327 |
||
21504 | 328 |
subsubsection {* False *} |
329 |
||
330 |
text {* |
|
331 |
Depends upon @{text spec}; it is impossible to do propositional |
|
332 |
logic before quantifiers! |
|
333 |
*} |
|
15411 | 334 |
|
335 |
lemma FalseE: "False ==> P" |
|
21504 | 336 |
apply (unfold False_def) |
337 |
apply (erule spec) |
|
338 |
done |
|
15411 | 339 |
|
21504 | 340 |
lemma False_neq_True: "False = True ==> P" |
341 |
by (erule eqTrueE [THEN FalseE]) |
|
15411 | 342 |
|
343 |
||
21504 | 344 |
subsubsection {* Negation *} |
15411 | 345 |
|
346 |
lemma notI: |
|
21504 | 347 |
assumes "P ==> False" |
15411 | 348 |
shows "~P" |
21504 | 349 |
apply (unfold not_def) |
350 |
apply (iprover intro: impI assms) |
|
351 |
done |
|
15411 | 352 |
|
353 |
lemma False_not_True: "False ~= True" |
|
21504 | 354 |
apply (rule notI) |
355 |
apply (erule False_neq_True) |
|
356 |
done |
|
15411 | 357 |
|
358 |
lemma True_not_False: "True ~= False" |
|
21504 | 359 |
apply (rule notI) |
360 |
apply (drule sym) |
|
361 |
apply (erule False_neq_True) |
|
362 |
done |
|
15411 | 363 |
|
364 |
lemma notE: "[| ~P; P |] ==> R" |
|
21504 | 365 |
apply (unfold not_def) |
366 |
apply (erule mp [THEN FalseE]) |
|
367 |
apply assumption |
|
368 |
done |
|
15411 | 369 |
|
21504 | 370 |
lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P" |
371 |
by (erule notE [THEN notI]) (erule meta_mp) |
|
15411 | 372 |
|
373 |
||
20944 | 374 |
subsubsection {*Implication*} |
15411 | 375 |
|
376 |
lemma impE: |
|
377 |
assumes "P-->Q" "P" "Q ==> R" |
|
378 |
shows "R" |
|
23553 | 379 |
by (iprover intro: assms mp) |
15411 | 380 |
|
381 |
(* Reduces Q to P-->Q, allowing substitution in P. *) |
|
382 |
lemma rev_mp: "[| P; P --> Q |] ==> Q" |
|
17589 | 383 |
by (iprover intro: mp) |
15411 | 384 |
|
385 |
lemma contrapos_nn: |
|
386 |
assumes major: "~Q" |
|
387 |
and minor: "P==>Q" |
|
388 |
shows "~P" |
|
17589 | 389 |
by (iprover intro: notI minor major [THEN notE]) |
15411 | 390 |
|
391 |
(*not used at all, but we already have the other 3 combinations *) |
|
392 |
lemma contrapos_pn: |
|
393 |
assumes major: "Q" |
|
394 |
and minor: "P ==> ~Q" |
|
395 |
shows "~P" |
|
17589 | 396 |
by (iprover intro: notI minor major notE) |
15411 | 397 |
|
398 |
lemma not_sym: "t ~= s ==> s ~= t" |
|
21250 | 399 |
by (erule contrapos_nn) (erule sym) |
400 |
||
401 |
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y" |
|
402 |
by (erule subst, erule ssubst, assumption) |
|
15411 | 403 |
|
404 |
(*still used in HOLCF*) |
|
405 |
lemma rev_contrapos: |
|
406 |
assumes pq: "P ==> Q" |
|
407 |
and nq: "~Q" |
|
408 |
shows "~P" |
|
409 |
apply (rule nq [THEN contrapos_nn]) |
|
410 |
apply (erule pq) |
|
411 |
done |
|
412 |
||
20944 | 413 |
subsubsection {*Existential quantifier*} |
15411 | 414 |
|
415 |
lemma exI: "P x ==> EX x::'a. P x" |
|
416 |
apply (unfold Ex_def) |
|
17589 | 417 |
apply (iprover intro: allI allE impI mp) |
15411 | 418 |
done |
419 |
||
420 |
lemma exE: |
|
421 |
assumes major: "EX x::'a. P(x)" |
|
422 |
and minor: "!!x. P(x) ==> Q" |
|
423 |
shows "Q" |
|
424 |
apply (rule major [unfolded Ex_def, THEN spec, THEN mp]) |
|
17589 | 425 |
apply (iprover intro: impI [THEN allI] minor) |
15411 | 426 |
done |
427 |
||
428 |
||
20944 | 429 |
subsubsection {*Conjunction*} |
15411 | 430 |
|
431 |
lemma conjI: "[| P; Q |] ==> P&Q" |
|
432 |
apply (unfold and_def) |
|
17589 | 433 |
apply (iprover intro: impI [THEN allI] mp) |
15411 | 434 |
done |
435 |
||
436 |
lemma conjunct1: "[| P & Q |] ==> P" |
|
437 |
apply (unfold and_def) |
|
17589 | 438 |
apply (iprover intro: impI dest: spec mp) |
15411 | 439 |
done |
440 |
||
441 |
lemma conjunct2: "[| P & Q |] ==> Q" |
|
442 |
apply (unfold and_def) |
|
17589 | 443 |
apply (iprover intro: impI dest: spec mp) |
15411 | 444 |
done |
445 |
||
446 |
lemma conjE: |
|
447 |
assumes major: "P&Q" |
|
448 |
and minor: "[| P; Q |] ==> R" |
|
449 |
shows "R" |
|
450 |
apply (rule minor) |
|
451 |
apply (rule major [THEN conjunct1]) |
|
452 |
apply (rule major [THEN conjunct2]) |
|
453 |
done |
|
454 |
||
455 |
lemma context_conjI: |
|
23553 | 456 |
assumes "P" "P ==> Q" shows "P & Q" |
457 |
by (iprover intro: conjI assms) |
|
15411 | 458 |
|
459 |
||
20944 | 460 |
subsubsection {*Disjunction*} |
15411 | 461 |
|
462 |
lemma disjI1: "P ==> P|Q" |
|
463 |
apply (unfold or_def) |
|
17589 | 464 |
apply (iprover intro: allI impI mp) |
15411 | 465 |
done |
466 |
||
467 |
lemma disjI2: "Q ==> P|Q" |
|
468 |
apply (unfold or_def) |
|
17589 | 469 |
apply (iprover intro: allI impI mp) |
15411 | 470 |
done |
471 |
||
472 |
lemma disjE: |
|
473 |
assumes major: "P|Q" |
|
474 |
and minorP: "P ==> R" |
|
475 |
and minorQ: "Q ==> R" |
|
476 |
shows "R" |
|
17589 | 477 |
by (iprover intro: minorP minorQ impI |
15411 | 478 |
major [unfolded or_def, THEN spec, THEN mp, THEN mp]) |
479 |
||
480 |
||
20944 | 481 |
subsubsection {*Classical logic*} |
15411 | 482 |
|
483 |
lemma classical: |
|
484 |
assumes prem: "~P ==> P" |
|
485 |
shows "P" |
|
486 |
apply (rule True_or_False [THEN disjE, THEN eqTrueE]) |
|
487 |
apply assumption |
|
488 |
apply (rule notI [THEN prem, THEN eqTrueI]) |
|
489 |
apply (erule subst) |
|
490 |
apply assumption |
|
491 |
done |
|
492 |
||
493 |
lemmas ccontr = FalseE [THEN classical, standard] |
|
494 |
||
495 |
(*notE with premises exchanged; it discharges ~R so that it can be used to |
|
496 |
make elimination rules*) |
|
497 |
lemma rev_notE: |
|
498 |
assumes premp: "P" |
|
499 |
and premnot: "~R ==> ~P" |
|
500 |
shows "R" |
|
501 |
apply (rule ccontr) |
|
502 |
apply (erule notE [OF premnot premp]) |
|
503 |
done |
|
504 |
||
505 |
(*Double negation law*) |
|
506 |
lemma notnotD: "~~P ==> P" |
|
507 |
apply (rule classical) |
|
508 |
apply (erule notE) |
|
509 |
apply assumption |
|
510 |
done |
|
511 |
||
512 |
lemma contrapos_pp: |
|
513 |
assumes p1: "Q" |
|
514 |
and p2: "~P ==> ~Q" |
|
515 |
shows "P" |
|
17589 | 516 |
by (iprover intro: classical p1 p2 notE) |
15411 | 517 |
|
518 |
||
20944 | 519 |
subsubsection {*Unique existence*} |
15411 | 520 |
|
521 |
lemma ex1I: |
|
23553 | 522 |
assumes "P a" "!!x. P(x) ==> x=a" |
15411 | 523 |
shows "EX! x. P(x)" |
23553 | 524 |
by (unfold Ex1_def, iprover intro: assms exI conjI allI impI) |
15411 | 525 |
|
526 |
text{*Sometimes easier to use: the premises have no shared variables. Safe!*} |
|
527 |
lemma ex_ex1I: |
|
528 |
assumes ex_prem: "EX x. P(x)" |
|
529 |
and eq: "!!x y. [| P(x); P(y) |] ==> x=y" |
|
530 |
shows "EX! x. P(x)" |
|
17589 | 531 |
by (iprover intro: ex_prem [THEN exE] ex1I eq) |
15411 | 532 |
|
533 |
lemma ex1E: |
|
534 |
assumes major: "EX! x. P(x)" |
|
535 |
and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R" |
|
536 |
shows "R" |
|
537 |
apply (rule major [unfolded Ex1_def, THEN exE]) |
|
538 |
apply (erule conjE) |
|
17589 | 539 |
apply (iprover intro: minor) |
15411 | 540 |
done |
541 |
||
542 |
lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x" |
|
543 |
apply (erule ex1E) |
|
544 |
apply (rule exI) |
|
545 |
apply assumption |
|
546 |
done |
|
547 |
||
548 |
||
20944 | 549 |
subsubsection {*THE: definite description operator*} |
15411 | 550 |
|
551 |
lemma the_equality: |
|
552 |
assumes prema: "P a" |
|
553 |
and premx: "!!x. P x ==> x=a" |
|
554 |
shows "(THE x. P x) = a" |
|
555 |
apply (rule trans [OF _ the_eq_trivial]) |
|
556 |
apply (rule_tac f = "The" in arg_cong) |
|
557 |
apply (rule ext) |
|
558 |
apply (rule iffI) |
|
559 |
apply (erule premx) |
|
560 |
apply (erule ssubst, rule prema) |
|
561 |
done |
|
562 |
||
563 |
lemma theI: |
|
564 |
assumes "P a" and "!!x. P x ==> x=a" |
|
565 |
shows "P (THE x. P x)" |
|
23553 | 566 |
by (iprover intro: assms the_equality [THEN ssubst]) |
15411 | 567 |
|
568 |
lemma theI': "EX! x. P x ==> P (THE x. P x)" |
|
569 |
apply (erule ex1E) |
|
570 |
apply (erule theI) |
|
571 |
apply (erule allE) |
|
572 |
apply (erule mp) |
|
573 |
apply assumption |
|
574 |
done |
|
575 |
||
576 |
(*Easier to apply than theI: only one occurrence of P*) |
|
577 |
lemma theI2: |
|
578 |
assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x" |
|
579 |
shows "Q (THE x. P x)" |
|
23553 | 580 |
by (iprover intro: assms theI) |
15411 | 581 |
|
24553 | 582 |
lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)" |
583 |
by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] |
|
584 |
elim:allE impE) |
|
585 |
||
18697 | 586 |
lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a" |
15411 | 587 |
apply (rule the_equality) |
588 |
apply assumption |
|
589 |
apply (erule ex1E) |
|
590 |
apply (erule all_dupE) |
|
591 |
apply (drule mp) |
|
592 |
apply assumption |
|
593 |
apply (erule ssubst) |
|
594 |
apply (erule allE) |
|
595 |
apply (erule mp) |
|
596 |
apply assumption |
|
597 |
done |
|
598 |
||
599 |
lemma the_sym_eq_trivial: "(THE y. x=y) = x" |
|
600 |
apply (rule the_equality) |
|
601 |
apply (rule refl) |
|
602 |
apply (erule sym) |
|
603 |
done |
|
604 |
||
605 |
||
20944 | 606 |
subsubsection {*Classical intro rules for disjunction and existential quantifiers*} |
15411 | 607 |
|
608 |
lemma disjCI: |
|
609 |
assumes "~Q ==> P" shows "P|Q" |
|
610 |
apply (rule classical) |
|
23553 | 611 |
apply (iprover intro: assms disjI1 disjI2 notI elim: notE) |
15411 | 612 |
done |
613 |
||
614 |
lemma excluded_middle: "~P | P" |
|
17589 | 615 |
by (iprover intro: disjCI) |
15411 | 616 |
|
20944 | 617 |
text {* |
618 |
case distinction as a natural deduction rule. |
|
619 |
Note that @{term "~P"} is the second case, not the first |
|
620 |
*} |
|
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
621 |
lemma case_split [case_names True False]: |
15411 | 622 |
assumes prem1: "P ==> Q" |
623 |
and prem2: "~P ==> Q" |
|
624 |
shows "Q" |
|
625 |
apply (rule excluded_middle [THEN disjE]) |
|
626 |
apply (erule prem2) |
|
627 |
apply (erule prem1) |
|
628 |
done |
|
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
629 |
|
15411 | 630 |
(*Classical implies (-->) elimination. *) |
631 |
lemma impCE: |
|
632 |
assumes major: "P-->Q" |
|
633 |
and minor: "~P ==> R" "Q ==> R" |
|
634 |
shows "R" |
|
635 |
apply (rule excluded_middle [of P, THEN disjE]) |
|
17589 | 636 |
apply (iprover intro: minor major [THEN mp])+ |
15411 | 637 |
done |
638 |
||
639 |
(*This version of --> elimination works on Q before P. It works best for |
|
640 |
those cases in which P holds "almost everywhere". Can't install as |
|
641 |
default: would break old proofs.*) |
|
642 |
lemma impCE': |
|
643 |
assumes major: "P-->Q" |
|
644 |
and minor: "Q ==> R" "~P ==> R" |
|
645 |
shows "R" |
|
646 |
apply (rule excluded_middle [of P, THEN disjE]) |
|
17589 | 647 |
apply (iprover intro: minor major [THEN mp])+ |
15411 | 648 |
done |
649 |
||
650 |
(*Classical <-> elimination. *) |
|
651 |
lemma iffCE: |
|
652 |
assumes major: "P=Q" |
|
653 |
and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R" |
|
654 |
shows "R" |
|
655 |
apply (rule major [THEN iffE]) |
|
17589 | 656 |
apply (iprover intro: minor elim: impCE notE) |
15411 | 657 |
done |
658 |
||
659 |
lemma exCI: |
|
660 |
assumes "ALL x. ~P(x) ==> P(a)" |
|
661 |
shows "EX x. P(x)" |
|
662 |
apply (rule ccontr) |
|
23553 | 663 |
apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) |
15411 | 664 |
done |
665 |
||
666 |
||
12386 | 667 |
subsubsection {* Intuitionistic Reasoning *} |
668 |
||
669 |
lemma impE': |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
670 |
assumes 1: "P --> Q" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
671 |
and 2: "Q ==> R" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
672 |
and 3: "P --> Q ==> P" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
673 |
shows R |
12386 | 674 |
proof - |
675 |
from 3 and 1 have P . |
|
676 |
with 1 have Q by (rule impE) |
|
677 |
with 2 show R . |
|
678 |
qed |
|
679 |
||
680 |
lemma allE': |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
681 |
assumes 1: "ALL x. P x" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
682 |
and 2: "P x ==> ALL x. P x ==> Q" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
683 |
shows Q |
12386 | 684 |
proof - |
685 |
from 1 have "P x" by (rule spec) |
|
686 |
from this and 1 show Q by (rule 2) |
|
687 |
qed |
|
688 |
||
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
689 |
lemma notE': |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
690 |
assumes 1: "~ P" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
691 |
and 2: "~ P ==> P" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
692 |
shows R |
12386 | 693 |
proof - |
694 |
from 2 and 1 have P . |
|
695 |
with 1 show R by (rule notE) |
|
696 |
qed |
|
697 |
||
22444
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents:
22377
diff
changeset
|
698 |
lemma TrueE: "True ==> P ==> P" . |
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents:
22377
diff
changeset
|
699 |
lemma notFalseE: "~ False ==> P ==> P" . |
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents:
22377
diff
changeset
|
700 |
|
22467
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
dixon
parents:
22445
diff
changeset
|
701 |
lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE |
15801 | 702 |
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl |
703 |
and [Pure.elim 2] = allE notE' impE' |
|
704 |
and [Pure.intro] = exI disjI2 disjI1 |
|
12386 | 705 |
|
706 |
lemmas [trans] = trans |
|
707 |
and [sym] = sym not_sym |
|
15801 | 708 |
and [Pure.elim?] = iffD1 iffD2 impE |
11750 | 709 |
|
28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
28856
diff
changeset
|
710 |
use "Tools/hologic.ML" |
23553 | 711 |
|
11438
3d9222b80989
declare trans [trans] (*overridden in theory Calculation*);
wenzelm
parents:
11432
diff
changeset
|
712 |
|
11750 | 713 |
subsubsection {* Atomizing meta-level connectives *} |
714 |
||
28513 | 715 |
axiomatization where |
716 |
eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*) |
|
717 |
||
11750 | 718 |
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)" |
12003 | 719 |
proof |
9488 | 720 |
assume "!!x. P x" |
23389 | 721 |
then show "ALL x. P x" .. |
9488 | 722 |
next |
723 |
assume "ALL x. P x" |
|
23553 | 724 |
then show "!!x. P x" by (rule allE) |
9488 | 725 |
qed |
726 |
||
11750 | 727 |
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)" |
12003 | 728 |
proof |
9488 | 729 |
assume r: "A ==> B" |
10383 | 730 |
show "A --> B" by (rule impI) (rule r) |
9488 | 731 |
next |
732 |
assume "A --> B" and A |
|
23553 | 733 |
then show B by (rule mp) |
9488 | 734 |
qed |
735 |
||
14749 | 736 |
lemma atomize_not: "(A ==> False) == Trueprop (~A)" |
737 |
proof |
|
738 |
assume r: "A ==> False" |
|
739 |
show "~A" by (rule notI) (rule r) |
|
740 |
next |
|
741 |
assume "~A" and A |
|
23553 | 742 |
then show False by (rule notE) |
14749 | 743 |
qed |
744 |
||
11750 | 745 |
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)" |
12003 | 746 |
proof |
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
747 |
assume "x == y" |
23553 | 748 |
show "x = y" by (unfold `x == y`) (rule refl) |
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
749 |
next |
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
750 |
assume "x = y" |
23553 | 751 |
then show "x == y" by (rule eq_reflection) |
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
752 |
qed |
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
753 |
|
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
754 |
lemma atomize_conj [atomize]: "(A &&& B) == Trueprop (A & B)" |
12003 | 755 |
proof |
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
756 |
assume conj: "A &&& B" |
19121 | 757 |
show "A & B" |
758 |
proof (rule conjI) |
|
759 |
from conj show A by (rule conjunctionD1) |
|
760 |
from conj show B by (rule conjunctionD2) |
|
761 |
qed |
|
11953 | 762 |
next |
19121 | 763 |
assume conj: "A & B" |
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
764 |
show "A &&& B" |
19121 | 765 |
proof - |
766 |
from conj show A .. |
|
767 |
from conj show B .. |
|
11953 | 768 |
qed |
769 |
qed |
|
770 |
||
12386 | 771 |
lemmas [symmetric, rulify] = atomize_all atomize_imp |
18832 | 772 |
and [symmetric, defn] = atomize_all atomize_imp atomize_eq |
12386 | 773 |
|
11750 | 774 |
|
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
775 |
subsubsection {* Atomizing elimination rules *} |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
776 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
777 |
setup AtomizeElim.setup |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
778 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
779 |
lemma atomize_exL[atomize_elim]: "(!!x. P x ==> Q) == ((EX x. P x) ==> Q)" |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
780 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
781 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
782 |
lemma atomize_conjL[atomize_elim]: "(A ==> B ==> C) == (A & B ==> C)" |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
783 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
784 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
785 |
lemma atomize_disjL[atomize_elim]: "((A ==> C) ==> (B ==> C) ==> C) == ((A | B ==> C) ==> C)" |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
786 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
787 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
788 |
lemma atomize_elimL[atomize_elim]: "(!!B. (A ==> B) ==> B) == Trueprop A" .. |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
789 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
790 |
|
20944 | 791 |
subsection {* Package setup *} |
792 |
||
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
793 |
subsubsection {* Sledgehammer setup *} |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
794 |
|
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
795 |
text {* |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
796 |
Theorems blacklisted to Sledgehammer. These theorems typically produce clauses |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
797 |
that are prolific (match too many equality or membership literals) and relate to |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
798 |
seldom-used facts. Some duplicate other rules. |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
799 |
*} |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
800 |
|
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
801 |
ML {* |
36297
6b2b9516a3cd
removed obsolete Named_Thm_Set -- Named_Thms provides efficient member operation;
wenzelm
parents:
36246
diff
changeset
|
802 |
structure No_ATPs = Named_Thms |
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
803 |
( |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
804 |
val name = "no_atp" |
36060
4d27652ffb40
reintroduce efficient set structure to collect "no_atp" theorems
blanchet
parents:
35828
diff
changeset
|
805 |
val description = "theorems that should be filtered out by Sledgehammer" |
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
806 |
) |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
807 |
*} |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
808 |
|
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
809 |
setup {* No_ATPs.setup *} |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
810 |
|
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
811 |
|
11750 | 812 |
subsubsection {* Classical Reasoner setup *} |
9529 | 813 |
|
26411 | 814 |
lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R" |
815 |
by (rule classical) iprover |
|
816 |
||
817 |
lemma swap: "~ P ==> (~ R ==> P) ==> R" |
|
818 |
by (rule classical) iprover |
|
819 |
||
20944 | 820 |
lemma thin_refl: |
821 |
"\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" . |
|
822 |
||
21151 | 823 |
ML {* |
824 |
structure Hypsubst = HypsubstFun( |
|
825 |
struct |
|
826 |
structure Simplifier = Simplifier |
|
21218 | 827 |
val dest_eq = HOLogic.dest_eq |
21151 | 828 |
val dest_Trueprop = HOLogic.dest_Trueprop |
829 |
val dest_imp = HOLogic.dest_imp |
|
26411 | 830 |
val eq_reflection = @{thm eq_reflection} |
831 |
val rev_eq_reflection = @{thm meta_eq_to_obj_eq} |
|
832 |
val imp_intr = @{thm impI} |
|
833 |
val rev_mp = @{thm rev_mp} |
|
834 |
val subst = @{thm subst} |
|
835 |
val sym = @{thm sym} |
|
22129 | 836 |
val thin_refl = @{thm thin_refl}; |
27572
67cd6ed76446
single_hyp(_meta)_subst_tac: Controlled substitution of a single hyp
krauss
parents:
27338
diff
changeset
|
837 |
val prop_subst = @{lemma "PROP P t ==> PROP prop (x = t ==> PROP P x)" |
67cd6ed76446
single_hyp(_meta)_subst_tac: Controlled substitution of a single hyp
krauss
parents:
27338
diff
changeset
|
838 |
by (unfold prop_def) (drule eq_reflection, unfold)} |
21151 | 839 |
end); |
21671 | 840 |
open Hypsubst; |
21151 | 841 |
|
842 |
structure Classical = ClassicalFun( |
|
843 |
struct |
|
26411 | 844 |
val imp_elim = @{thm imp_elim} |
845 |
val not_elim = @{thm notE} |
|
846 |
val swap = @{thm swap} |
|
847 |
val classical = @{thm classical} |
|
21151 | 848 |
val sizef = Drule.size_of_thm |
849 |
val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] |
|
850 |
end); |
|
851 |
||
33308
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents:
33185
diff
changeset
|
852 |
structure Basic_Classical: BASIC_CLASSICAL = Classical; |
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents:
33185
diff
changeset
|
853 |
open Basic_Classical; |
22129 | 854 |
|
27338 | 855 |
ML_Antiquote.value "claset" |
32149
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents:
32119
diff
changeset
|
856 |
(Scan.succeed "Classical.claset_of (ML_Context.the_local_context ())"); |
21151 | 857 |
*} |
858 |
||
33308
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents:
33185
diff
changeset
|
859 |
setup Classical.setup |
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
24280
diff
changeset
|
860 |
|
21009 | 861 |
setup {* |
862 |
let |
|
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
863 |
fun non_bool_eq (@{const_name HOL.eq}, Type (_, [T, _])) = T <> @{typ bool} |
35389 | 864 |
| non_bool_eq _ = false; |
865 |
val hyp_subst_tac' = |
|
866 |
SUBGOAL (fn (goal, i) => |
|
867 |
if Term.exists_Const non_bool_eq goal |
|
868 |
then Hypsubst.hyp_subst_tac i |
|
869 |
else no_tac); |
|
21009 | 870 |
in |
21151 | 871 |
Hypsubst.hypsubst_setup |
35389 | 872 |
(*prevent substitution on bool*) |
33369 | 873 |
#> Context_Rules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac) |
21009 | 874 |
end |
875 |
*} |
|
876 |
||
877 |
declare iffI [intro!] |
|
878 |
and notI [intro!] |
|
879 |
and impI [intro!] |
|
880 |
and disjCI [intro!] |
|
881 |
and conjI [intro!] |
|
882 |
and TrueI [intro!] |
|
883 |
and refl [intro!] |
|
884 |
||
885 |
declare iffCE [elim!] |
|
886 |
and FalseE [elim!] |
|
887 |
and impCE [elim!] |
|
888 |
and disjE [elim!] |
|
889 |
and conjE [elim!] |
|
890 |
||
891 |
declare ex_ex1I [intro!] |
|
892 |
and allI [intro!] |
|
893 |
and the_equality [intro] |
|
894 |
and exI [intro] |
|
895 |
||
896 |
declare exE [elim!] |
|
897 |
allE [elim] |
|
898 |
||
22377 | 899 |
ML {* val HOL_cs = @{claset} *} |
19162 | 900 |
|
20223 | 901 |
lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P" |
902 |
apply (erule swap) |
|
903 |
apply (erule (1) meta_mp) |
|
904 |
done |
|
10383 | 905 |
|
18689
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
906 |
declare ex_ex1I [rule del, intro! 2] |
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
907 |
and ex1I [intro] |
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
908 |
|
12386 | 909 |
lemmas [intro?] = ext |
910 |
and [elim?] = ex1_implies_ex |
|
11977 | 911 |
|
20944 | 912 |
(*Better then ex1E for classical reasoner: needs no quantifier duplication!*) |
20973 | 913 |
lemma alt_ex1E [elim!]: |
20944 | 914 |
assumes major: "\<exists>!x. P x" |
915 |
and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R" |
|
916 |
shows R |
|
917 |
apply (rule ex1E [OF major]) |
|
918 |
apply (rule prem) |
|
22129 | 919 |
apply (tactic {* ares_tac @{thms allI} 1 *})+ |
920 |
apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *}) |
|
921 |
apply iprover |
|
922 |
done |
|
20944 | 923 |
|
21151 | 924 |
ML {* |
32176
893614e2c35c
renamed functor BlastFun to Blast, require explicit theory;
wenzelm
parents:
32172
diff
changeset
|
925 |
structure Blast = Blast |
25388 | 926 |
( |
32176
893614e2c35c
renamed functor BlastFun to Blast, require explicit theory;
wenzelm
parents:
32172
diff
changeset
|
927 |
val thy = @{theory} |
21151 | 928 |
type claset = Classical.claset |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
929 |
val equality_name = @{const_name HOL.eq} |
22993 | 930 |
val not_name = @{const_name Not} |
26411 | 931 |
val notE = @{thm notE} |
932 |
val ccontr = @{thm ccontr} |
|
21151 | 933 |
val contr_tac = Classical.contr_tac |
934 |
val dup_intr = Classical.dup_intr |
|
935 |
val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac |
|
936 |
val rep_cs = Classical.rep_cs |
|
937 |
val cla_modifiers = Classical.cla_modifiers |
|
938 |
val cla_meth' = Classical.cla_meth' |
|
25388 | 939 |
); |
21671 | 940 |
val blast_tac = Blast.blast_tac; |
20944 | 941 |
*} |
942 |
||
21151 | 943 |
setup Blast.setup |
944 |
||
20944 | 945 |
|
946 |
subsubsection {* Simplifier *} |
|
12281 | 947 |
|
948 |
lemma eta_contract_eq: "(%s. f s) = f" .. |
|
949 |
||
950 |
lemma simp_thms: |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
951 |
shows not_not: "(~ ~ P) = P" |
15354 | 952 |
and Not_eq_iff: "((~P) = (~Q)) = (P = Q)" |
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
953 |
and |
12436
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
954 |
"(P ~= Q) = (P = (~Q))" |
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
955 |
"(P | ~P) = True" "(~P | P) = True" |
12281 | 956 |
"(x = x) = True" |
32068 | 957 |
and not_True_eq_False [code]: "(\<not> True) = False" |
958 |
and not_False_eq_True [code]: "(\<not> False) = True" |
|
20944 | 959 |
and |
12436
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
960 |
"(~P) ~= P" "P ~= (~P)" |
20944 | 961 |
"(True=P) = P" |
962 |
and eq_True: "(P = True) = P" |
|
963 |
and "(False=P) = (~P)" |
|
964 |
and eq_False: "(P = False) = (\<not> P)" |
|
965 |
and |
|
12281 | 966 |
"(True --> P) = P" "(False --> P) = True" |
967 |
"(P --> True) = True" "(P --> P) = True" |
|
968 |
"(P --> False) = (~P)" "(P --> ~P) = (~P)" |
|
969 |
"(P & True) = P" "(True & P) = P" |
|
970 |
"(P & False) = False" "(False & P) = False" |
|
971 |
"(P & P) = P" "(P & (P & Q)) = (P & Q)" |
|
972 |
"(P & ~P) = False" "(~P & P) = False" |
|
973 |
"(P | True) = True" "(True | P) = True" |
|
974 |
"(P | False) = P" "(False | P) = P" |
|
12436
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
975 |
"(P | P) = P" "(P | (P | Q)) = (P | Q)" and |
12281 | 976 |
"(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x" |
31166
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
nipkow
parents:
31156
diff
changeset
|
977 |
and |
12281 | 978 |
"!!P. (EX x. x=t & P(x)) = P(t)" |
979 |
"!!P. (EX x. t=x & P(x)) = P(t)" |
|
980 |
"!!P. (ALL x. x=t --> P(x)) = P(t)" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
981 |
"!!P. (ALL x. t=x --> P(x)) = P(t)" |
17589 | 982 |
by (blast, blast, blast, blast, blast, iprover+) |
13421 | 983 |
|
14201 | 984 |
lemma disj_absorb: "(A | A) = A" |
985 |
by blast |
|
986 |
||
987 |
lemma disj_left_absorb: "(A | (A | B)) = (A | B)" |
|
988 |
by blast |
|
989 |
||
990 |
lemma conj_absorb: "(A & A) = A" |
|
991 |
by blast |
|
992 |
||
993 |
lemma conj_left_absorb: "(A & (A & B)) = (A & B)" |
|
994 |
by blast |
|
995 |
||
12281 | 996 |
lemma eq_ac: |
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
997 |
shows eq_commute: "(a=b) = (b=a)" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
998 |
and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))" |
17589 | 999 |
and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+) |
1000 |
lemma neq_commute: "(a~=b) = (b~=a)" by iprover |
|
12281 | 1001 |
|
1002 |
lemma conj_comms: |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
1003 |
shows conj_commute: "(P&Q) = (Q&P)" |
17589 | 1004 |
and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+ |
1005 |
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover |
|
12281 | 1006 |
|
19174 | 1007 |
lemmas conj_ac = conj_commute conj_left_commute conj_assoc |
1008 |
||
12281 | 1009 |
lemma disj_comms: |
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
1010 |
shows disj_commute: "(P|Q) = (Q|P)" |
17589 | 1011 |
and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+ |
1012 |
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover |
|
12281 | 1013 |
|
19174 | 1014 |
lemmas disj_ac = disj_commute disj_left_commute disj_assoc |
1015 |
||
17589 | 1016 |
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover |
1017 |
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover |
|
12281 | 1018 |
|
17589 | 1019 |
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover |
1020 |
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover |
|
12281 | 1021 |
|
17589 | 1022 |
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover |
1023 |
lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by iprover |
|
1024 |
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover |
|
12281 | 1025 |
|
1026 |
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *} |
|
1027 |
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast |
|
1028 |
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast |
|
1029 |
||
1030 |
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast |
|
1031 |
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast |
|
1032 |
||
21151 | 1033 |
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))" |
1034 |
by iprover |
|
1035 |
||
17589 | 1036 |
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover |
12281 | 1037 |
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast |
1038 |
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast |
|
1039 |
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast |
|
1040 |
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast |
|
1041 |
lemma disj_not2: "(P | ~Q) = (Q --> P)" -- {* changes orientation :-( *} |
|
1042 |
by blast |
|
1043 |
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast |
|
1044 |
||
17589 | 1045 |
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover |
12281 | 1046 |
|
1047 |
||
1048 |
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q" |
|
1049 |
-- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *} |
|
1050 |
-- {* cases boil down to the same thing. *} |
|
1051 |
by blast |
|
1052 |
||
1053 |
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast |
|
1054 |
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast |
|
17589 | 1055 |
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover |
1056 |
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover |
|
23403 | 1057 |
lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast |
12281 | 1058 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
1059 |
declare All_def [no_atp] |
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
24280
diff
changeset
|
1060 |
|
17589 | 1061 |
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover |
1062 |
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover |
|
12281 | 1063 |
|
1064 |
text {* |
|
1065 |
\medskip The @{text "&"} congruence rule: not included by default! |
|
1066 |
May slow rewrite proofs down by as much as 50\% *} |
|
1067 |
||
1068 |
lemma conj_cong: |
|
1069 |
"(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))" |
|
17589 | 1070 |
by iprover |
12281 | 1071 |
|
1072 |
lemma rev_conj_cong: |
|
1073 |
"(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))" |
|
17589 | 1074 |
by iprover |
12281 | 1075 |
|
1076 |
text {* The @{text "|"} congruence rule: not included by default! *} |
|
1077 |
||
1078 |
lemma disj_cong: |
|
1079 |
"(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))" |
|
1080 |
by blast |
|
1081 |
||
1082 |
||
1083 |
text {* \medskip if-then-else rules *} |
|
1084 |
||
32068 | 1085 |
lemma if_True [code]: "(if True then x else y) = x" |
38525 | 1086 |
by (unfold If_def) blast |
12281 | 1087 |
|
32068 | 1088 |
lemma if_False [code]: "(if False then x else y) = y" |
38525 | 1089 |
by (unfold If_def) blast |
12281 | 1090 |
|
1091 |
lemma if_P: "P ==> (if P then x else y) = x" |
|
38525 | 1092 |
by (unfold If_def) blast |
12281 | 1093 |
|
1094 |
lemma if_not_P: "~P ==> (if P then x else y) = y" |
|
38525 | 1095 |
by (unfold If_def) blast |
12281 | 1096 |
|
1097 |
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" |
|
1098 |
apply (rule case_split [of Q]) |
|
15481 | 1099 |
apply (simplesubst if_P) |
1100 |
prefer 3 apply (simplesubst if_not_P, blast+) |
|
12281 | 1101 |
done |
1102 |
||
1103 |
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))" |
|
15481 | 1104 |
by (simplesubst split_if, blast) |
12281 | 1105 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
1106 |
lemmas if_splits [no_atp] = split_if split_if_asm |
12281 | 1107 |
|
1108 |
lemma if_cancel: "(if c then x else x) = x" |
|
15481 | 1109 |
by (simplesubst split_if, blast) |
12281 | 1110 |
|
1111 |
lemma if_eq_cancel: "(if x = y then y else x) = x" |
|
15481 | 1112 |
by (simplesubst split_if, blast) |
12281 | 1113 |
|
1114 |
lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))" |
|
19796 | 1115 |
-- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *} |
12281 | 1116 |
by (rule split_if) |
1117 |
||
1118 |
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))" |
|
19796 | 1119 |
-- {* And this form is useful for expanding @{text "if"}s on the LEFT. *} |
15481 | 1120 |
apply (simplesubst split_if, blast) |
12281 | 1121 |
done |
1122 |
||
17589 | 1123 |
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover |
1124 |
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover |
|
12281 | 1125 |
|
15423 | 1126 |
text {* \medskip let rules for simproc *} |
1127 |
||
1128 |
lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" |
|
1129 |
by (unfold Let_def) |
|
1130 |
||
1131 |
lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" |
|
1132 |
by (unfold Let_def) |
|
1133 |
||
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1134 |
text {* |
16999 | 1135 |
The following copy of the implication operator is useful for |
1136 |
fine-tuning congruence rules. It instructs the simplifier to simplify |
|
1137 |
its premise. |
|
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1138 |
*} |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1139 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35115
diff
changeset
|
1140 |
definition simp_implies :: "[prop, prop] => prop" (infixr "=simp=>" 1) where |
37767 | 1141 |
"simp_implies \<equiv> op ==>" |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1142 |
|
18457 | 1143 |
lemma simp_impliesI: |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1144 |
assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1145 |
shows "PROP P =simp=> PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1146 |
apply (unfold simp_implies_def) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1147 |
apply (rule PQ) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1148 |
apply assumption |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1149 |
done |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1150 |
|
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1151 |
lemma simp_impliesE: |
25388 | 1152 |
assumes PQ: "PROP P =simp=> PROP Q" |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1153 |
and P: "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1154 |
and QR: "PROP Q \<Longrightarrow> PROP R" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1155 |
shows "PROP R" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1156 |
apply (rule QR) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1157 |
apply (rule PQ [unfolded simp_implies_def]) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1158 |
apply (rule P) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1159 |
done |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1160 |
|
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1161 |
lemma simp_implies_cong: |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1162 |
assumes PP' :"PROP P == PROP P'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1163 |
and P'QQ': "PROP P' ==> (PROP Q == PROP Q')" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1164 |
shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1165 |
proof (unfold simp_implies_def, rule equal_intr_rule) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1166 |
assume PQ: "PROP P \<Longrightarrow> PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1167 |
and P': "PROP P'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1168 |
from PP' [symmetric] and P' have "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1169 |
by (rule equal_elim_rule1) |
23553 | 1170 |
then have "PROP Q" by (rule PQ) |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1171 |
with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1172 |
next |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1173 |
assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1174 |
and P: "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1175 |
from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) |
23553 | 1176 |
then have "PROP Q'" by (rule P'Q') |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1177 |
with P'QQ' [OF P', symmetric] show "PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1178 |
by (rule equal_elim_rule1) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1179 |
qed |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1180 |
|
20944 | 1181 |
lemma uncurry: |
1182 |
assumes "P \<longrightarrow> Q \<longrightarrow> R" |
|
1183 |
shows "P \<and> Q \<longrightarrow> R" |
|
23553 | 1184 |
using assms by blast |
20944 | 1185 |
|
1186 |
lemma iff_allI: |
|
1187 |
assumes "\<And>x. P x = Q x" |
|
1188 |
shows "(\<forall>x. P x) = (\<forall>x. Q x)" |
|
23553 | 1189 |
using assms by blast |
20944 | 1190 |
|
1191 |
lemma iff_exI: |
|
1192 |
assumes "\<And>x. P x = Q x" |
|
1193 |
shows "(\<exists>x. P x) = (\<exists>x. Q x)" |
|
23553 | 1194 |
using assms by blast |
20944 | 1195 |
|
1196 |
lemma all_comm: |
|
1197 |
"(\<forall>x y. P x y) = (\<forall>y x. P x y)" |
|
1198 |
by blast |
|
1199 |
||
1200 |
lemma ex_comm: |
|
1201 |
"(\<exists>x y. P x y) = (\<exists>y x. P x y)" |
|
1202 |
by blast |
|
1203 |
||
28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
28856
diff
changeset
|
1204 |
use "Tools/simpdata.ML" |
21671 | 1205 |
ML {* open Simpdata *} |
1206 |
||
21151 | 1207 |
setup {* |
1208 |
Simplifier.method_setup Splitter.split_modifiers |
|
26496
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26411
diff
changeset
|
1209 |
#> Simplifier.map_simpset (K Simpdata.simpset_simprocs) |
21151 | 1210 |
#> Splitter.setup |
26496
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26411
diff
changeset
|
1211 |
#> clasimp_setup |
21151 | 1212 |
#> EqSubst.setup |
1213 |
*} |
|
1214 |
||
24035 | 1215 |
text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *} |
1216 |
||
1217 |
simproc_setup neq ("x = y") = {* fn _ => |
|
1218 |
let |
|
1219 |
val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI}; |
|
1220 |
fun is_neq eq lhs rhs thm = |
|
1221 |
(case Thm.prop_of thm of |
|
1222 |
_ $ (Not $ (eq' $ l' $ r')) => |
|
1223 |
Not = HOLogic.Not andalso eq' = eq andalso |
|
1224 |
r' aconv lhs andalso l' aconv rhs |
|
1225 |
| _ => false); |
|
1226 |
fun proc ss ct = |
|
1227 |
(case Thm.term_of ct of |
|
1228 |
eq $ lhs $ rhs => |
|
1229 |
(case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of |
|
1230 |
SOME thm => SOME (thm RS neq_to_EQ_False) |
|
1231 |
| NONE => NONE) |
|
1232 |
| _ => NONE); |
|
1233 |
in proc end; |
|
1234 |
*} |
|
1235 |
||
1236 |
simproc_setup let_simp ("Let x f") = {* |
|
1237 |
let |
|
1238 |
val (f_Let_unfold, x_Let_unfold) = |
|
28741 | 1239 |
let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_unfold} |
24035 | 1240 |
in (cterm_of @{theory} f, cterm_of @{theory} x) end |
1241 |
val (f_Let_folded, x_Let_folded) = |
|
28741 | 1242 |
let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_folded} |
24035 | 1243 |
in (cterm_of @{theory} f, cterm_of @{theory} x) end; |
1244 |
val g_Let_folded = |
|
28741 | 1245 |
let val [(_ $ _ $ (g $ _))] = prems_of @{thm Let_folded} |
1246 |
in cterm_of @{theory} g end; |
|
1247 |
fun count_loose (Bound i) k = if i >= k then 1 else 0 |
|
1248 |
| count_loose (s $ t) k = count_loose s k + count_loose t k |
|
1249 |
| count_loose (Abs (_, _, t)) k = count_loose t (k + 1) |
|
1250 |
| count_loose _ _ = 0; |
|
1251 |
fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) = |
|
1252 |
case t |
|
1253 |
of Abs (_, _, t') => count_loose t' 0 <= 1 |
|
1254 |
| _ => true; |
|
1255 |
in fn _ => fn ss => fn ct => if is_trivial_let (Thm.term_of ct) |
|
31151 | 1256 |
then SOME @{thm Let_def} (*no or one ocurrence of bound variable*) |
28741 | 1257 |
else let (*Norbert Schirmer's case*) |
1258 |
val ctxt = Simplifier.the_context ss; |
|
1259 |
val thy = ProofContext.theory_of ctxt; |
|
1260 |
val t = Thm.term_of ct; |
|
1261 |
val ([t'], ctxt') = Variable.import_terms false [t] ctxt; |
|
1262 |
in Option.map (hd o Variable.export ctxt' ctxt o single) |
|
1263 |
(case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *) |
|
1264 |
if is_Free x orelse is_Bound x orelse is_Const x |
|
1265 |
then SOME @{thm Let_def} |
|
1266 |
else |
|
1267 |
let |
|
1268 |
val n = case f of (Abs (x, _, _)) => x | _ => "x"; |
|
1269 |
val cx = cterm_of thy x; |
|
1270 |
val {T = xT, ...} = rep_cterm cx; |
|
1271 |
val cf = cterm_of thy f; |
|
1272 |
val fx_g = Simplifier.rewrite ss (Thm.capply cf cx); |
|
1273 |
val (_ $ _ $ g) = prop_of fx_g; |
|
1274 |
val g' = abstract_over (x,g); |
|
1275 |
in (if (g aconv g') |
|
1276 |
then |
|
1277 |
let |
|
1278 |
val rl = |
|
1279 |
cterm_instantiate [(f_Let_unfold, cf), (x_Let_unfold, cx)] @{thm Let_unfold}; |
|
1280 |
in SOME (rl OF [fx_g]) end |
|
1281 |
else if Term.betapply (f, x) aconv g then NONE (*avoid identity conversion*) |
|
1282 |
else let |
|
1283 |
val abs_g'= Abs (n,xT,g'); |
|
1284 |
val g'x = abs_g'$x; |
|
36945 | 1285 |
val g_g'x = Thm.symmetric (Thm.beta_conversion false (cterm_of thy g'x)); |
28741 | 1286 |
val rl = cterm_instantiate |
1287 |
[(f_Let_folded, cterm_of thy f), (x_Let_folded, cx), |
|
1288 |
(g_Let_folded, cterm_of thy abs_g')] |
|
1289 |
@{thm Let_folded}; |
|
36945 | 1290 |
in SOME (rl OF [Thm.transitive fx_g g_g'x]) |
28741 | 1291 |
end) |
1292 |
end |
|
1293 |
| _ => NONE) |
|
1294 |
end |
|
1295 |
end *} |
|
24035 | 1296 |
|
21151 | 1297 |
lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" |
1298 |
proof |
|
23389 | 1299 |
assume "True \<Longrightarrow> PROP P" |
1300 |
from this [OF TrueI] show "PROP P" . |
|
21151 | 1301 |
next |
1302 |
assume "PROP P" |
|
23389 | 1303 |
then show "PROP P" . |
21151 | 1304 |
qed |
1305 |
||
1306 |
lemma ex_simps: |
|
1307 |
"!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)" |
|
1308 |
"!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))" |
|
1309 |
"!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)" |
|
1310 |
"!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))" |
|
1311 |
"!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)" |
|
1312 |
"!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))" |
|
1313 |
-- {* Miniscoping: pushing in existential quantifiers. *} |
|
1314 |
by (iprover | blast)+ |
|
1315 |
||
1316 |
lemma all_simps: |
|
1317 |
"!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)" |
|
1318 |
"!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))" |
|
1319 |
"!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)" |
|
1320 |
"!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))" |
|
1321 |
"!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)" |
|
1322 |
"!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))" |
|
1323 |
-- {* Miniscoping: pushing in universal quantifiers. *} |
|
1324 |
by (iprover | blast)+ |
|
15481 | 1325 |
|
21671 | 1326 |
lemmas [simp] = |
1327 |
triv_forall_equality (*prunes params*) |
|
1328 |
True_implies_equals (*prune asms `True'*) |
|
1329 |
if_True |
|
1330 |
if_False |
|
1331 |
if_cancel |
|
1332 |
if_eq_cancel |
|
1333 |
imp_disjL |
|
20973 | 1334 |
(*In general it seems wrong to add distributive laws by default: they |
1335 |
might cause exponential blow-up. But imp_disjL has been in for a while |
|
1336 |
and cannot be removed without affecting existing proofs. Moreover, |
|
1337 |
rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the |
|
1338 |
grounds that it allows simplification of R in the two cases.*) |
|
21671 | 1339 |
conj_assoc |
1340 |
disj_assoc |
|
1341 |
de_Morgan_conj |
|
1342 |
de_Morgan_disj |
|
1343 |
imp_disj1 |
|
1344 |
imp_disj2 |
|
1345 |
not_imp |
|
1346 |
disj_not1 |
|
1347 |
not_all |
|
1348 |
not_ex |
|
1349 |
cases_simp |
|
1350 |
the_eq_trivial |
|
1351 |
the_sym_eq_trivial |
|
1352 |
ex_simps |
|
1353 |
all_simps |
|
1354 |
simp_thms |
|
1355 |
||
1356 |
lemmas [cong] = imp_cong simp_implies_cong |
|
1357 |
lemmas [split] = split_if |
|
20973 | 1358 |
|
22377 | 1359 |
ML {* val HOL_ss = @{simpset} *} |
20973 | 1360 |