src/HOL/Transcendental.thy
author paulson <lp15@cam.ac.uk>
Fri, 28 Feb 2025 13:50:18 +0000
changeset 82218 cbf9f856d3e0
parent 81871 e8ecc32d18c1
child 82349 a854ca7ca7d9
permissions -rw-r--r--
Some new lemmas and some tidying
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     1
(*  Title:      HOL/Transcendental.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
     3
    Author:     Lawrence C Paulson
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
     4
    Author:     Jeremy Avigad
12196
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     5
*)
a3be6b3a9c0b new theories from Jacques Fleuriot
paulson
parents:
diff changeset
     6
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
     7
section \<open>Power Series, Transcendental Functions etc.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
     8
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
     9
theory Transcendental
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
    10
imports Series Deriv NthRoot
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15086
diff changeset
    11
begin
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    12
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
    13
text \<open>A theorem about the factcorial function on the reals.\<close>
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    14
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    15
lemma square_fact_le_2_fact: "fact n * fact n \<le> (fact (2 * n) :: real)"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    16
proof (induct n)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    17
  case 0
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    18
  then show ?case by simp
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    19
next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    20
  case (Suc n)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    21
  have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    22
    by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    23
  also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    24
    by (rule mult_left_mono [OF Suc]) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    25
  also have "\<dots> \<le> of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    26
    by (rule mult_right_mono)+ (auto simp: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    27
  also have "\<dots> = fact (2 * Suc n)" by (simp add: field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    28
  finally show ?case .
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    29
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 62049
diff changeset
    30
62347
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    31
lemma fact_in_Reals: "fact n \<in> \<real>"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    32
  by (induction n) auto
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    33
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    34
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
2230b7047376 generalized some lemmas;
haftmann
parents: 62083
diff changeset
    35
  by (metis of_nat_fact of_real_of_nat_eq)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    36
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    37
lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
    38
  by (simp add: pochhammer_prod)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
    39
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    40
lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    41
proof -
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    42
  have "(fact n :: 'a) = of_real (fact n)"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    43
    by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    44
  also have "norm \<dots> = fact n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    45
    by (subst norm_of_real) simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    46
  finally show ?thesis .
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    47
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
    48
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    49
lemma root_test_convergence:
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    50
  fixes f :: "nat \<Rightarrow> 'a::banach"
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67399
diff changeset
    51
  assumes f: "(\<lambda>n. root n (norm (f n))) \<longlonglongrightarrow> x" \<comment> \<open>could be weakened to lim sup\<close>
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    52
    and "x < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    53
  shows "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    54
proof -
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    55
  have "0 \<le> x"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    56
    by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    57
  from \<open>x < 1\<close> obtain z where z: "x < z" "z < 1"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    58
    by (metis dense)
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    59
  from f \<open>x < z\<close> have "eventually (\<lambda>n. root n (norm (f n)) < z) sequentially"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    60
    by (rule order_tendstoD)
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    61
  then have "eventually (\<lambda>n. norm (f n) \<le> z^n) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    62
    using eventually_ge_at_top
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    63
  proof eventually_elim
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    64
    fix n
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    65
    assume less: "root n (norm (f n)) < z" and n: "1 \<le> n"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    66
    from power_strict_mono[OF less, of n] n show "norm (f n) \<le> z ^ n"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    67
      by simp
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    68
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    69
  then show "summable f"
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    70
    unfolding eventually_sequentially
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    71
    using z \<open>0 \<le> x\<close> by (auto intro!: summable_comparison_test[OF _  summable_geometric])
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    72
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56952
diff changeset
    73
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    74
subsection \<open>Properties of Power Series\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    75
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    76
lemma powser_zero [simp]: "(\<Sum>n. f n * 0 ^ n) = f 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    77
  for f :: "nat \<Rightarrow> 'a::real_normed_algebra_1"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    78
proof -
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
    79
  have "(\<Sum>n<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
    80
    by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
    81
  then show ?thesis by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
    82
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    83
63467
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    84
lemma powser_sums_zero: "(\<lambda>n. a n * 0^n) sums a 0"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    85
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    86
  using sums_finite [of "{0}" "\<lambda>n. a n * 0 ^ n"]
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    87
  by simp
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    88
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    89
lemma powser_sums_zero_iff [simp]: "(\<lambda>n. a n * 0^n) sums x \<longleftrightarrow> a 0 = x"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    90
  for a :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    91
  using powser_sums_zero sums_unique2 by blast
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    92
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    93
text \<open>
f3781c5fb03f misc tuning and modernization;
wenzelm
parents: 63417
diff changeset
    94
  Power series has a circle or radius of convergence: if it sums for \<open>x\<close>,
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
    95
  then it sums absolutely for \<open>z\<close> with \<^term>\<open>\<bar>z\<bar> < \<bar>x\<bar>\<close>.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    96
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
    97
lemma powser_insidea:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
    98
  fixes x z :: "'a::real_normed_div_algebra"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
    99
  assumes 1: "summable (\<lambda>n. f n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   100
    and 2: "norm z < norm x"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   101
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   102
proof -
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   103
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   104
  from 1 have "(\<lambda>n. f n * x^n) \<longlonglongrightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   105
    by (rule summable_LIMSEQ_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   106
  then have "convergent (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   107
    by (rule convergentI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   108
  then have "Cauchy (\<lambda>n. f n * x^n)"
44726
8478eab380e9 generalize some lemmas
huffman
parents: 44725
diff changeset
   109
    by (rule convergent_Cauchy)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   110
  then have "Bseq (\<lambda>n. f n * x^n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   111
    by (rule Cauchy_Bseq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   112
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x^n) \<le> K"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   113
    by (auto simp: Bseq_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   114
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   115
  proof (intro exI allI impI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   116
    fix n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   117
    assume "0 \<le> n"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   118
    have "norm (norm (f n * z ^ n)) * norm (x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   119
          norm (f n * x^n) * norm (z ^ n)"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   120
      by (simp add: norm_mult abs_mult)
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   121
    also have "\<dots> \<le> K * norm (z ^ n)"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   122
      by (simp only: mult_right_mono 4 norm_ge_zero)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   123
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   124
      by (simp add: x_neq_0)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   125
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   126
      by (simp only: mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   127
    finally show "norm (norm (f n * z ^ n)) \<le> K * norm (z ^ n) * inverse (norm (x^n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   128
      by (simp add: mult_le_cancel_right x_neq_0)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   129
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   130
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   131
  proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   132
    from 2 have "norm (norm (z * inverse x)) < 1"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   133
      using x_neq_0
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   134
      by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   135
    then have "summable (\<lambda>n. norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   136
      by (rule summable_geometric)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   137
    then have "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   138
      by (rule summable_mult)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   139
    then show "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x^n)))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   140
      using x_neq_0
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   141
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   142
          power_inverse norm_power mult.assoc)
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   143
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   144
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   145
    by (rule summable_comparison_test)
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   146
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   147
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   148
lemma powser_inside:
53599
78ea983f7987 generalize lemmas
huffman
parents: 53079
diff changeset
   149
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   150
  shows
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   151
    "summable (\<lambda>n. f n * (x^n)) \<Longrightarrow> norm z < norm x \<Longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   152
      summable (\<lambda>n. f n * (z ^ n))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   153
  by (rule powser_insidea [THEN summable_norm_cancel])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   154
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   155
lemma powser_times_n_limit_0:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   156
  fixes x :: "'a::{real_normed_div_algebra,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   157
  assumes "norm x < 1"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   158
    shows "(\<lambda>n. of_nat n * x ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   159
proof -
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   160
  have "norm x / (1 - norm x) \<ge> 0"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
   161
    using assms by (auto simp: field_split_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   162
  moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   163
    using ex_le_of_int by (meson ex_less_of_int)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   164
  ultimately have N0: "N>0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   165
    by auto
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   166
  then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   167
    using N assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   168
  have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   169
      real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N \<le> int n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   170
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   171
    from that have "real_of_int N * real_of_nat (Suc n) \<le> real_of_nat n * real_of_int (1 + N)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   172
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   173
    then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   174
        (real_of_nat n *  (1 + N)) * (norm x * norm (x ^ n))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   175
      using N0 mult_mono by fastforce
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   176
    then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   177
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   178
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   179
  show ?thesis using *
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   180
    by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   181
      (simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   182
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   183
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   184
corollary lim_n_over_pown:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   185
  fixes x :: "'a::{real_normed_field,banach}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   186
  shows "1 < norm x \<Longrightarrow> ((\<lambda>n. of_nat n / x^n) \<longlongrightarrow> 0) sequentially"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   187
  using powser_times_n_limit_0 [of "inverse x"]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
   188
  by (simp add: norm_divide field_split_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   189
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   190
lemma sum_split_even_odd:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   191
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   192
  shows "(\<Sum>i<2 * n. if even i then f i else g i) = (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1))"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   193
proof (induct n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   194
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   195
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   196
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   197
  case (Suc n)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   198
  have "(\<Sum>i<2 * Suc n. if even i then f i else g i) =
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   199
    (\<Sum>i<n. f (2 * i)) + (\<Sum>i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
   200
    using Suc.hyps unfolding One_nat_def by auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   201
  also have "\<dots> = (\<Sum>i<Suc n. f (2 * i)) + (\<Sum>i<Suc n. g (2 * i + 1))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   202
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   203
  finally show ?case .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   204
qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   205
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   206
lemma sums_if':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   207
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   208
  assumes "g sums x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   209
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   210
  unfolding sums_def
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   211
proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   212
  fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   213
  assume "0 < r"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   214
  from \<open>g sums x\<close>[unfolded sums_def, THEN LIMSEQ_D, OF this]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   215
  obtain no where no_eq: "\<And>n. n \<ge> no \<Longrightarrow> (norm (sum g {..<n} - x) < r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   216
    by blast
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   217
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   218
  let ?SUM = "\<lambda> m. \<Sum>i<m. if even i then 0 else g ((i - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   219
  have "(norm (?SUM m - x) < r)" if "m \<ge> 2 * no" for m
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   220
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   221
    from that have "m div 2 \<ge> no" by auto
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   222
    have sum_eq: "?SUM (2 * (m div 2)) = sum g {..< m div 2}"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   223
      using sum_split_even_odd by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   224
    then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   225
      using no_eq unfolding sum_eq using \<open>m div 2 \<ge> no\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   226
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   227
    have "?SUM (2 * (m div 2)) = ?SUM m"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   228
    proof (cases "even m")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   229
      case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   230
      then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   231
        by (auto simp: even_two_times_div_two)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   232
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   233
      case False
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58740
diff changeset
   234
      then have eq: "Suc (2 * (m div 2)) = m" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   235
      then have "even (2 * (m div 2))" using \<open>odd m\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   236
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   237
      also have "\<dots> = ?SUM (2 * (m div 2))" using \<open>even (2 * (m div 2))\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   238
      finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   239
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   240
    ultimately show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   241
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   242
  then show "\<exists>no. \<forall> m \<ge> no. norm (?SUM m - x) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   243
    by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   244
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   245
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   246
lemma sums_if:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   247
  fixes g :: "nat \<Rightarrow> real"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   248
  assumes "g sums x" and "f sums y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   249
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   250
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   251
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   252
  have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   253
    for B T E
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   254
    by (cases B) auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   255
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   256
    using sums_if'[OF \<open>g sums x\<close>] .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   257
  have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   258
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   259
  have "?s sums y" using sums_if'[OF \<open>f sums y\<close>] .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   260
  from this[unfolded sums_def, THEN LIMSEQ_Suc]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   261
  have "(\<lambda>n. if even n then f (n div 2) else 0) sums y"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
   262
    by (simp add: lessThan_Suc_eq_insert_0 sum.atLeast1_atMost_eq image_Suc_lessThan
63566
e5abbdee461a more accurate cong del;
wenzelm
parents: 63558
diff changeset
   263
        if_eq sums_def cong del: if_weak_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   264
  from sums_add[OF g_sums this] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   265
    by (simp only: if_sum)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   266
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   267
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   268
subsection \<open>Alternating series test / Leibniz formula\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   269
(* FIXME: generalise these results from the reals via type classes? *)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   270
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   271
lemma sums_alternating_upper_lower:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   272
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   273
  assumes mono: "\<And>n. a (Suc n) \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   274
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   275
    and "a \<longlonglongrightarrow> 0"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   276
  shows "\<exists>l. ((\<forall>n. (\<Sum>i<2*n. (- 1)^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> l) \<and>
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   277
             ((\<forall>n. l \<le> (\<Sum>i<2*n + 1. (- 1)^i*a i)) \<and> (\<lambda> n. \<Sum>i<2*n + 1. (- 1)^i*a i) \<longlonglongrightarrow> l)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   278
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   279
proof (rule nested_sequence_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   280
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   281
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   282
  show "\<forall>n. ?f n \<le> ?f (Suc n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   283
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   284
    show "?f n \<le> ?f (Suc n)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   285
      using mono[of "2*n"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   286
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   287
  show "\<forall>n. ?g (Suc n) \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   288
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   289
    show "?g (Suc n) \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   290
      using mono[of "Suc (2*n)"] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   291
  qed
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   292
  show "\<forall>n. ?f n \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   293
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   294
    show "?f n \<le> ?g n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   295
      using fg_diff a_pos by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   296
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   297
  show "(\<lambda>n. ?f n - ?g n) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   298
    unfolding fg_diff
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   299
  proof (rule LIMSEQ_I)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   300
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   301
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   302
    with \<open>a \<longlonglongrightarrow> 0\<close>[THEN LIMSEQ_D] obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   303
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   304
    then have "\<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   305
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   306
    then show "\<exists>N. \<forall>n \<ge> N. norm (- a (2 * n) - 0) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   307
      by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   308
  qed
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   309
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   310
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   311
lemma summable_Leibniz':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   312
  fixes a :: "nat \<Rightarrow> real"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   313
  assumes a_zero: "a \<longlonglongrightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   314
    and a_pos: "\<And>n. 0 \<le> a n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   315
    and a_monotone: "\<And>n. a (Suc n) \<le> a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   316
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   317
    and "\<And>n. (\<Sum>i<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   318
    and "(\<lambda>n. \<Sum>i<2*n. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   319
    and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i<2*n+1. (-1)^i*a i)"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   320
    and "(\<lambda>n. \<Sum>i<2*n+1. (-1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (-1)^i*a i)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   321
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   322
  let ?S = "\<lambda>n. (-1)^n * a n"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   323
  let ?P = "\<lambda>n. \<Sum>i<n. ?S i"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   324
  let ?f = "\<lambda>n. ?P (2 * n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   325
  let ?g = "\<lambda>n. ?P (2 * n + 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   326
  obtain l :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   327
    where below_l: "\<forall> n. ?f n \<le> l"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   328
      and "?f \<longlonglongrightarrow> l"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   329
      and above_l: "\<forall> n. l \<le> ?g n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   330
      and "?g \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   331
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   332
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   333
  let ?Sa = "\<lambda>m. \<Sum>n<m. ?S n"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   334
  have "?Sa \<longlonglongrightarrow> l"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   335
  proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   336
    fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   337
    assume "0 < r"
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   338
    with \<open>?f \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   339
    obtain f_no where f: "\<And>n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   340
      by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   341
    from \<open>0 < r\<close> \<open>?g \<longlonglongrightarrow> l\<close>[THEN LIMSEQ_D]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   342
    obtain g_no where g: "\<And>n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   343
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   344
    have "norm (?Sa n - l) < r" if "n \<ge> (max (2 * f_no) (2 * g_no))" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   345
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   346
      from that have "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   347
      show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   348
      proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   349
        case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   350
        then have n_eq: "2 * (n div 2) = n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   351
          by (simp add: even_two_times_div_two)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   352
        with \<open>n \<ge> 2 * f_no\<close> have "n div 2 \<ge> f_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   353
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   354
        from f[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   355
          unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   356
      next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   357
        case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   358
        then have "even (n - 1)" by simp
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   359
        then have n_eq: "2 * ((n - 1) div 2) = n - 1"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58709
diff changeset
   360
          by (simp add: even_two_times_div_two)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   361
        then have range_eq: "n - 1 + 1 = n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   362
          using odd_pos[OF False] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   363
        from n_eq \<open>n \<ge> 2 * g_no\<close> have "(n - 1) div 2 \<ge> g_no"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   364
          by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   365
        from g[OF this] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   366
          by (simp only: n_eq range_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   367
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   368
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   369
    then show "\<exists>no. \<forall>n \<ge> no. norm (?Sa n - l) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   370
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   371
  then have sums_l: "(\<lambda>i. (-1)^i * a i) sums l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   372
    by (simp only: sums_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   373
  then show "summable ?S"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   374
    by (auto simp: summable_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   375
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   376
  have "l = suminf ?S" by (rule sums_unique[OF sums_l])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   377
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   378
  fix n
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   379
  show "suminf ?S \<le> ?g n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   380
    unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   381
  show "?f n \<le> suminf ?S"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   382
    unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   383
  show "?g \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   384
    using \<open>?g \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   385
  show "?f \<longlonglongrightarrow> suminf ?S"
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   386
    using \<open>?f \<longlonglongrightarrow> l\<close> \<open>l = suminf ?S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   387
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   388
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   389
theorem summable_Leibniz:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   390
  fixes a :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   391
  assumes a_zero: "a \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   392
    and "monoseq a"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   393
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   394
    and "0 < a 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   395
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n. (- 1)^i * a i .. \<Sum>i<2*n+1. (- 1)^i * a i})" (is "?pos")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   396
    and "a 0 < 0 \<longrightarrow>
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   397
      (\<forall>n. (\<Sum>i. (- 1)^i*a i) \<in> { \<Sum>i<2*n+1. (- 1)^i * a i .. \<Sum>i<2*n. (- 1)^i * a i})" (is "?neg")
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   398
    and "(\<lambda>n. \<Sum>i<2*n. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?f")
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   399
    and "(\<lambda>n. \<Sum>i<2*n+1. (- 1)^i*a i) \<longlonglongrightarrow> (\<Sum>i. (- 1)^i*a i)" (is "?g")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   400
proof -
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   401
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   402
  proof (cases "(\<forall>n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   403
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   404
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   405
      and ge0: "\<And>n. 0 \<le> a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   406
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   407
    have mono: "a (Suc n) \<le> a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   408
      using ord[where n="Suc n" and m=n] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   409
    note leibniz = summable_Leibniz'[OF \<open>a \<longlonglongrightarrow> 0\<close> ge0]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   410
    from leibniz[OF mono]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   411
    show ?thesis using \<open>0 \<le> a 0\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   412
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   413
    let ?a = "\<lambda>n. - a n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   414
    case False
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   415
    with monoseq_le[OF \<open>monoseq a\<close> \<open>a \<longlonglongrightarrow> 0\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   416
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   417
    then have ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   418
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   419
    have monotone: "?a (Suc n) \<le> ?a n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   420
      using ord[where n="Suc n" and m=n] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   421
    note leibniz =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   422
      summable_Leibniz'[OF _ ge0, of "\<lambda>x. x",
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
   423
        OF tendsto_minus[OF \<open>a \<longlonglongrightarrow> 0\<close>, unfolded minus_zero] monotone]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   424
    have "summable (\<lambda> n. (-1)^n * ?a n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   425
      using leibniz(1) by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   426
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   427
      unfolding summable_def by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   428
    from this[THEN sums_minus] have "(\<lambda> n. (-1)^n * a n) sums -l"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   429
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   430
    then have ?summable by (auto simp: summable_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   431
    moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   432
    have "\<bar>- a - - b\<bar> = \<bar>a - b\<bar>" for a b :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   433
      unfolding minus_diff_minus by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   434
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   435
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
   436
    have move_minus: "(\<Sum>n. - ((- 1) ^ n * a n)) = - (\<Sum>n. (- 1) ^ n * a n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   437
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   438
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   439
    have ?pos using \<open>0 \<le> ?a 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   440
    moreover have ?neg
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   441
      using leibniz(2,4)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   442
      unfolding mult_minus_right sum_negf move_minus neg_le_iff_le
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   443
      by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   444
    moreover have ?f and ?g
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   445
      using leibniz(3,5)[unfolded mult_minus_right sum_negf move_minus, THEN tendsto_minus_cancel]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   446
      by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   447
    ultimately show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   448
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
   449
  then show ?summable and ?pos and ?neg and ?f and ?g
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   450
    by safe
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   451
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   452
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   453
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   454
subsection \<open>Term-by-Term Differentiability of Power Series\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
   455
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   456
definition diffs :: "(nat \<Rightarrow> 'a::ring_1) \<Rightarrow> nat \<Rightarrow> 'a"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   457
  where "diffs c = (\<lambda>n. of_nat (Suc n) * c (Suc n))"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   458
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   459
text \<open>Lemma about distributing negation over it.\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   460
lemma diffs_minus: "diffs (\<lambda>n. - c n) = (\<lambda>n. - diffs c n)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   461
  by (simp add: diffs_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   462
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   463
lemma diffs_equiv:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   464
  fixes x :: "'a::{real_normed_vector,ring_1}"
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   465
  shows "summable (\<lambda>n. diffs c n * x^n) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   466
    (\<lambda>n. of_nat n * c n * x^(n - Suc 0)) sums (\<Sum>n. diffs c n * x^n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   467
  unfolding diffs_def
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
   468
  by (simp add: summable_sums sums_Suc_imp)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   469
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   470
lemma lemma_termdiff1:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   471
  fixes z :: "'a :: {monoid_mult,comm_ring}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   472
  shows "(\<Sum>p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   473
    (\<Sum>p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   474
  by (auto simp: algebra_simps power_add [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   475
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   476
lemma sumr_diff_mult_const2: "sum f {..<n} - of_nat n * r = (\<Sum>i<n. f i - r)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   477
  for r :: "'a::ring_1"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   478
  by (simp add: sum_subtractf)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   479
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   480
lemma lemma_termdiff2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   481
  fixes h :: "'a::field"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   482
  assumes h: "h \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   483
  shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   484
         h * (\<Sum>p< n - Suc 0. \<Sum>q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   485
    (is "?lhs = ?rhs")
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   486
proof (cases n)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   487
  case (Suc m)
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   488
  have 0: "\<And>x k. (\<Sum>n<Suc k. h * (z ^ x * (z ^ (k - n) * (h + z) ^ n))) =
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   489
                 (\<Sum>j<Suc k.  h * ((h + z) ^ j * z ^ (x + k - j)))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   490
    by (auto simp add: power_add [symmetric] mult.commute intro: sum.cong)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   491
  have *: "(\<Sum>i<m. z ^ i * ((z + h) ^ (m - i) - z ^ (m - i))) =
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   492
           (\<Sum>i<m. \<Sum>j<m - i. h * ((z + h) ^ j * z ^ (m - Suc j)))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   493
    by (force simp add: less_iff_Suc_add sum_distrib_left diff_power_eq_sum ac_simps 0
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   494
        simp del: sum.lessThan_Suc power_Suc intro: sum.cong)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   495
  have "h * ?lhs = (z + h) ^ n - z ^ n - h * of_nat n * z ^ (n - Suc 0)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   496
    by (simp add: right_diff_distrib diff_divide_distrib h mult.assoc [symmetric])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   497
  also have "... = h * ((\<Sum>p<Suc m. (z + h) ^ p * z ^ (m - p)) - of_nat (Suc m) * z ^ m)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   498
    by (simp add: Suc diff_power_eq_sum h right_diff_distrib [symmetric] mult.assoc
70097
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 69654
diff changeset
   499
        del: power_Suc sum.lessThan_Suc of_nat_Suc)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   500
  also have "... = h * ((\<Sum>p<Suc m. (z + h) ^ (m - p) * z ^ p) - of_nat (Suc m) * z ^ m)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   501
    by (subst sum.nat_diff_reindex[symmetric]) simp
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   502
  also have "... = h * (\<Sum>i<Suc m. (z + h) ^ (m - i) * z ^ i - z ^ m)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   503
    by (simp add: sum_subtractf)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   504
  also have "... = h * ?rhs"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   505
    by (simp add: lemma_termdiff1 sum_distrib_left Suc *)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   506
  finally have "h * ?lhs = h * ?rhs" .
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   507
  then show ?thesis
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   508
    by (simp add: h)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   509
qed auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   510
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   511
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   512
lemma real_sum_nat_ivl_bounded2:
35028
108662d50512 more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents: 34974
diff changeset
   513
  fixes K :: "'a::linordered_semidom"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   514
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K" and K: "0 \<le> K"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   515
  shows "sum f {..<n-k} \<le> of_nat n * K"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   516
proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   517
  have "sum f {..<n-k} \<le> (\<Sum>i<n - k. K)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   518
    by (rule sum_mono [OF f]) auto
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   519
  also have "... \<le> of_nat n * K"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   520
    by (auto simp: mult_right_mono K)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   521
  finally show ?thesis .
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   522
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   523
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   524
lemma lemma_termdiff3:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   525
  fixes h z :: "'a::real_normed_field"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   526
  assumes 1: "h \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   527
    and 2: "norm z \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   528
    and 3: "norm (z + h) \<le> K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   529
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   530
    of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   531
proof -
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   532
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   533
    norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   534
    by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   535
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   536
  proof (rule mult_right_mono [OF _ norm_ge_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   537
    from norm_ge_zero 2 have K: "0 \<le> K"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   538
      by (rule order_trans)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   539
    have le_Kn: "norm ((z + h) ^ i * z ^ j) \<le> K ^ n" if "i + j = n" for i j n
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   540
    proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   541
      have "norm (z + h) ^ i * norm z ^ j \<le> K ^ i * K ^ j"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   542
        by (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   543
      also have "... = K^n"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   544
        by (metis power_add that)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   545
      finally show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   546
        by (simp add: norm_mult norm_power) 
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   547
    qed
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   548
    then have "\<And>p q.
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   549
       \<lbrakk>p < n; q < n - Suc 0\<rbrakk> \<Longrightarrow> norm ((z + h) ^ q * z ^ (n - 2 - q)) \<le> K ^ (n - 2)"
71959
ee2c7f0dd1be prefer single name
haftmann
parents: 71918
diff changeset
   550
      by (simp del: subst_all)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   551
    then
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   552
    show "norm (\<Sum>p<n - Suc 0. \<Sum>q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) \<le>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   553
        of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   554
      by (intro order_trans [OF norm_sum]
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   555
          real_sum_nat_ivl_bounded2 mult_nonneg_nonneg of_nat_0_le_iff zero_le_power K)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   556
  qed
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   557
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   558
    by (simp only: mult.assoc)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   559
  finally show ?thesis .
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   560
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   561
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   562
lemma lemma_termdiff4:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   563
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   564
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   565
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   566
    and le: "\<And>h. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (f h) \<le> K * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   567
  shows "f \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   568
proof (rule tendsto_norm_zero_cancel)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   569
  show "(\<lambda>h. norm (f h)) \<midarrow>0\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   570
  proof (rule real_tendsto_sandwich)
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   571
    show "eventually (\<lambda>h. 0 \<le> norm (f h)) (at 0)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   572
      by simp
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   573
    show "eventually (\<lambda>h. norm (f h) \<le> K * norm h) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   574
      using k by (auto simp: eventually_at dist_norm le)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   575
    show "(\<lambda>h. 0) \<midarrow>(0::'a)\<rightarrow> (0::real)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   576
      by (rule tendsto_const)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   577
    have "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> K * norm (0::'a)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   578
      by (intro tendsto_intros)
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   579
    then show "(\<lambda>h. K * norm h) \<midarrow>(0::'a)\<rightarrow> 0"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   580
      by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   581
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   582
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   583
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
   584
lemma lemma_termdiff5:
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   585
  fixes g :: "'a::real_normed_vector \<Rightarrow> nat \<Rightarrow> 'b::banach"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   586
    and k :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   587
  assumes k: "0 < k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   588
    and f: "summable f"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   589
    and le: "\<And>h n. h \<noteq> 0 \<Longrightarrow> norm h < k \<Longrightarrow> norm (g h n) \<le> f n * norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   590
  shows "(\<lambda>h. suminf (g h)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   591
proof (rule lemma_termdiff4 [OF k])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   592
  fix h :: 'a
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   593
  assume "h \<noteq> 0" and "norm h < k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   594
  then have 1: "\<forall>n. norm (g h n) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   595
    by (simp add: le)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   596
  then have "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   597
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   598
  moreover from f have 2: "summable (\<lambda>n. f n * norm h)"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   599
    by (rule summable_mult2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   600
  ultimately have 3: "summable (\<lambda>n. norm (g h n))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   601
    by (rule summable_comparison_test)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   602
  then have "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   603
    by (rule summable_norm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   604
  also from 1 3 2 have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
72219
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 72211
diff changeset
   605
    by (simp add: suminf_le)
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   606
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   607
    by (rule suminf_mult2 [symmetric])
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   608
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   609
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   610
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   611
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   612
(* FIXME: Long proofs *)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   613
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   614
lemma termdiffs_aux:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   615
  fixes x :: "'a::{real_normed_field,banach}"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   616
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   617
    and 2: "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   618
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   619
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   620
  from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   621
    by fast
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   622
  from norm_ge_zero r1 have r: "0 < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   623
    by (rule order_le_less_trans)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   624
  then have r_neq_0: "r \<noteq> 0" by simp
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   625
  show ?thesis
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   626
  proof (rule lemma_termdiff5)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   627
    show "0 < r - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   628
      using r1 by simp
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   629
    from r r2 have "norm (of_real r::'a) < norm K"
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   630
      by simp
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   631
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   632
      by (rule powser_insidea)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   633
    then have "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   634
      using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   635
    then have "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   636
      by (rule diffs_equiv [THEN sums_summable])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   637
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0)) =
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   638
               (\<lambda>n. diffs (\<lambda>m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   639
      by (simp add: diffs_def r_neq_0 fun_eq_iff split: nat_diff_split)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   640
    finally have "summable
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   641
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   642
      by (rule diffs_equiv [THEN sums_summable])
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   643
    also have
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   644
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   645
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   646
      by (rule ext) (simp add: r_neq_0 split: nat_diff_split)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   647
    finally show "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   648
  next
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   649
    fix h :: 'a and n
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   650
    assume h: "h \<noteq> 0"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   651
    assume "norm h < r - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   652
    then have "norm x + norm h < r" by simp
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   653
    with norm_triangle_ineq 
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   654
    have xh: "norm (x + h) < r"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   655
      by (rule order_le_less_trans)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   656
    have "norm (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   657
    \<le> real n * (real (n - Suc 0) * (r ^ (n - 2) * norm h))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   658
      by (metis (mono_tags, lifting) h mult.assoc lemma_termdiff3 less_eq_real_def r1 xh)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   659
    then show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<le>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   660
      norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   661
      by (simp only: norm_mult mult.assoc mult_left_mono [OF _ norm_ge_zero])
20849
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   662
  qed
389cd9c8cfe1 rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents: 20692
diff changeset
   663
qed
20217
25b068a99d2b linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents: 19765
diff changeset
   664
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   665
lemma termdiffs:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
   666
  fixes K x :: "'a::{real_normed_field,banach}"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   667
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   668
    and 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   669
    and 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   670
    and 4: "norm x < norm K"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   671
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. (diffs c) n * x^n)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   672
  unfolding DERIV_def
29163
e72d07a878f8 clean up some proofs; remove unused lemmas
huffman
parents: 28952
diff changeset
   673
proof (rule LIM_zero_cancel)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   674
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x^n)) / h
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   675
            - suminf (\<lambda>n. diffs c n * x^n)) \<midarrow>0\<rightarrow> 0"
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   676
  proof (rule LIM_equal2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   677
    show "0 < norm K - norm x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   678
      using 4 by (simp add: less_diff_eq)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   679
  next
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   680
    fix h :: 'a
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   681
    assume "norm (h - 0) < norm K - norm x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   682
    then have "norm x + norm h < norm K" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   683
    then have 5: "norm (x + h) < norm K"
23082
ffef77eed382 generalize powerseries and termdiffs lemmas using axclasses
huffman
parents: 23069
diff changeset
   684
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   685
    have "summable (\<lambda>n. c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   686
      and "summable (\<lambda>n. c n * (x + h) ^ n)"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   687
      and "summable (\<lambda>n. diffs c n * x^n)"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   688
      using 1 2 4 5 by (auto elim: powser_inside)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   689
    then have "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   690
          (\<Sum>n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
56167
ac8098b0e458 tuned proofs
huffman
parents: 55832
diff changeset
   691
      by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   692
    then show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x^n)) / h - (\<Sum>n. diffs c n * x^n) =
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
   693
          (\<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
   694
      by (simp add: algebra_simps)
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   695
  next
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   696
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) \<midarrow>0\<rightarrow> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   697
      by (rule termdiffs_aux [OF 3 4])
20860
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   698
  qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   699
qed
1a8efd618190 reorganize and speed up termdiffs proofs
huffman
parents: 20849
diff changeset
   700
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   701
subsection \<open>The Derivative of a Power Series Has the Same Radius of Convergence\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   702
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   703
lemma termdiff_converges:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   704
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   705
  assumes K: "norm x < K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   706
    and sm: "\<And>x. norm x < K \<Longrightarrow> summable(\<lambda>n. c n * x ^ n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   707
  shows "summable (\<lambda>n. diffs c n * x ^ n)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   708
proof (cases "x = 0")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   709
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   710
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   711
    using powser_sums_zero sums_summable by auto
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   712
next
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   713
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   714
  then have "K > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   715
    using K less_trans zero_less_norm_iff by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   716
  then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   717
    using K False
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
   718
    by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   719
  have to0: "(\<lambda>n. of_nat n * (x / of_real r) ^ n) \<longlonglongrightarrow> 0"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   720
    using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   721
  obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> real_of_nat n * norm x ^ n < r ^ n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   722
    using r LIMSEQ_D [OF to0, of 1]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   723
    by (auto simp: norm_divide norm_mult norm_power field_simps)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   724
  have "summable (\<lambda>n. (of_nat n * c n) * x ^ n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   725
  proof (rule summable_comparison_test')
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   726
    show "summable (\<lambda>n. norm (c n * of_real r ^ n))"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   727
      apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   728
      using N r norm_of_real [of "r + K", where 'a = 'a] by auto
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   729
    show "\<And>n. N \<le> n \<Longrightarrow> norm (of_nat n * c n * x ^ n) \<le> norm (c n * of_real r ^ n)"
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   730
      using N r by (fastforce simp add: norm_mult norm_power less_eq_real_def)
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   731
  qed
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   732
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   733
    using summable_iff_shift [of "\<lambda>n. of_nat n * c n * x ^ n" 1]
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   734
    by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   735
  then have "summable (\<lambda>n. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   736
    using False summable_mult2 [of "\<lambda>n. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60762
diff changeset
   737
    by (simp add: mult.assoc) (auto simp: ac_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   738
  then show ?thesis
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   739
    by (simp add: diffs_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   740
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   741
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   742
lemma termdiff_converges_all:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   743
  fixes x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   744
  assumes "\<And>x. summable (\<lambda>n. c n * x^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   745
  shows "summable (\<lambda>n. diffs c n * x^n)"
68594
5b05ede597b8 de-applying
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
   746
  by (rule termdiff_converges [where K = "1 + norm x"]) (use assms in auto)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   747
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   748
lemma termdiffs_strong:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   749
  fixes K x :: "'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   750
  assumes sm: "summable (\<lambda>n. c n * K ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   751
    and K: "norm x < norm K"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   752
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x^n) x :> (\<Sum>n. diffs c n * x^n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   753
proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   754
  have "norm K + norm x < norm K + norm K"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   755
    using K by force
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   756
  then have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   757
    by (auto simp: norm_triangle_lt norm_divide field_simps)
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   758
  then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   759
    by simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   760
  have "summable (\<lambda>n. c n * (of_real (norm x + norm K) / 2) ^ n)"
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
   761
    by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   762
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs c n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   763
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   764
  moreover have "\<And>x. norm x < norm K \<Longrightarrow> summable (\<lambda>n. diffs(diffs c) n * x ^ n)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   765
    by (blast intro: sm termdiff_converges powser_inside)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   766
  ultimately show ?thesis
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   767
    by (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   768
       (use K in \<open>auto simp: field_simps simp flip: of_real_add\<close>)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   769
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   770
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   771
lemma termdiffs_strong_converges_everywhere:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   772
  fixes K x :: "'a::{real_normed_field,banach}"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   773
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   774
  shows "((\<lambda>x. \<Sum>n. c n * x^n) has_field_derivative (\<Sum>n. diffs c n * x^n)) (at x)"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   775
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   776
  by (force simp del: of_real_add)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   777
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   778
lemma termdiffs_strong':
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   779
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   780
  assumes "\<And>z. norm z < K \<Longrightarrow> summable (\<lambda>n. c n * z ^ n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   781
  assumes "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   782
  shows   "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   783
proof (rule termdiffs_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   784
  define L :: real where "L =  (norm z + K) / 2"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   785
  have "0 \<le> norm z" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   786
  also note \<open>norm z < K\<close>
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   787
  finally have K: "K \<ge> 0" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   788
  from assms K have L: "L \<ge> 0" "norm z < L" "L < K" by (simp_all add: L_def)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   789
  from L show "norm z < norm (of_real L :: 'a)" by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   790
  from L show "summable (\<lambda>n. c n * of_real L ^ n)" by (intro assms(1)) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   791
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   792
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   793
lemma termdiffs_sums_strong:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   794
  fixes z :: "'a :: {banach,real_normed_field}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   795
  assumes sums: "\<And>z. norm z < K \<Longrightarrow> (\<lambda>n. c n * z ^ n) sums f z"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   796
  assumes deriv: "(f has_field_derivative f') (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   797
  assumes norm: "norm z < K"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   798
  shows   "(\<lambda>n. diffs c n * z ^ n) sums f'"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   799
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   800
  have summable: "summable (\<lambda>n. diffs c n * z^n)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   801
    by (intro termdiff_converges[OF norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   802
  from norm have "eventually (\<lambda>z. z \<in> norm -` {..<K}) (nhds z)"
65552
f533820e7248 theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents: 65204
diff changeset
   803
    by (intro eventually_nhds_in_open open_vimage)
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
   804
       (simp_all add: continuous_on_norm)
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   805
  hence eq: "eventually (\<lambda>z. (\<Sum>n. c n * z^n) = f z) (nhds z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   806
    by eventually_elim (insert sums, simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   807
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   808
  have "((\<lambda>z. \<Sum>n. c n * z^n) has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   809
    by (intro termdiffs_strong'[OF _ norm] sums_summable[OF sums])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   810
  hence "(f has_field_derivative (\<Sum>n. diffs c n * z^n)) (at z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   811
    by (subst (asm) DERIV_cong_ev[OF refl eq refl])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   812
  from this and deriv have "(\<Sum>n. diffs c n * z^n) = f'" by (rule DERIV_unique)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   813
  with summable show ?thesis by (simp add: sums_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   814
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
   815
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   816
lemma isCont_powser:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   817
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   818
  assumes "summable (\<lambda>n. c n * K ^ n)"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   819
  assumes "norm x < norm K"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   820
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   821
  using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   822
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   823
lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   824
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   825
lemma isCont_powser_converges_everywhere:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   826
  fixes K x :: "'a::{real_normed_field,banach}"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   827
  assumes "\<And>y. summable (\<lambda>n. c n * y ^ n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   828
  shows "isCont (\<lambda>x. \<Sum>n. c n * x^n) x"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   829
  using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   830
  by (force intro!: DERIV_isCont simp del: of_real_add)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   831
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   832
lemma powser_limit_0:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   833
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   834
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   835
    and sm: "\<And>x. norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   836
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   837
proof -
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   838
  have "norm (of_real s / 2 :: 'a) < s"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   839
    using s  by (auto simp: norm_divide)
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   840
  then have "summable (\<lambda>n. a n * (of_real s / 2) ^ n)"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   841
    by (rule sums_summable [OF sm])
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   842
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) has_field_derivative (\<Sum>n. diffs a n * 0 ^ n)) (at 0)"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   843
    by (rule termdiffs_strong) (use s in \<open>auto simp: norm_divide\<close>)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   844
  then have "isCont (\<lambda>x. \<Sum>n. a n * x ^ n) 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   845
    by (blast intro: DERIV_continuous)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   846
  then have "((\<lambda>x. \<Sum>n. a n * x ^ n) \<longlongrightarrow> a 0) (at 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   847
    by (simp add: continuous_within)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   848
  moreover have "(\<lambda>x. f x - (\<Sum>n. a n * x ^ n)) \<midarrow>0\<rightarrow> 0"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   849
    apply (clarsimp simp: LIM_eq)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   850
    apply (rule_tac x=s in exI)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 67727
diff changeset
   851
    using s sm sums_unique by fastforce
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   852
  ultimately show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
   853
    by (rule Lim_transform)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   854
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   855
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
   856
lemma powser_limit_0_strong:
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   857
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   858
  assumes s: "0 < s"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   859
    and sm: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> (\<lambda>n. a n * x ^ n) sums (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   860
  shows "(f \<longlongrightarrow> a 0) (at 0)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   861
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   862
  have *: "((\<lambda>x. if x = 0 then a 0 else f x) \<longlongrightarrow> a 0) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   863
    by (rule powser_limit_0 [OF s]) (auto simp: powser_sums_zero sm)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   864
  show ?thesis
72220
bb29e4eb938d but not the [cong] rule
paulson <lp15@cam.ac.uk>
parents: 72219
diff changeset
   865
    using "*" by (auto cong: Lim_cong_within)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   866
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
   867
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
   868
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   869
subsection \<open>Derivability of power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   870
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   871
lemma DERIV_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   872
  fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   873
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   874
    and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   875
    and x0_in_I: "x0 \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   876
    and "summable (f' x0)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   877
    and "summable L"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   878
    and L_def: "\<And>n x y. x \<in> {a <..< b} \<Longrightarrow> y \<in> {a <..< b} \<Longrightarrow> \<bar>f x n - f y n\<bar> \<le> L n * \<bar>x - y\<bar>"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   879
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   880
  unfolding DERIV_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   881
proof (rule LIM_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   882
  fix r :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   883
  assume "0 < r" then have "0 < r/3" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   884
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   885
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   886
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable L\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   887
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   888
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   889
    using suminf_exist_split[OF \<open>0 < r/3\<close> \<open>summable (f' x0)\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   890
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   891
  let ?N = "Suc (max N_L N_f')"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   892
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   893
    and L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   894
    using N_L[of "?N"] and N_f' [of "?N"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   895
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   896
  let ?diff = "\<lambda>i x. (f (x0 + x) i - f x0 i) / x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   897
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   898
  let ?r = "r / (3 * real ?N)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   899
  from \<open>0 < r\<close> have "0 < ?r" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   900
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   901
  let ?s = "\<lambda>n. SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
   902
  define S' where "S' = Min (?s ` {..< ?N })"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   903
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   904
  have "0 < S'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   905
    unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   906
  proof (rule iffD2[OF Min_gr_iff])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   907
    show "\<forall>x \<in> (?s ` {..< ?N }). 0 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   908
    proof
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   909
      fix x
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   910
      assume "x \<in> ?s ` {..<?N}"
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   911
      then obtain n where "x = ?s n" and "n \<in> {..<?N}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   912
        using image_iff[THEN iffD1] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   913
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>, unfolded real_norm_def]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   914
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   915
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   916
      have "0 < ?s n"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   917
        by (rule someI2[where a=s]) (auto simp: s_bound simp del: of_nat_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   918
      then show "0 < x" by (simp only: \<open>x = ?s n\<close>)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   919
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   920
  qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   921
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
   922
  define S where "S = min (min (x0 - a) (b - x0)) S'"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   923
  then have "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   924
    and "S \<le> S'" using x0_in_I and \<open>0 < S'\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   925
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   926
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   927
  have "\<bar>(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\<bar> < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   928
    if "x \<noteq> 0" and "\<bar>x\<bar> < S" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   929
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   930
    from that have x_in_I: "x0 + x \<in> {a <..< b}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   931
      using S_a S_b by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   932
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   933
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   934
    note div_smbl = summable_divide[OF diff_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   935
    note all_smbl = summable_diff[OF div_smbl \<open>summable (f' x0)\<close>]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   936
    note ign = summable_ignore_initial_segment[where k="?N"]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   937
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   938
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   939
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF \<open>summable (f' x0)\<close>]]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   940
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   941
    have 1: "\<bar>(\<bar>?diff (n + ?N) x\<bar>)\<bar> \<le> L (n + ?N)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   942
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   943
      have "\<bar>?diff (n + ?N) x\<bar> \<le> L (n + ?N) * \<bar>(x0 + x) - x0\<bar> / \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   944
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   945
        by (simp only: abs_divide)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   946
      with \<open>x \<noteq> 0\<close> show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   947
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   948
    note 2 = summable_rabs_comparison_test[OF _ ign[OF \<open>summable L\<close>]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   949
    from 1 have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   950
      by (metis (lifting) abs_idempotent
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   951
          order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF \<open>summable L\<close>]]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   952
    then have "\<bar>\<Sum>i. ?diff (i + ?N) x\<bar> \<le> r / 3" (is "?L_part \<le> r/3")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   953
      using L_estimate by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   954
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   955
    have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n\<bar> \<le> (\<Sum>n<?N. \<bar>?diff n x - f' x0 n\<bar>)" ..
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   956
    also have "\<dots> < (\<Sum>n<?N. ?r)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   957
    proof (rule sum_strict_mono)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   958
      fix n
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   959
      assume "n \<in> {..< ?N}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   960
      have "\<bar>x\<bar> < S" using \<open>\<bar>x\<bar> < S\<close> .
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   961
      also have "S \<le> S'" using \<open>S \<le> S'\<close> .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   962
      also have "S' \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   963
        unfolding S'_def
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   964
      proof (rule Min_le_iff[THEN iffD2])
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   965
        have "?s n \<in> (?s ` {..<?N}) \<and> ?s n \<le> ?s n"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   966
          using \<open>n \<in> {..< ?N}\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   967
        then show "\<exists> a \<in> (?s ` {..<?N}). a \<le> ?s n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   968
          by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   969
      qed auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   970
      finally have "\<bar>x\<bar> < ?s n" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   971
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   972
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF \<open>0 < ?r\<close>,
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   973
          unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   974
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   975
      with \<open>x \<noteq> 0\<close> and \<open>\<bar>x\<bar> < ?s n\<close> show "\<bar>?diff n x - f' x0 n\<bar> < ?r"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   976
        by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   977
    qed auto
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   978
    also have "\<dots> = of_nat (card {..<?N}) * ?r"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
   979
      by (rule sum_constant)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   980
    also have "\<dots> = real ?N * ?r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   981
      by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   982
    also have "\<dots> = r/3"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   983
      by (auto simp del: of_nat_Suc)
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
   984
    finally have "\<bar>\<Sum>n<?N. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   985
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
   986
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   987
    have "\<bar>(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\<bar> =
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   988
        \<bar>\<Sum>n. ?diff n x - f' x0 n\<bar>"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   989
      unfolding suminf_diff[OF div_smbl \<open>summable (f' x0)\<close>, symmetric]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   990
      using suminf_divide[OF diff_smbl, symmetric] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
   991
    also have "\<dots> \<le> ?diff_part + \<bar>(\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N))\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   992
      unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   993
      unfolding suminf_diff[OF div_shft_smbl ign[OF \<open>summable (f' x0)\<close>]]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   994
      apply (simp only: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
   995
      using abs_triangle_ineq by blast
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   996
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
   997
      using abs_triangle_ineq4 by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
   998
    also have "\<dots> < r /3 + r/3 + r/3"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   999
      using \<open>?diff_part < r/3\<close> \<open>?L_part \<le> r/3\<close> and \<open>?f'_part < r/3\<close>
36842
99745a4b9cc9 fix some linarith_split_limit warnings
huffman
parents: 36824
diff changeset
  1000
      by (rule add_strict_mono [OF add_less_le_mono])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1001
    finally show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1002
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1003
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1004
  then show "\<exists>s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1005
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1006
    using \<open>0 < S\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1007
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1008
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1009
lemma DERIV_power_series':
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1010
  fixes f :: "nat \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1011
  assumes converges: "\<And>x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda>n. f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1012
    and x0_in_I: "x0 \<in> {-R <..< R}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1013
    and "0 < R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1014
  shows "DERIV (\<lambda>x. (\<Sum>n. f n * x^(Suc n))) x0 :> (\<Sum>n. f n * real (Suc n) * x0^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1015
    (is "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1016
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1017
  have for_subinterval: "DERIV (\<lambda>x. suminf (?f x)) x0 :> suminf (?f' x0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1018
    if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1019
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1020
    from that have "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1021
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1022
    show ?thesis
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1023
    proof (rule DERIV_series')
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1024
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1025
      proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1026
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1027
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1028
        then have in_Rball: "(R' + R) / 2 \<in> {-R <..< R}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1029
          using \<open>R' < R\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1030
        have "norm R' < norm ((R' + R) / 2)"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1031
          using \<open>0 < R'\<close> \<open>0 < R\<close> \<open>R' < R\<close> by (auto simp: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1032
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1033
          by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1034
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1035
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1036
      fix n x y
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1037
      assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1038
      show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1039
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1040
        have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1041
          (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar>"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1042
          unfolding right_diff_distrib[symmetric] diff_power_eq_sum abs_mult
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1043
          by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1044
        also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1045
        proof (rule mult_left_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1046
          have "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1047
            by (rule sum_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1048
          also have "\<dots> \<le> (\<Sum>p<Suc n. R' ^ n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1049
          proof (rule sum_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1050
            fix p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1051
            assume "p \<in> {..<Suc n}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1052
            then have "p \<le> n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1053
            have "\<bar>x^n\<bar> \<le> R'^n" if  "x \<in> {-R'<..<R'}" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1054
            proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1055
              from that have "\<bar>x\<bar> \<le> R'" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1056
              then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1057
                unfolding power_abs by (rule power_mono) auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1058
            qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1059
            from mult_mono[OF this[OF \<open>x \<in> {-R'<..<R'}\<close>, of p] this[OF \<open>y \<in> {-R'<..<R'}\<close>, of "n-p"]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1060
              and \<open>0 < R'\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1061
            have "\<bar>x^p * y^(n - p)\<bar> \<le> R'^p * R'^(n - p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1062
              unfolding abs_mult by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1063
            then show "\<bar>x^p * y^(n - p)\<bar> \<le> R'^n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1064
              unfolding power_add[symmetric] using \<open>p \<le> n\<close> by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  1065
          qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1066
          also have "\<dots> = real (Suc n) * R' ^ n"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1067
            unfolding sum_constant card_atLeastLessThan by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1068
          finally show "\<bar>\<Sum>p<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1069
            unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF \<open>0 < R'\<close>]]]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1070
            by linarith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1071
          show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1072
            unfolding abs_mult[symmetric] by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1073
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1074
        also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1075
          unfolding abs_mult mult.assoc[symmetric] by algebra
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1076
        finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1077
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1078
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1079
      show "DERIV (\<lambda>x. ?f x n) x0 :> ?f' x0 n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1080
        by (auto intro!: derivative_eq_intros simp del: power_Suc)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1081
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1082
      fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1083
      assume "x \<in> {-R' <..< R'}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1084
      then have "R' \<in> {-R <..< R}" and "norm x < norm R'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1085
        using assms \<open>R' < R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1086
      have "summable (\<lambda>n. f n * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1087
      proof (rule summable_comparison_test, intro exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1088
        fix n
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1089
        have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1090
          by (rule mult_left_mono) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1091
        show "norm (f n * x^n) \<le> norm (f n * real (Suc n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1092
          unfolding real_norm_def abs_mult
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1093
          using le mult_right_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1094
      qed (rule powser_insidea[OF converges[OF \<open>R' \<in> {-R <..< R}\<close>] \<open>norm x < norm R'\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1095
      from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1096
      show "summable (?f x)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1097
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1098
      show "summable (?f' x0)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1099
        using converges[OF \<open>x0 \<in> {-R <..< R}\<close>] .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1100
      show "x0 \<in> {-R' <..< R'}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1101
        using \<open>x0 \<in> {-R' <..< R'}\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1102
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1103
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1104
  let ?R = "(R + \<bar>x0\<bar>) / 2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1105
  have "\<bar>x0\<bar> < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1106
    using assms by (auto simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1107
  then have "- ?R < x0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1108
  proof (cases "x0 < 0")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1109
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1110
    then have "- x0 < ?R"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1111
      using \<open>\<bar>x0\<bar> < ?R\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1112
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1113
      unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1114
  next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1115
    case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1116
    have "- ?R < 0" using assms by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1117
    also have "\<dots> \<le> x0" using False by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1118
    finally show ?thesis .
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1119
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1120
  then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
  1121
    using assms by (auto simp: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1122
  from for_subinterval[OF this] show ?thesis .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1123
qed
29695
171146a93106 Added real related theorems from Fact.thy
chaieb
parents: 29667
diff changeset
  1124
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1125
lemma geometric_deriv_sums:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1126
  fixes z :: "'a :: {real_normed_field,banach}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1127
  assumes "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1128
  shows   "(\<lambda>n. of_nat (Suc n) * z ^ n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1129
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1130
  have "(\<lambda>n. diffs (\<lambda>n. 1) n * z^n) sums (1 / (1 - z)^2)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1131
  proof (rule termdiffs_sums_strong)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1132
    fix z :: 'a assume "norm z < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1133
    thus "(\<lambda>n. 1 * z^n) sums (1 / (1 - z))" by (simp add: geometric_sums)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1134
  qed (insert assms, auto intro!: derivative_eq_intros simp: power2_eq_square)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1135
  thus ?thesis unfolding diffs_def by simp
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63566
diff changeset
  1136
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1137
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1138
lemma isCont_pochhammer [continuous_intros]: "isCont (\<lambda>z. pochhammer z n) z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1139
  for z :: "'a::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1140
  by (induct n) (auto simp: pochhammer_rec')
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1141
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1142
lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (\<lambda>z. pochhammer z n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1143
  for A :: "'a::real_normed_field set"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1144
  by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1145
66486
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1146
lemmas continuous_on_pochhammer' [continuous_intros] =
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1147
  continuous_on_compose2[OF continuous_on_pochhammer _ subset_UNIV]
ffaaa83543b2 Lemmas about analysis and permutations
Manuel Eberl <eberlm@in.tum.de>
parents: 66279
diff changeset
  1148
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1149
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1150
subsection \<open>Exponential Function\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1151
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1152
definition exp :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1153
  where "exp = (\<lambda>x. \<Sum>n. x^n /\<^sub>R fact n)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1154
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1155
lemma summable_exp_generic:
31017
2c227493ea56 stripped class recpower further
haftmann
parents: 30273
diff changeset
  1156
  fixes x :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1157
  defines S_def: "S \<equiv> \<lambda>n. x^n /\<^sub>R fact n"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1158
  shows "summable S"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1159
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1160
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1161
    unfolding S_def by (simp del: mult_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1162
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1163
    using dense [OF zero_less_one] by fast
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1164
  obtain N :: nat where N: "norm x < real N * r"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1165
    using ex_less_of_nat_mult r0 by auto
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1166
  from r1 show ?thesis
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  1167
  proof (rule summable_ratio_test [rule_format])
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1168
    fix n :: nat
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1169
    assume n: "N \<le> n"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1170
    have "norm x \<le> real N * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1171
      using N by (rule order_less_imp_le)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1172
    also have "real N * r \<le> real (Suc n) * r"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1173
      using r0 n by (simp add: mult_right_mono)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1174
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1175
      using norm_ge_zero by (rule mult_right_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1176
    then have "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1177
      by (rule order_trans [OF norm_mult_ineq])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1178
    then have "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1179
      by (simp add: pos_divide_le_eq ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1180
    then show "norm (S (Suc n)) \<le> r * norm (S n)"
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1181
      by (simp add: S_Suc inverse_eq_divide)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1182
  qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1183
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1184
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1185
lemma summable_norm_exp: "summable (\<lambda>n. norm (x^n /\<^sub>R fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1186
  for x :: "'a::{real_normed_algebra_1,banach}"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1187
proof (rule summable_norm_comparison_test [OF exI, rule_format])
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1188
  show "summable (\<lambda>n. norm x^n /\<^sub>R fact n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1189
    by (rule summable_exp_generic)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1190
  show "norm (x^n /\<^sub>R fact n) \<le> norm x^n /\<^sub>R fact n" for n
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35213
diff changeset
  1191
    by (simp add: norm_power_ineq)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1192
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1193
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1194
lemma summable_exp: "summable (\<lambda>n. inverse (fact n) * x^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1195
  for x :: "'a::{real_normed_field,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1196
  using summable_exp_generic [where x=x]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1197
  by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1198
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1199
lemma exp_converges: "(\<lambda>n. x^n /\<^sub>R fact n) sums exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1200
  unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  1201
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  1202
lemma exp_fdiffs:
60241
wenzelm
parents: 60036
diff changeset
  1203
  "diffs (\<lambda>n. inverse (fact n)) = (\<lambda>n. inverse (fact n :: 'a::{real_normed_field,banach}))"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1204
  by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1205
      del: mult_Suc of_nat_Suc)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1206
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1207
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1208
  by (simp add: diffs_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1209
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1210
lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1211
  unfolding exp_def scaleR_conv_of_real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1212
proof (rule DERIV_cong)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1213
  have sinv: "summable (\<lambda>n. of_real (inverse (fact n)) * x ^ n)" for x::'a
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1214
    by (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1215
  note xx = exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real]
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1216
  show "((\<lambda>x. \<Sum>n. of_real (inverse (fact n)) * x ^ n) has_field_derivative
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1217
        (\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n))  (at x)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1218
    by (rule termdiffs [where K="of_real (1 + norm x)"]) (simp_all only: diffs_of_real exp_fdiffs sinv norm_of_real)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1219
  show "(\<Sum>n. diffs (\<lambda>n. of_real (inverse (fact n))) n * x ^ n) = (\<Sum>n. of_real (inverse (fact n)) * x ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1220
    by (simp add: diffs_of_real exp_fdiffs)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1221
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1222
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1223
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1224
  and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1225
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1226
lemmas has_derivative_exp[derivative_intros] = DERIV_exp[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1227
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1228
lemma norm_exp: "norm (exp x) \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1229
proof -
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1230
  from summable_norm[OF summable_norm_exp, of x]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1231
  have "norm (exp x) \<le> (\<Sum>n. inverse (fact n) * norm (x^n))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1232
    by (simp add: exp_def)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1233
  also have "\<dots> \<le> exp (norm x)"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1234
    using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1235
    by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1236
  finally show ?thesis .
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1237
qed
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1238
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1239
lemma isCont_exp: "isCont exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1240
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1241
  by (rule DERIV_exp [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1242
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1243
lemma isCont_exp' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. exp (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1244
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1245
  by (rule isCont_o2 [OF _ isCont_exp])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1246
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1247
lemma tendsto_exp [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. exp (f x)) \<longlongrightarrow> exp a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1248
  for f:: "_ \<Rightarrow>'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  1249
  by (rule isCont_tendsto_compose [OF isCont_exp])
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1250
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1251
lemma continuous_exp [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1252
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1253
  unfolding continuous_def by (rule tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1254
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1255
lemma continuous_on_exp [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. exp (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1256
  for f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1257
  unfolding continuous_on_def by (auto intro: tendsto_exp)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1258
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1259
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1260
subsubsection \<open>Properties of the Exponential Function\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1261
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1262
lemma exp_zero [simp]: "exp 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1263
  unfolding exp_def by (simp add: scaleR_conv_of_real)
23278
375335bf619f clean up proofs of exp_zero, sin_zero, cos_zero
huffman
parents: 23255
diff changeset
  1264
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1265
lemma exp_series_add_commuting:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1266
  fixes x y :: "'a::{real_normed_algebra_1,banach}"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  1267
  defines S_def: "S \<equiv> \<lambda>x n. x^n /\<^sub>R fact n"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1268
  assumes comm: "x * y = y * x"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1269
  shows "S (x + y) n = (\<Sum>i\<le>n. S x i * S y (n - i))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1270
proof (induct n)
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1271
  case 0
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1272
  show ?case
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1273
    unfolding S_def by simp
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1274
next
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1275
  case (Suc n)
25062
af5ef0d4d655 global class syntax
haftmann
parents: 23477
diff changeset
  1276
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
30273
ecd6f0ca62ea declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
huffman
parents: 30082
diff changeset
  1277
    unfolding S_def by (simp del: mult_Suc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1278
  then have times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1279
    by simp
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1280
  have S_comm: "\<And>n. S x n * y = y * S x n"
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1281
    by (simp add: power_commuting_commutes comm S_def)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1282
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1283
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * (\<Sum>i\<le>n. S x i * S y (n - i))"
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1284
    by (metis Suc.hyps times_S)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1285
  also have "\<dots> = x * (\<Sum>i\<le>n. S x i * S y (n - i)) + y * (\<Sum>i\<le>n. S x i * S y (n - i))"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  1286
    by (rule distrib_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1287
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * y * S y (n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1288
    by (simp add: sum_distrib_left ac_simps S_comm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1289
  also have "\<dots> = (\<Sum>i\<le>n. x * S x i * S y (n - i)) + (\<Sum>i\<le>n. S x i * (y * S y (n - i)))"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1290
    by (simp add: ac_simps)
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1291
  also have "\<dots> = (\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i))) 
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1292
                + (\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1293
    by (simp add: times_S Suc_diff_le)
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1294
  also have "(\<Sum>i\<le>n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n - i)))
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1295
           = (\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i)))"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
  1296
    by (subst sum.atMost_Suc_shift) simp
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1297
  also have "(\<Sum>i\<le>n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1298
           = (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i)))"
56213
e5720d3c18f0 further renaming in Series
hoelzl
parents: 56193
diff changeset
  1299
    by simp
72211
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1300
  also have "(\<Sum>i\<le>Suc n. real i *\<^sub>R (S x i * S y (Suc n - i)))
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1301
           + (\<Sum>i\<le>Suc n. real (Suc n - i) *\<^sub>R (S x i * S y (Suc n - i))) 
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1302
           = (\<Sum>i\<le>Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n - i)))"
a6cbf8ce979e tiny tidy-up of proofs
paulson <lp15@cam.ac.uk>
parents: 71959
diff changeset
  1303
    by (simp flip: sum.distrib scaleR_add_left of_nat_add) 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1304
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  1305
    by (simp only: scaleR_right.sum)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1306
  finally show "S (x + y) (Suc n) = (\<Sum>i\<le>Suc n. S x i * S y (Suc n - i))"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
  1307
    by (simp del: sum.cl_ivl_Suc)
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1308
qed
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1309
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1310
lemma exp_add_commuting: "x * y = y * x \<Longrightarrow> exp (x + y) = exp x * exp y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1311
  by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1312
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1313
lemma exp_times_arg_commute: "exp A * A = A * exp A"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1314
  by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1315
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1316
lemma exp_add: "exp (x + y) = exp x * exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1317
  for x y :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1318
  by (rule exp_add_commuting) (simp add: ac_simps)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1319
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1320
lemma exp_double: "exp(2 * z) = exp z ^ 2"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1321
  by (simp add: exp_add_commuting mult_2 power2_eq_square)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1322
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1323
lemmas mult_exp_exp = exp_add [symmetric]
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1324
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1325
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1326
  unfolding exp_def
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1327
  apply (subst suminf_of_real [OF summable_exp_generic])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1328
  apply (simp add: scaleR_conv_of_real)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1329
  done
23241
5f12b40a95bf add lemma exp_of_real
huffman
parents: 23177
diff changeset
  1330
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1331
lemmas of_real_exp = exp_of_real[symmetric]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1332
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1333
corollary exp_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> exp z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1334
  by (metis Reals_cases Reals_of_real exp_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1335
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1336
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1337
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1338
  have "exp x * exp (- x) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1339
    by (simp add: exp_add_commuting[symmetric])
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1340
  also assume "exp x = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1341
  finally show False by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1342
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1343
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1344
lemma exp_minus_inverse: "exp x * exp (- x) = 1"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1345
  by (simp add: exp_add_commuting[symmetric])
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1346
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1347
lemma exp_minus: "exp (- x) = inverse (exp x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1348
  for x :: "'a::{real_normed_field,banach}"
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1349
  by (intro inverse_unique [symmetric] exp_minus_inverse)
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 58410
diff changeset
  1350
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1351
lemma exp_diff: "exp (x - y) = exp x / exp y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1352
  for x :: "'a::{real_normed_field,banach}"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  1353
  using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1354
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1355
lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1356
  for x :: "'a::{real_normed_field,banach}"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1357
  by (induct n) (auto simp: distrib_left exp_add mult.commute)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1358
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1359
corollary exp_of_nat2_mult: "exp (x * of_nat n) = exp x ^ n"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1360
  for x :: "'a::{real_normed_field,banach}"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1361
  by (metis exp_of_nat_mult mult_of_nat_commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1362
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1363
lemma exp_sum: "finite I \<Longrightarrow> exp (sum f I) = prod (\<lambda>x. exp (f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1364
  by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1365
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1366
lemma exp_divide_power_eq:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1367
  fixes x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1368
  assumes "n > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1369
  shows "exp (x / of_nat n) ^ n = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1370
  using assms
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1371
proof (induction n arbitrary: x)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1372
  case (Suc n)
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1373
  show ?case
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1374
  proof (cases "n = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1375
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1376
    then show ?thesis by simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1377
  next
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1378
    case False
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1379
    have [simp]: "1 + (of_nat n * of_nat n + of_nat n * 2) \<noteq> (0::'a)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1380
      using of_nat_eq_iff [of "1 + n * n + n * 2" "0"]
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1381
      by simp
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1382
    from False have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1383
      by simp
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1384
    have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1385
      using of_nat_neq_0
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  1386
      by (auto simp add: field_split_simps)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1387
    show ?thesis
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1388
      using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1389
      by (simp add: exp_add [symmetric])
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1390
  qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1391
qed simp
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62347
diff changeset
  1392
77140
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1393
lemma exp_power_int:
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1394
  fixes  x :: "'a::{real_normed_field,banach}"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1395
  shows "exp x powi n = exp (of_int n * x)"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1396
proof (cases "n \<ge> 0")
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1397
  case True
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1398
  have "exp x powi n = exp x ^ nat n"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1399
    using True by (simp add: power_int_def)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1400
  thus ?thesis
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1401
    using True by (subst (asm) exp_of_nat_mult [symmetric]) auto
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1402
next
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1403
  case False
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1404
  have "exp x powi n = inverse (exp x ^ nat (-n))"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1405
    using False by (simp add: power_int_def field_simps)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1406
  also have "exp x ^ nat (-n) = exp (of_nat (nat (-n)) * x)"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1407
    using False by (subst exp_of_nat_mult) auto
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1408
  also have "inverse \<dots> = exp (-(of_nat (nat (-n)) * x))"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1409
    by (subst exp_minus) (auto simp: field_simps)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1410
  also have "-(of_nat (nat (-n)) * x) = of_int n * x"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1411
    using False by simp
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1412
  finally show ?thesis .
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1413
qed
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  1414
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1415
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1416
subsubsection \<open>Properties of the Exponential Function on Reals\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1417
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1418
text \<open>Comparisons of \<^term>\<open>exp x\<close> with zero.\<close>
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1419
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1420
text \<open>Proof: because every exponential can be seen as a square.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1421
lemma exp_ge_zero [simp]: "0 \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1422
  for x :: real
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1423
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1424
  have "0 \<le> exp (x/2) * exp (x/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1425
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1426
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1427
    by (simp add: exp_add [symmetric])
29167
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1428
qed
37a952bb9ebc rearranged subsections; cleaned up some proofs
huffman
parents: 29166
diff changeset
  1429
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1430
lemma exp_gt_zero [simp]: "0 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1431
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1432
  by (simp add: order_less_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1433
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1434
lemma not_exp_less_zero [simp]: "\<not> exp x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1435
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1436
  by (simp add: not_less)
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1437
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1438
lemma not_exp_le_zero [simp]: "\<not> exp x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1439
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1440
  by (simp add: not_le)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1441
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1442
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1443
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1444
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1445
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1446
text \<open>Strict monotonicity of exponential.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1447
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1448
lemma exp_ge_add_one_self_aux:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1449
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1450
  assumes "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1451
  shows "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1452
  using order_le_imp_less_or_eq [OF assms]
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1453
proof
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1454
  assume "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1455
  have "1 + x \<le> (\<Sum>n<2. inverse (fact n) * x^n)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1456
    by (auto simp: numeral_2_eq_2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1457
  also have "\<dots> \<le> (\<Sum>n. inverse (fact n) * x^n)"
72219
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 72211
diff changeset
  1458
    using \<open>0 < x\<close> by (auto  simp add: zero_le_mult_iff intro: sum_le_suminf [OF summable_exp])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1459
  finally show "1 + x \<le> exp x"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1460
    by (simp add: exp_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1461
qed auto
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1462
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1463
lemma exp_gt_one: "0 < x \<Longrightarrow> 1 < exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1464
  for x :: real
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1465
proof -
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1466
  assume x: "0 < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1467
  then have "1 < 1 + x" by simp
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1468
  also from x have "1 + x \<le> exp x"
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1469
    by (simp add: exp_ge_add_one_self_aux)
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1470
  finally show ?thesis .
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1471
qed
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1472
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1473
lemma exp_less_mono:
23115
4615b2078592 generalized exp to work over any complete field; new proof of exp_add
huffman
parents: 23112
diff changeset
  1474
  fixes x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1475
  assumes "x < y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1476
  shows "exp x < exp y"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1477
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1478
  from \<open>x < y\<close> have "0 < y - x" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1479
  then have "1 < exp (y - x)" by (rule exp_gt_one)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1480
  then have "1 < exp y / exp x" by (simp only: exp_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1481
  then show "exp x < exp y" by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1482
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1483
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1484
lemma exp_less_cancel: "exp x < exp y \<Longrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1485
  for x y :: real
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  1486
  unfolding linorder_not_le [symmetric]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1487
  by (auto simp: order_le_less exp_less_mono)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1488
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1489
lemma exp_less_cancel_iff [iff]: "exp x < exp y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1490
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1491
  by (auto intro: exp_less_mono exp_less_cancel)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1492
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1493
lemma exp_le_cancel_iff [iff]: "exp x \<le> exp y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1494
  for x y :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1495
  by (auto simp: linorder_not_less [symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1496
80621
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1497
lemma exp_mono:
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1498
  fixes x y :: real
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1499
  assumes "x \<le> y"
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1500
  shows "exp x \<le> exp y"
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1501
  using assms exp_le_cancel_iff by fastforce
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1502
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1503
lemma exp_minus': "exp (-x) = 1 / (exp x)"
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1504
  for x :: "'a::{real_normed_field,banach}"
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1505
  by (simp add: exp_minus inverse_eq_divide)
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1506
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1507
lemma exp_inj_iff [iff]: "exp x = exp y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1508
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1509
  by (simp add: order_eq_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1510
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  1511
text \<open>Comparisons of \<^term>\<open>exp x\<close> with one.\<close>
29170
dad3933c88dd clean up lemmas about exp
huffman
parents: 29167
diff changeset
  1512
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1513
lemma one_less_exp_iff [simp]: "1 < exp x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1514
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1515
  using exp_less_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1516
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1517
lemma exp_less_one_iff [simp]: "exp x < 1 \<longleftrightarrow> x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1518
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1519
  using exp_less_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1520
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1521
lemma one_le_exp_iff [simp]: "1 \<le> exp x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1522
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1523
  using exp_le_cancel_iff [where x = 0 and y = x] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1524
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1525
lemma exp_le_one_iff [simp]: "exp x \<le> 1 \<longleftrightarrow> x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1526
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1527
  using exp_le_cancel_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1528
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1529
lemma exp_eq_one_iff [simp]: "exp x = 1 \<longleftrightarrow> x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1530
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1531
  using exp_inj_iff [where x = x and y = 0] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1532
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1533
lemma lemma_exp_total: "1 \<le> y \<Longrightarrow> \<exists>x. 0 \<le> x \<and> x \<le> y - 1 \<and> exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1534
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1535
proof (rule IVT)
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1536
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1537
  then have "0 \<le> y - 1" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1538
  then have "1 + (y - 1) \<le> exp (y - 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1539
    by (rule exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1540
  then show "y \<le> exp (y - 1)" by simp
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1541
qed (simp_all add: le_diff_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1542
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1543
lemma exp_total: "0 < y \<Longrightarrow> \<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1544
  for y :: real
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1545
proof (rule linorder_le_cases [of 1 y])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1546
  assume "1 \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1547
  then show "\<exists>x. exp x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1548
    by (fast dest: lemma_exp_total)
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1549
next
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1550
  assume "0 < y" and "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1551
  then have "1 \<le> inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1552
    by (simp add: one_le_inverse_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1553
  then obtain x where "exp x = inverse y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1554
    by (fast dest: lemma_exp_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1555
  then have "exp (- x) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1556
    by (simp add: exp_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1557
  then show "\<exists>x. exp x = y" ..
44755
257ac9da021f convert some proofs to Isar-style
huffman
parents: 44746
diff changeset
  1558
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1559
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1560
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1561
subsection \<open>Natural Logarithm\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1562
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1563
class ln = real_normed_algebra_1 + banach +
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1564
  fixes ln :: "'a \<Rightarrow> 'a"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1565
  assumes ln_one [simp]: "ln 1 = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1566
80932
261cd8722677 standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
wenzelm
parents: 80653
diff changeset
  1567
definition powr :: "'a \<Rightarrow> 'a \<Rightarrow> 'a::ln"  (infixr \<open>powr\<close> 80)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61762
diff changeset
  1568
  \<comment> \<open>exponentation via ln and exp\<close>
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  1569
  where "x powr a \<equiv> if x = 0 then 0 else exp (a * ln x)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1570
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1571
lemma powr_0 [simp]: "0 powr z = 0"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1572
  by (simp add: powr_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  1573
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1574
text \<open>We totalise @{term ln} over all reals exactly as done in Mathlib\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1575
instantiation real :: ln
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1576
begin
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1577
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1578
definition raw_ln_real :: "real \<Rightarrow> real"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1579
  where "raw_ln_real x \<equiv> (THE u. exp u = x)"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1580
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1581
definition ln_real :: "real \<Rightarrow> real"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1582
  where "ln_real \<equiv> \<lambda>x. if x=0 then 0 else raw_ln_real \<bar>x\<bar>"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1583
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1584
instance
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1585
  by intro_classes (simp add: ln_real_def raw_ln_real_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1586
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1587
end
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1588
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1589
lemma powr_eq_0_iff [simp]: "w powr z = 0 \<longleftrightarrow> w = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1590
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1591
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1592
lemma raw_ln_exp [simp]: "raw_ln_real (exp x) = x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1593
  by (simp add: raw_ln_real_def)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1594
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1595
lemma exp_raw_ln [simp]: "0 < x \<Longrightarrow> exp (raw_ln_real x) = x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1596
  by (auto dest: exp_total)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1597
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1598
lemma raw_ln_unique: "exp y = x \<Longrightarrow> raw_ln_real x = y"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1599
  by auto
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1600
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1601
lemma abs_raw_ln: "x \<noteq> 0 \<Longrightarrow> raw_ln_real\<bar>x\<bar> = ln x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1602
  by (simp add: ln_real_def)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1603
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1604
lemma ln_0 [simp]: "ln (0::real) = 0"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1605
  by (simp add: ln_real_def)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1606
80523
532156e8f15f last-minute correction: no simprule for ln_minus
paulson <lp15@cam.ac.uk>
parents: 80521
diff changeset
  1607
lemma ln_minus: "ln (-x) = ln x"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1608
  for x :: real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1609
  by (simp add: ln_real_def)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1610
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1611
lemma ln_exp [simp]: "ln (exp x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1612
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1613
  by (simp add: ln_real_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1614
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1615
lemma exp_ln_abs:
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1616
  fixes x::real 
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1617
  shows "x \<noteq> 0 \<Longrightarrow> exp (ln x) = \<bar>x\<bar>"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1618
  by (simp add: ln_real_def)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1619
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1620
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1621
  for x :: real
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1622
  using exp_ln_abs by fastforce
22654
c2b6b5a9e136 new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents: 22653
diff changeset
  1623
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1624
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1625
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1626
  by (metis exp_gt_zero exp_ln)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1627
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1628
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1629
  for x :: real
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1630
  by auto
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1631
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1632
lemma ln_unique': "exp y = \<bar>x\<bar> \<Longrightarrow> ln x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1633
  for x :: real
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1634
  by (metis abs_raw_ln abs_zero exp_not_eq_zero raw_ln_exp)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1635
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1636
lemma raw_ln_mult: "x>0 \<Longrightarrow> y>0 \<Longrightarrow> raw_ln_real (x * y) = raw_ln_real x + raw_ln_real y"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1637
  by (metis exp_add exp_ln raw_ln_exp)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1638
80528
6dec6b1f31f5 Better multiplication and division rules for ln and log
paulson <lp15@cam.ac.uk>
parents: 80523
diff changeset
  1639
lemma ln_mult: "ln (x * y) = (if x\<noteq>0 \<and> y\<noteq>0 then ln x + ln y else 0)"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1640
  for x :: real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1641
  by (simp add: ln_real_def abs_mult raw_ln_mult)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1642
80521
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1643
lemma ln_mult_pos: "x>0 \<Longrightarrow> y>0 \<Longrightarrow> ln (x * y) = ln x + ln y"
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1644
  for x :: real
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1645
  by (simp add: ln_mult)
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1646
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1647
lemma ln_prod: "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<noteq> 0) \<Longrightarrow> ln (prod f I) = sum (\<lambda>x. ln(f x)) I"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1648
  for f :: "'a \<Rightarrow> real"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1649
  by (induct I rule: finite_induct) (auto simp: ln_mult prod_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1650
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1651
lemma ln_inverse: "ln (inverse x) = - ln x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1652
  for x :: real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1653
  by (smt (verit) inverse_nonzero_iff_nonzero ln_mult ln_one ln_real_def right_inverse)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1654
80528
6dec6b1f31f5 Better multiplication and division rules for ln and log
paulson <lp15@cam.ac.uk>
parents: 80523
diff changeset
  1655
lemma ln_div: "ln (x/y) = (if x\<noteq>0 \<and> y\<noteq>0 then ln x - ln y else 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1656
  for x :: real
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1657
  by (simp add: divide_inverse ln_inverse ln_mult)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1658
80521
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1659
lemma ln_divide_pos: "x>0 \<Longrightarrow> y>0 \<Longrightarrow> ln (x/y) = ln x - ln y"
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1660
  for x :: real
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1661
  by (simp add: divide_inverse ln_inverse ln_mult)
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  1662
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1663
lemma ln_realpow: "ln (x^n) = real n * ln x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1664
proof (cases "x=0")
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1665
  case True
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1666
  then show ?thesis by (auto simp: power_0_left)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1667
next
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1668
  case False
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1669
  then show ?thesis
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1670
    by (induction n) (auto simp: ln_mult distrib_right)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1671
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1672
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1673
lemma ln_less_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1674
  for x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1675
  by (subst exp_less_cancel_iff [symmetric]) simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1676
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1677
lemma ln_le_cancel_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1678
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1679
  by (simp add: linorder_not_less [symmetric])
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1680
80621
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1681
lemma ln_mono: "\<And>x::real. \<lbrakk>x \<le> y; 0 < x\<rbrakk> \<Longrightarrow> ln x \<le> ln y"
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1682
  by simp
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1683
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1684
lemma ln_strict_mono: "\<And>x::real. \<lbrakk>x < y; 0 < x\<rbrakk> \<Longrightarrow> ln x < ln y"
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  1685
  by simp
79945
ca004ccf2352 New material from a variety of sources (including AFP)
paulson <lp15@cam.ac.uk>
parents: 79772
diff changeset
  1686
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1687
lemma ln_inj_iff [simp]: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1688
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1689
  by (simp add: order_eq_iff)
29171
5eff800a695f clean up lemmas about ln
huffman
parents: 29170
diff changeset
  1690
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1691
lemma ln_add_one_self_le_self: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1692
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1693
  by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1694
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1695
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1696
  for x :: real
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1697
  by (rule order_less_le_trans [where y = "ln (1 + x)"]) (simp_all add: ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1698
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1699
lemma ln_ge_iff: "\<And>x::real. 0 < x \<Longrightarrow> y \<le> ln x \<longleftrightarrow> exp y \<le> x"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1700
  using exp_le_cancel_iff exp_total by force
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  1701
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1702
lemma ln_ge_zero [simp]: "1 \<le> x \<Longrightarrow> 0 \<le> ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1703
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1704
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1705
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1706
lemma ln_ge_zero_imp_ge_one: "0 \<le> ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1707
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1708
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1709
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1710
lemma ln_ge_zero_iff [simp]: "0 < x \<Longrightarrow> 0 \<le> ln x \<longleftrightarrow> 1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1711
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1712
  using ln_le_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1713
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1714
lemma ln_less_zero_iff [simp]: "0 < x \<Longrightarrow> ln x < 0 \<longleftrightarrow> x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1715
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1716
  using ln_less_cancel_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1717
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1718
lemma ln_le_zero_iff [simp]: "0 < x \<Longrightarrow> ln x \<le> 0 \<longleftrightarrow> x \<le> 1"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1719
  for x :: real
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1720
  by (metis less_numeral_extra(1) ln_le_cancel_iff ln_one)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  1721
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1722
lemma ln_gt_zero: "1 < x \<Longrightarrow> 0 < ln x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1723
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1724
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1725
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1726
lemma ln_gt_zero_imp_gt_one: "0 < ln x \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1727
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1728
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1729
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1730
lemma ln_gt_zero_iff [simp]: "0 < x \<Longrightarrow> 0 < ln x \<longleftrightarrow> 1 < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1731
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1732
  using ln_less_cancel_iff [of 1 x] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1733
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1734
lemma ln_eq_zero_iff [simp]: "0 < x \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1735
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1736
  using ln_inj_iff [of x 1] by simp
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1737
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1738
lemma ln_less_zero: "0 < x \<Longrightarrow> x < 1 \<Longrightarrow> ln x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1739
  for x :: real
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  1740
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1741
70350
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1742
lemma powr_eq_one_iff [simp]:
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1743
  "a powr x = 1 \<longleftrightarrow> x = 0" if "a > 1" for a x :: real
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1744
  using that by (auto simp: powr_def split: if_splits)
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  1745
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1746
text \<open>A consequence of our "totalising" of ln\<close>
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1747
lemma uminus_powr_eq: "(-a) powr x = a powr x" for x::real
80523
532156e8f15f last-minute correction: no simprule for ln_minus
paulson <lp15@cam.ac.uk>
parents: 80521
diff changeset
  1748
  by (simp add: powr_def ln_minus)
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1749
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1750
lemma isCont_ln_pos:
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1751
  fixes x :: real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1752
  assumes "x > 0"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1753
  shows "isCont ln x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1754
  by (metis assms exp_ln isCont_exp isCont_inverse_function ln_exp)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1755
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1756
lemma isCont_ln:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1757
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1758
  assumes "x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1759
  shows "isCont ln x"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1760
proof (cases "0 < x")
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  1761
  case False
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1762
  then have "isCont (ln o uminus) x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1763
    using isCont_minus [OF continuous_ident] assms continuous_at_compose isCont_ln_pos 
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1764
    by force
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1765
  then show ?thesis
80523
532156e8f15f last-minute correction: no simprule for ln_minus
paulson <lp15@cam.ac.uk>
parents: 80521
diff changeset
  1766
    by (simp add: comp_def ln_minus)
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  1767
qed (simp add: isCont_ln_pos)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  1768
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1769
lemma tendsto_ln [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. ln (f x)) \<longlongrightarrow> ln a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1770
  for a :: real
45915
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1771
  by (rule isCont_tendsto_compose [OF isCont_ln])
0e5a87b772f9 tendsto lemmas for ln and powr
huffman
parents: 45309
diff changeset
  1772
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1773
lemma continuous_ln:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1774
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1775
  unfolding continuous_def by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1776
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1777
lemma isCont_ln' [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1778
  "continuous (at x) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1779
  unfolding continuous_at by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1780
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1781
lemma continuous_within_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1782
  "continuous (at x within s) f \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1783
  unfolding continuous_within by (rule tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1784
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  1785
lemma continuous_on_ln [continuous_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1786
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. f x \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. ln (f x :: real))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1787
  unfolding continuous_on_def by (auto intro: tendsto_ln)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  1788
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1789
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1790
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1791
  by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1792
    (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1793
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  1794
lemma DERIV_ln_divide: "0 < x \<Longrightarrow> DERIV ln x :> 1/x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1795
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1796
  by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)
33667
958dc9f03611 A little rationalisation
paulson
parents: 33549
diff changeset
  1797
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1798
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1799
  and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1800
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1801
lemmas has_derivative_ln[derivative_intros] = DERIV_ln[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  1802
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1803
lemma ln_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1804
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1805
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1806
    (is "ln x = suminf (?f (x - 1))")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1807
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1808
  let ?f' = "\<lambda>x n. (-1)^n * (x - 1)^n"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1809
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1810
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1811
  proof (rule DERIV_isconst3 [where x = x])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1812
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1813
    assume "x \<in> {0 <..< 2}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1814
    then have "0 < x" and "x < 2" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1815
    have "norm (1 - x) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1816
      using \<open>0 < x\<close> and \<open>x < 2\<close> by auto
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  1817
    have "1/x = 1 / (1 - (1 - x))" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1818
    also have "\<dots> = (\<Sum> n. (1 - x)^n)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1819
      using geometric_sums[OF \<open>norm (1 - x) < 1\<close>] by (rule sums_unique)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1820
    also have "\<dots> = suminf (?f' x)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1821
      unfolding power_mult_distrib[symmetric]
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  1822
      by (rule arg_cong[where f=suminf], rule arg_cong[where f="(^)"], auto)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1823
    finally have "DERIV ln x :> suminf (?f' x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1824
      using DERIV_ln[OF \<open>0 < x\<close>] unfolding divide_inverse by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1825
    moreover
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1826
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1827
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :>
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1828
      (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1829
    proof (rule DERIV_power_series')
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1830
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1831
        using \<open>0 < x\<close> \<open>x < 2\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1832
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1833
      fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1834
      assume "x \<in> {- 1<..<1}"
72980
4fc3dc37f406 default simprule for geometric series
paulson <lp15@cam.ac.uk>
parents: 72220
diff changeset
  1835
      then show "summable (\<lambda>n. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
4fc3dc37f406 default simprule for geometric series
paulson <lp15@cam.ac.uk>
parents: 72220
diff changeset
  1836
        by (simp add: abs_if flip: power_mult_distrib)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1837
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1838
    then have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  1839
      unfolding One_nat_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1840
    then have "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1841
      unfolding DERIV_def repos .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1842
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1843
      by (rule DERIV_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1844
    then show "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1845
  qed (auto simp: assms)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1846
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  1847
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  1848
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1849
lemma exp_first_terms:
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1850
  fixes x :: "'a::{real_normed_algebra_1,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1851
  shows "exp x = (\<Sum>n<k. inverse(fact n) *\<^sub>R (x ^ n)) + (\<Sum>n. inverse(fact (n + k)) *\<^sub>R (x ^ (n + k)))"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1852
proof -
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1853
  have "exp x = suminf (\<lambda>n. inverse(fact n) *\<^sub>R (x^n))"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1854
    by (simp add: exp_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1855
  also from summable_exp_generic have "\<dots> = (\<Sum> n. inverse(fact(n+k)) *\<^sub>R (x ^ (n + k))) +
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1856
    (\<Sum> n::nat<k. inverse(fact n) *\<^sub>R (x^n))" (is "_ = _ + ?a")
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1857
    by (rule suminf_split_initial_segment)
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1858
  finally show ?thesis by simp
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1859
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1860
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1861
lemma exp_first_term: "exp x = 1 + (\<Sum>n. inverse (fact (Suc n)) *\<^sub>R (x ^ Suc n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1862
  for x :: "'a::{real_normed_algebra_1,banach}"
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1863
  using exp_first_terms[of x 1] by simp
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62948
diff changeset
  1864
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1865
lemma exp_first_two_terms: "exp x = 1 + x + (\<Sum>n. inverse (fact (n + 2)) *\<^sub>R (x ^ (n + 2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1866
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1867
  using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1868
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1869
lemma exp_bound:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1870
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1871
  assumes a: "0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1872
    and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1873
  shows "exp x \<le> 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1874
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1875
  have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1876
  proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  1877
    have "(\<lambda>n. x\<^sup>2 / 2 * (1/2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1/2)))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1878
      by (intro sums_mult geometric_sums) simp
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  1879
    then have sumsx: "(\<lambda>n. x\<^sup>2 / 2 * (1/2) ^ n) sums x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1880
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1881
    have "suminf (\<lambda>n. inverse(fact (n+2)) * (x ^ (n + 2))) \<le> suminf (\<lambda>n. (x\<^sup>2/2) * ((1/2)^n))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1882
    proof (intro suminf_le allI)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1883
      show "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<^sup>2/2) * ((1/2)^n)" for n :: nat
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1884
      proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1885
        have "(2::nat) * 2 ^ n \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1886
          by (induct n) simp_all
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1887
        then have "real ((2::nat) * 2 ^ n) \<le> real_of_nat (fact (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1888
          by (simp only: of_nat_le_iff)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1889
        then have "((2::real) * 2 ^ n) \<le> fact (n + 2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1890
          unfolding of_nat_fact by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1891
        then have "inverse (fact (n + 2)) \<le> inverse ((2::real) * 2 ^ n)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1892
          by (rule le_imp_inverse_le) simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1893
        then have "inverse (fact (n + 2)) \<le> 1/(2::real) * (1/2)^n"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1894
          by (simp add: power_inverse [symmetric])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1895
        then have "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \<le> 1/2 * (1/2)^n * (1 * x\<^sup>2)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1896
          by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1897
        then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1898
          unfolding power_add by (simp add: ac_simps del: fact_Suc)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1899
      qed
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1900
      show "summable (\<lambda>n. inverse (fact (n + 2)) * x ^ (n + 2))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1901
        by (rule summable_exp [THEN summable_ignore_initial_segment])
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  1902
      show "summable (\<lambda>n. x\<^sup>2 / 2 * (1/2) ^ n)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1903
        by (rule sums_summable [OF sumsx])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1904
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1905
    also have "\<dots> = x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1906
      by (rule sums_unique [THEN sym]) (rule sumsx)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1907
    finally show ?thesis .
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1908
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1909
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1910
    unfolding exp_first_two_terms by auto
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1911
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1912
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1913
corollary exp_half_le2: "exp(1/2) \<le> (2::real)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1914
  using exp_bound [of "1/2"]
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1915
  by (simp add: field_simps)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1916
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1917
corollary exp_le: "exp 1 \<le> (3::real)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1918
  using exp_bound [of 1]
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1919
  by (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  1920
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1921
lemma exp_bound_half: "norm z \<le> 1/2 \<Longrightarrow> norm (exp z) \<le> 2"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1922
  by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1923
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1924
lemma exp_bound_lemma:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1925
  assumes "norm z \<le> 1/2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1926
  shows "norm (exp z) \<le> 1 + 2 * norm z"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1927
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1928
  have *: "(norm z)\<^sup>2 \<le> norm z * 1"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1929
    unfolding power2_eq_square
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1930
    by (rule mult_left_mono) (use assms in auto)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1931
  have "norm (exp z) \<le> exp (norm z)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1932
    by (rule norm_exp)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1933
  also have "\<dots> \<le> 1 + (norm z) + (norm z)\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1934
    using assms exp_bound by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1935
  also have "\<dots> \<le> 1 + 2 * norm z"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1936
    using * by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1937
  finally show ?thesis .
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1938
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1939
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1940
lemma real_exp_bound_lemma: "0 \<le> x \<Longrightarrow> x \<le> 1/2 \<Longrightarrow> exp x \<le> 1 + 2 * x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1941
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1942
  using exp_bound_lemma [of x] by simp
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  1943
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1944
lemma ln_one_minus_pos_upper_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1945
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1946
  assumes a: "0 \<le> x" and b: "x < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1947
  shows "ln (1 - x) \<le> - x"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1948
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1949
  have "(1 - x) * (1 + x + x\<^sup>2) = 1 - x^3"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1950
    by (simp add: algebra_simps power2_eq_square power3_eq_cube)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1951
  also have "\<dots> \<le> 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1952
    by (auto simp: a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1953
  finally have "(1 - x) * (1 + x + x\<^sup>2) \<le> 1" .
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  1954
  moreover have c: "0 < 1 + x + x\<^sup>2"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1955
    by (simp add: add_pos_nonneg a)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1956
  ultimately have "1 - x \<le> 1 / (1 + x + x\<^sup>2)"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1957
    by (elim mult_imp_le_div_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1958
  also have "\<dots> \<le> 1 / exp x"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1959
    by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1960
        real_sqrt_pow2_iff real_sqrt_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1961
  also have "\<dots> = exp (- x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1962
    by (auto simp: exp_minus divide_inverse)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1963
  finally have "1 - x \<le> exp (- x)" .
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1964
  also have "1 - x = exp (ln (1 - x))"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1965
    by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1966
  finally have "exp (ln (1 - x)) \<le> exp (- x)" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1967
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1968
    by (auto simp only: exp_le_cancel_iff)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1969
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1970
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1971
lemma exp_ge_add_one_self [simp]: "1 + x \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1972
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1973
proof (cases "0 \<le> x \<or> x \<le> -1")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1974
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1975
  then show ?thesis
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  1976
    by (meson exp_ge_add_one_self_aux exp_ge_zero order.trans real_add_le_0_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1977
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1978
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1979
  then have ln1: "ln (1 + x) \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1980
    using ln_one_minus_pos_upper_bound [of "-x"] by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1981
  have "1 + x = exp (ln (1 + x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1982
    using False by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1983
  also have "\<dots> \<le> exp x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1984
    by (simp add: ln1)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1985
  finally show ?thesis .
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  1986
qed
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  1987
81871
e8ecc32d18c1 A variety of tweaks
paulson <lp15@cam.ac.uk>
parents: 80932
diff changeset
  1988
lemma exp_gt_self: "x < exp (x::real)"
e8ecc32d18c1 A variety of tweaks
paulson <lp15@cam.ac.uk>
parents: 80932
diff changeset
  1989
  using exp_gt_zero ln_less_self by fastforce
e8ecc32d18c1 A variety of tweaks
paulson <lp15@cam.ac.uk>
parents: 80932
diff changeset
  1990
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  1991
lemma ln_one_plus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1992
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1993
  assumes a: "0 \<le> x" and b: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1994
  shows "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1995
proof -
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  1996
  have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  1997
    by (rule exp_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  1998
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / exp (x \<^sup>2)"
54576
e877eec2b698 tidied more proofs
paulson
parents: 54575
diff changeset
  1999
    by (metis a b divide_right_mono exp_bound exp_ge_zero)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2000
  also have "\<dots> \<le> (1 + x + x\<^sup>2) / (1 + x\<^sup>2)"
56544
b60d5d119489 made mult_pos_pos a simp rule
nipkow
parents: 56541
diff changeset
  2001
    by (simp add: a divide_left_mono add_pos_nonneg)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2002
  also from a have "\<dots> \<le> 1 + x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2003
    by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2004
  finally have "exp (x - x\<^sup>2) \<le> 1 + x" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2005
  also have "\<dots> = exp (ln (1 + x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2006
  proof -
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2007
    from a have "0 < 1 + x" by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2008
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2009
      by (auto simp only: exp_ln_iff [THEN sym])
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2010
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2011
  finally have "exp (x - x\<^sup>2) \<le> exp (ln (1 + x))" .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2012
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2013
    by (metis exp_le_cancel_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2014
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2015
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2016
lemma ln_one_minus_pos_lower_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2017
  fixes x :: real
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  2018
  assumes a: "0 \<le> x" and b: "x \<le> 1/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2019
  shows "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2020
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2021
  from b have c: "x < 1" by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2022
  then have "ln (1 - x) = - ln (1 + x / (1 - x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2023
    by (auto simp: ln_inverse [symmetric] field_simps intro: arg_cong [where f=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2024
  also have "- (x / (1 - x)) \<le> \<dots>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2025
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2026
    have "ln (1 + x / (1 - x)) \<le> x / (1 - x)"
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2027
      using a c by (intro ln_add_one_self_le_self) auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2028
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2029
      by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2030
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2031
  also have "- (x / (1 - x)) = - x / (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2032
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2033
  finally have d: "- x / (1 - x) \<le> ln (1 - x)" .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2034
  have "0 < 1 - x" using a b by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2035
  then have e: "- x - 2 * x\<^sup>2 \<le> - x / (1 - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2036
    using mult_right_le_one_le[of "x * x" "2 * x"] a b
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2037
    by (simp add: field_simps power2_eq_square)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2038
  from e d show "- x - 2 * x\<^sup>2 \<le> ln (1 - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2039
    by (rule order_trans)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2040
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2041
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2042
lemma ln_add_one_self_le_self2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2043
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2044
  shows "-1 < x \<Longrightarrow> ln (1 + x) \<le> x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2045
  by (metis diff_gt_0_iff_gt diff_minus_eq_add exp_ge_add_one_self exp_le_cancel_iff exp_ln minus_less_iff)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2046
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2047
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2048
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2049
  assumes x: "0 \<le> x" and x1: "x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2050
  shows "\<bar>ln (1 + x) - x\<bar> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2051
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2052
  from x have "ln (1 + x) \<le> x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2053
    by (rule ln_add_one_self_le_self)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2054
  then have "ln (1 + x) - x \<le> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2055
    by simp
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  2056
  then have "\<bar>ln(1 + x) - x\<bar> = - (ln(1 + x) - x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2057
    by (rule abs_of_nonpos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2058
  also have "\<dots> = x - ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2059
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2060
  also have "\<dots> \<le> x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2061
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2062
    from x x1 have "x - x\<^sup>2 \<le> ln (1 + x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2063
      by (intro ln_one_plus_pos_lower_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2064
    then show ?thesis
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2065
      by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2066
  qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2067
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2068
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2069
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2070
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2071
  fixes x :: real
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  2072
  assumes a: "-(1/2) \<le> x" and b: "x \<le> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2073
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2074
proof -
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2075
  have *: "- (-x) - 2 * (-x)\<^sup>2 \<le> ln (1 - (- x))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2076
    by (metis a b diff_zero ln_one_minus_pos_lower_bound minus_diff_eq neg_le_iff_le) 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2077
  have "\<bar>ln (1 + x) - x\<bar> = x - ln (1 - (- x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2078
    using a ln_add_one_self_le_self2 [of x] by (simp add: abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2079
  also have "\<dots> \<le> 2 * x\<^sup>2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2080
    using * by (simp add: algebra_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2081
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2082
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2083
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2084
lemma abs_ln_one_plus_x_minus_x_bound:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2085
  fixes x :: real
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  2086
  assumes "\<bar>x\<bar> \<le> 1/2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2087
  shows "\<bar>ln (1 + x) - x\<bar> \<le> 2 * x\<^sup>2"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2088
proof (cases "0 \<le> x")
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2089
  case True
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2090
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2091
    using abs_ln_one_plus_x_minus_x_bound_nonneg assms by fastforce
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2092
next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2093
  case False
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2094
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2095
    using abs_ln_one_plus_x_minus_x_bound_nonpos assms by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2096
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2097
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2098
lemma ln_x_over_x_mono:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2099
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2100
  assumes x: "exp 1 \<le> x" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2101
  shows "ln y / y \<le> ln x / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2102
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2103
  note x
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2104
  moreover have "0 < exp (1::real)" by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2105
  ultimately have a: "0 < x" and b: "0 < y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2106
    by (fast intro: less_le_trans order_trans)+
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2107
  have "x * ln y - x * ln x = x * (ln y - ln x)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2108
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2109
  also have "\<dots> = x * ln (y / x)"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2110
    using a b ln_div by force
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2111
  also have "y / x = (x + (y - x)) / x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2112
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2113
  also have "\<dots> = 1 + (y - x) / x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2114
    using x a by (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2115
  also have "x * ln (1 + (y - x) / x) \<le> x * ((y - x) / x)"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  2116
    using x a
56571
f4635657d66f added divide_nonneg_nonneg and co; made it a simp rule
hoelzl
parents: 56544
diff changeset
  2117
    by (intro mult_left_mono ln_add_one_self_le_self) simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2118
  also have "\<dots> = y - x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2119
    using a by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2120
  also have "\<dots> = (y - x) * ln (exp 1)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2121
  also have "\<dots> \<le> (y - x) * ln x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2122
    using a x exp_total of_nat_1 x(1)  by (fastforce intro: mult_left_mono)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2123
  also have "\<dots> = y * ln x - x * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2124
    by (rule left_diff_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2125
  finally have "x * ln y \<le> y * ln x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2126
    by arith
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2127
  then have "ln y \<le> (y * ln x) / x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2128
    using a by (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2129
  also have "\<dots> = y * (ln x / x)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2130
  finally show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2131
    using b by (simp add: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2132
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2133
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2134
lemma ln_le_minus_one: "0 < x \<Longrightarrow> ln x \<le> x - 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2135
  for x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2136
  using exp_ge_add_one_self[of "ln x"] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2137
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2138
corollary ln_diff_le: "0 < x \<Longrightarrow> 0 < y \<Longrightarrow> ln x - ln y \<le> (x - y) / y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2139
  for x :: real
80528
6dec6b1f31f5 Better multiplication and division rules for ln and log
paulson <lp15@cam.ac.uk>
parents: 80523
diff changeset
  2140
by (metis diff_divide_distrib divide_pos_pos divide_self ln_divide_pos ln_le_minus_one order_less_irrefl)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2141
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2142
lemma ln_eq_minus_one:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2143
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2144
  assumes "0 < x" "ln x = x - 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2145
  shows "x = 1"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2146
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2147
  let ?l = "\<lambda>y. ln y - y + 1"
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2148
  have D: "\<And>x::real. 0 < x \<Longrightarrow> DERIV ?l x :> (1/x - 1)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2149
    by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2150
  show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2151
  proof (cases rule: linorder_cases)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2152
    assume "x < 1"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2153
    from dense[OF \<open>x < 1\<close>] obtain a where "x < a" "a < 1" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2154
    from \<open>x < a\<close> have "?l x < ?l a"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  2155
    proof (rule DERIV_pos_imp_increasing)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2156
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2157
      assume "x \<le> y" "y \<le> a"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2158
      with \<open>0 < x\<close> \<open>a < 1\<close> have "0 < 1 / y - 1" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2159
        by (auto simp: field_simps)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61738
diff changeset
  2160
      with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z" by blast
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2161
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2162
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2163
      using ln_le_minus_one \<open>0 < x\<close> \<open>x < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2164
    finally show "x = 1" using assms by auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2165
  next
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2166
    assume "1 < x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2167
    from dense[OF this] obtain a where "1 < a" "a < x" by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2168
    from \<open>a < x\<close> have "?l x < ?l a"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2169
    proof (rule DERIV_neg_imp_decreasing)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2170
      fix y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2171
      assume "a \<le> y" "y \<le> x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2172
      with \<open>1 < a\<close> have "1 / y - 1 < 0" "0 < y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2173
        by (auto simp: field_simps)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2174
      with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2175
        by blast
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2176
    qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2177
    also have "\<dots> \<le> 0"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2178
      using ln_le_minus_one \<open>1 < a\<close> by (auto simp: field_simps)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2179
    finally show "x = 1" using assms by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2180
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2181
    assume "x = 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2182
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2183
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2184
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2185
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2186
lemma ln_add_one_self_less_self:
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2187
  fixes x :: real
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2188
  assumes "x > 0" 
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2189
  shows "ln (1 + x) < x"
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2190
  by (smt (verit, best) assms ln_eq_minus_one ln_le_minus_one)
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2191
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2192
lemma ln_x_over_x_tendsto_0: "((\<lambda>x::real. ln x / x) \<longlongrightarrow> 0) at_top"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2193
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "\<lambda>_. 1"])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2194
  from eventually_gt_at_top[of "0::real"]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2195
  show "\<forall>\<^sub>F x in at_top. (ln has_real_derivative inverse x) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2196
    by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2197
qed (use tendsto_inverse_0 in
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2198
      \<open>auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity]\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2199
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2200
corollary exp_1_gt_powr:
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2201
  assumes "x > (0::real)"
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2202
  shows   "exp 1 > (1 + 1/x) powr x" 
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2203
proof -
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2204
  have "ln (1 + 1/x) < 1/x"
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2205
    using ln_add_one_self_less_self assms by simp
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2206
  thus "exp 1 > (1 + 1/x) powr x" using assms
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2207
    by (simp add: field_simps powr_def)
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2208
qed
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2209
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2210
lemma exp_ge_one_plus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2211
  assumes "x \<ge> - real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2212
  shows "(1 + x / of_nat n) ^ n \<le> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2213
proof (cases "x = - of_nat n")
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2214
  case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2215
  from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2216
    by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2217
  also from assms False have "ln (1 + x / real n) \<le> x / real n"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2218
    by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2219
  with assms have "exp (of_nat n * ln (1 + x / of_nat n)) \<le> exp x"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2220
    by (simp add: field_simps)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2221
  finally show ?thesis .
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2222
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2223
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2224
  then show ?thesis by (simp add: zero_power)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2225
qed
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2226
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2227
lemma exp_ge_one_minus_x_over_n_power_n:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2228
  assumes "x \<le> real n" "n > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2229
  shows "(1 - x / of_nat n) ^ n \<le> exp (-x)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2230
  using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  2231
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2232
lemma exp_at_bot: "(exp \<longlongrightarrow> (0::real)) at_bot"
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2233
  unfolding tendsto_Zfun_iff
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2234
proof (rule ZfunI, simp add: eventually_at_bot_dense)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2235
  fix r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2236
  assume "0 < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2237
  have "exp x < r" if "x < ln r" for x
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2238
    by (metis \<open>0 < r\<close> exp_less_mono exp_ln that)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2239
  then show "\<exists>k. \<forall>n<k. exp n < r" by auto
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2240
qed
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2241
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2242
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2243
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. True" and P="\<lambda>x. 0 < x" and g=ln])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2244
    (auto intro: eventually_gt_at_top)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2245
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2246
lemma lim_exp_minus_1: "((\<lambda>z::'a. (exp(z) - 1) / z) \<longlongrightarrow> 1) (at 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2247
  for x :: "'a::{real_normed_field,banach}"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2248
proof -
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2249
  have "((\<lambda>z::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2250
    by (intro derivative_eq_intros | simp)+
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2251
  then show ?thesis
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68614
diff changeset
  2252
    by (simp add: Deriv.has_field_derivative_iff)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2253
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 59587
diff changeset
  2254
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2255
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2256
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51527
diff changeset
  2257
     (auto simp: eventually_at_filter)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2258
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2259
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2260
  by (rule filterlim_at_top_at_top[where Q="\<lambda>x. 0 < x" and P="\<lambda>x. True" and g=exp])
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  2261
     (auto intro: eventually_gt_at_top)
50326
b5afeccab2db add filterlim rules for exp and ln to infinity
hoelzl
parents: 49962
diff changeset
  2262
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2263
lemma filtermap_ln_at_top: "filtermap (ln::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2264
  by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2265
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2266
lemma filtermap_exp_at_top: "filtermap (exp::real \<Rightarrow> real) at_top = at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2267
  by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2268
     (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60688
diff changeset
  2269
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2270
lemma filtermap_ln_at_right: "filtermap ln (at_right (0::real)) = at_bot"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2271
  by (auto intro!: filtermap_fun_inverse[where g="\<lambda>x. exp x"] ln_at_0
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2272
      simp: filterlim_at exp_at_bot)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65109
diff changeset
  2273
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2274
lemma tendsto_power_div_exp_0: "((\<lambda>x. x ^ k / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2275
proof (induct k)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2276
  case 0
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2277
  show "((\<lambda>x. x ^ 0 / exp x) \<longlongrightarrow> (0::real)) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2278
    by (simp add: inverse_eq_divide[symmetric])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2279
       (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2280
         at_top_le_at_infinity order_refl)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2281
next
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2282
  case (Suc k)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2283
  show ?case
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2284
  proof (rule lhospital_at_top_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2285
    show "eventually (\<lambda>x. DERIV (\<lambda>x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2286
      by eventually_elim (intro derivative_eq_intros, auto)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2287
    show "eventually (\<lambda>x. DERIV exp x :> exp x) at_top"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2288
      by eventually_elim auto
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2289
    show "eventually (\<lambda>x. exp x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2290
      by auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2291
    from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2292
    show "((\<lambda>x. real (Suc k) * x ^ k / exp x) \<longlongrightarrow> 0) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2293
      by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2294
  qed (rule exp_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2295
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2296
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2297
subsubsection\<open> A couple of simple bounds\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2298
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2299
lemma exp_plus_inverse_exp:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2300
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2301
  shows "2 \<le> exp x + inverse (exp x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2302
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2303
  have "2 \<le> exp x + exp (-x)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2304
    using exp_ge_add_one_self [of x] exp_ge_add_one_self [of "-x"]
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2305
    by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2306
  then show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2307
    by (simp add: exp_minus)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2308
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2309
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2310
lemma real_le_x_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2311
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2312
  assumes "0 \<le> x"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2313
  shows "x \<le> (exp x - inverse(exp x)) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2314
proof -
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2315
  have *: "exp a - inverse(exp a) - 2*a \<le> exp b - inverse(exp b) - 2*b" if "a \<le> b" for a b::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2316
    using exp_plus_inverse_exp
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2317
    by (fastforce intro: derivative_eq_intros DERIV_nonneg_imp_nondecreasing [OF that])
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2318
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2319
    using*[OF assms] by simp
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2320
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2321
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2322
lemma real_le_abs_sinh:
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2323
  fixes x::real
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2324
  shows "abs x \<le> abs((exp x - inverse(exp x)) / 2)"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2325
proof (cases "0 \<le> x")
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2326
  case True
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2327
  show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2328
    using real_le_x_sinh [OF True] True by (simp add: abs_if)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2329
next
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2330
  case False
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2331
  have "-x \<le> (exp(-x) - inverse(exp(-x))) / 2"
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2332
    by (meson False linear neg_le_0_iff_le real_le_x_sinh)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2333
  also have "\<dots> \<le> \<bar>(exp x - inverse (exp x)) / 2\<bar>"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72980
diff changeset
  2334
    by (metis (no_types, opaque_lifting) abs_divide abs_le_iff abs_minus_cancel
64758
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2335
       add.inverse_inverse exp_minus minus_diff_eq order_refl)
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2336
  finally show ?thesis
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2337
    using False by linarith
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2338
qed
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2339
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2340
subsection\<open>The general logarithm\<close>
3b33d2fc5fc0 A few new lemmas and needed adaptations
paulson <lp15@cam.ac.uk>
parents: 64446
diff changeset
  2341
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2342
definition log :: "real \<Rightarrow> real \<Rightarrow> real"
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  2343
  \<comment> \<open>logarithm of \<^term>\<open>x\<close> to base \<^term>\<open>a\<close>\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2344
  where "log a x = ln x / ln a"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2345
80621
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  2346
lemma log_exp [simp]: "log b (exp x) = x / ln b"
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  2347
  by (simp add: log_def)
6c369fec315a Migration of new material mostly about exp, ln
paulson <lp15@cam.ac.uk>
parents: 80612
diff changeset
  2348
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2349
lemma tendsto_log [tendsto_intros]:
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2350
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> 0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> b\<noteq>0 \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2351
    ((\<lambda>x. log (f x) (g x)) \<longlongrightarrow> log a b) F"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2352
  unfolding log_def by (intro tendsto_intros) auto
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2353
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2354
lemma continuous_log:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2355
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2356
    and "continuous F g"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2357
    and "f (Lim F (\<lambda>x. x)) > 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2358
    and "f (Lim F (\<lambda>x. x)) \<noteq> 1"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2359
    and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2360
  shows "continuous F (\<lambda>x. log (f x) (g x))"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2361
  using assms by (simp add: continuous_def tendsto_log)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2362
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2363
lemma continuous_at_within_log[continuous_intros]:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2364
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2365
    and "continuous (at a within s) g"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2366
    and "0 < f a"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2367
    and "f a \<noteq> 1"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2368
    and "g a \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2369
  shows "continuous (at a within s) (\<lambda>x. log (f x) (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2370
  using assms unfolding continuous_within by (rule tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2371
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  2372
lemma continuous_on_log[continuous_intros]:
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2373
  assumes "continuous_on S f" "continuous_on S g"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2374
    and "\<forall>x\<in>S. 0 < f x" "\<forall>x\<in>S. f x \<noteq> 1" "\<forall>x\<in>S. g x \<noteq> 0"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2375
  shows "continuous_on S (\<lambda>x. log (f x) (g x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2376
  using assms unfolding continuous_on_def by (fast intro: tendsto_log)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2377
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2378
lemma exp_powr_real:
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2379
  fixes x::real shows "exp x powr y = exp (x*y)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2380
  by (simp add: powr_def)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2381
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2382
lemma powr_one_eq_one [simp]: "1 powr a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2383
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2384
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2385
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2386
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2387
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2388
lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x \<longleftrightarrow> 0 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2389
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2390
  by (auto simp: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2391
declare powr_one_gt_zero_iff [THEN iffD2, simp]
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2392
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2393
lemma powr_diff:
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2394
  fixes w:: "'a::{ln,real_normed_field}" 
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2395
  shows "w powr (z1 - z2) = w powr z1 / w powr z2"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2396
  by (simp add: powr_def algebra_simps exp_diff)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2397
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2398
lemma powr_mult: "(x * y) powr a = (x powr a) * (y powr a)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2399
  for a x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2400
  by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2401
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2402
lemma prod_powr_distrib:
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2403
  fixes  x :: "'a \<Rightarrow> real"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2404
  shows "(prod x I) powr r = (\<Prod>i\<in>I. x i powr r)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2405
  by (induction I rule: infinite_finite_induct) (auto simp add: powr_mult prod_nonneg)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2406
80653
b98f1057da0e New library material; also fixed the spelling error powr_ge_pzero -> powr_ge_zero
paulson <lp15@cam.ac.uk>
parents: 80621
diff changeset
  2407
lemma powr_ge_zero [simp]: "0 \<le> x powr y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2408
  for x y :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2409
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2410
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2411
lemma powr_non_neg[simp]: "\<not> a powr x < 0" for a x::real
80653
b98f1057da0e New library material; also fixed the spelling error powr_ge_pzero -> powr_ge_zero
paulson <lp15@cam.ac.uk>
parents: 80621
diff changeset
  2412
  using powr_ge_zero[of a x] by arith
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2413
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2414
lemma inverse_powr: "\<And>y::real. inverse y powr a = inverse (y powr a)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2415
    by (simp add: exp_minus ln_inverse powr_def)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2416
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2417
lemma powr_divide: "(x / y) powr a = (x powr a) / (y powr a)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2418
  for a b x :: real
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  2419
    by (simp add: divide_inverse powr_mult inverse_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2420
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2421
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2422
  for a b x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2423
  by (simp add: powr_def exp_add [symmetric] distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2424
70723
4e39d87c9737 imported new material mostly due to Sébastien Gouëzel
paulson <lp15@cam.ac.uk>
parents: 70722
diff changeset
  2425
lemma powr_mult_base: "0 \<le> x \<Longrightarrow>x * x powr y = x powr (1 + y)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2426
  for x :: real
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2427
  by (auto simp: powr_add)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2428
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2429
lemma powr_mult_base': "abs x * x powr y = x powr (1 + y)"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2430
  for x :: real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2431
  by (smt (verit) powr_mult_base uminus_powr_eq)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2432
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2433
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2434
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2435
  by (simp add: powr_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2436
78685
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2437
lemma powr_power: 
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2438
  fixes z:: "'a::{real_normed_field,ln}"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2439
  shows "z \<noteq> 0 \<Longrightarrow> (z powr u) ^ n = z powr (of_nat n * u)"
78685
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2440
  by (induction n) (auto simp: algebra_simps powr_add)
07c35dec9dac A few new or simplified proofs
paulson <lp15@cam.ac.uk>
parents: 78663
diff changeset
  2441
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2442
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2443
  for a b x :: real
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2444
  by (simp add: powr_powr mult.commute)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2445
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2446
lemma powr_minus: "x powr (- a) = inverse (x powr a)"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2447
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2448
  by (simp add: powr_def exp_minus [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2449
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2450
lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
67268
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  2451
      for a x :: "'a::{ln,real_normed_field}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2452
  by (simp add: divide_inverse powr_minus)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2453
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2454
lemma powr_sum: 
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2455
  assumes "x \<noteq> 0"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2456
  shows "x powr sum f A = (\<Prod>y\<in>A. x powr f y)"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2457
proof (cases "finite A")
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2458
  case True
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2459
  with assms show ?thesis 
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2460
    by (simp add: powr_def exp_sum sum_distrib_right)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2461
next
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2462
  case False
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2463
  with assms show ?thesis by auto
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2464
qed
77490
2c86ea8961b5 Some new lemmas. Some tidying up
paulson <lp15@cam.ac.uk>
parents: 77230
diff changeset
  2465
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2466
lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2467
  for a b c :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2468
  by (simp add: powr_minus_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2469
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2470
lemma powr_less_mono: "a < b \<Longrightarrow> 1 < x \<Longrightarrow> x powr a < x powr b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2471
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2472
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2473
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2474
lemma powr_less_cancel: "x powr a < x powr b \<Longrightarrow> 1 < x \<Longrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2475
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2476
  by (simp add: powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2477
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2478
lemma powr_less_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a < x powr b \<longleftrightarrow> a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2479
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2480
  by (blast intro: powr_less_cancel powr_less_mono)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2481
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2482
lemma powr_le_cancel_iff [simp]: "1 < x \<Longrightarrow> x powr a \<le> x powr b \<longleftrightarrow> a \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2483
  for a b x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2484
  by (simp add: linorder_not_less [symmetric])
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2485
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2486
lemma powr_realpow: "0 < x \<Longrightarrow> x powr (real n) = x^n"
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2487
  by (induction n) (simp_all add: ac_simps powr_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2488
77140
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  2489
lemma powr_realpow': "(z :: real) \<ge> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> z powr of_nat n = z ^ n"
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  2490
  by (cases "z = 0") (auto simp: powr_realpow)
9a60c1759543 Lots more new material thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77138
diff changeset
  2491
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2492
lemma powr_real_of_int':
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2493
  assumes "x \<ge> 0" "x \<noteq> 0 \<or> n > 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71585
diff changeset
  2494
  shows   "x powr real_of_int n = power_int x n"
77200
8f2e6186408f Some more new material and some tidying of existing proofs
paulson <lp15@cam.ac.uk>
parents: 77140
diff changeset
  2495
  by (metis assms exp_ln_iff exp_power_int nless_le power_int_eq_0_iff powr_def)
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2496
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2497
lemma exp_minus_ge: 
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2498
  fixes x::real shows "1 - x \<le> exp (-x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2499
  by (smt (verit) exp_ge_add_one_self)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2500
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2501
lemma exp_minus_greater: 
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2502
  fixes x::real shows "1 - x < exp (-x) \<longleftrightarrow> x \<noteq> 0"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2503
  by (smt (verit) exp_minus_ge exp_eq_one_iff exp_gt_zero ln_eq_minus_one ln_exp)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2504
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2505
lemma log_ln: "ln x = log (exp 1) x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2506
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2507
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2508
lemma DERIV_log:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2509
  assumes "x > 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2510
  shows "DERIV (\<lambda>y. log b y) x :> 1 / (ln b * x)"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2511
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  2512
  define lb where "lb = 1 / ln b"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2513
  moreover have "DERIV (\<lambda>y. lb * ln y) x :> lb / x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2514
    using \<open>x > 0\<close> by (auto intro!: derivative_eq_intros)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2515
  ultimately show ?thesis
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2516
    by (simp add: log_def)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2517
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2518
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  2519
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2520
  and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2521
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2522
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2523
  by (simp add: powr_def log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2524
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2525
lemma log_powr_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a powr x) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2526
  by (simp add: log_def powr_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2527
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2528
lemma powr_eq_iff: "\<lbrakk>y>0; a>1\<rbrakk> \<Longrightarrow> a powr x = y \<longleftrightarrow> log a y = x"
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2529
  by auto
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2530
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2531
lemma log_mult:
80528
6dec6b1f31f5 Better multiplication and division rules for ln and log
paulson <lp15@cam.ac.uk>
parents: 80523
diff changeset
  2532
  "log a (x * y) = (if x\<noteq>0 \<and> y\<noteq>0 then log a x + log a y else 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2533
  by (simp add: log_def ln_mult divide_inverse distrib_right)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2534
80521
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2535
lemma log_mult_pos:
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2536
  "x>0 \<Longrightarrow> y>0 \<Longrightarrow> log a (x * y) = log a x + log a y"
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2537
  by (simp add: log_def ln_mult divide_inverse distrib_right)
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2538
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2539
lemma log_eq_div_ln_mult_log:
79772
817d33f8aa7f Moving valuable library material from Martingales into the distribution
paulson <lp15@cam.ac.uk>
parents: 79672
diff changeset
  2540
  "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> log a x = (ln b/ln a) * log b x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2541
  by (simp add: log_def divide_inverse)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2542
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2543
text\<open>Base 10 logarithms\<close>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2544
lemma log_base_10_eq1: "0 < x \<Longrightarrow> log 10 x = (ln (exp 1) / ln 10) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2545
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2546
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2547
lemma log_base_10_eq2: "0 < x \<Longrightarrow> log 10 x = (log 10 (exp 1)) * ln x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2548
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2549
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2550
lemma log_one [simp]: "log a 1 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2551
  by (simp add: log_def)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2552
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2553
lemma log_eq_one [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a a = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2554
  by (simp add: log_def)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2555
80521
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2556
lemma log_inverse: "log a (inverse x) = - log a x"
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2557
  by (simp add: ln_inverse log_def)
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2558
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2559
lemma log_recip: "log a (1/x) = - log a x"
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2560
  by (simp add: divide_inverse log_inverse)
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2561
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2562
lemma log_divide:
80528
6dec6b1f31f5 Better multiplication and division rules for ln and log
paulson <lp15@cam.ac.uk>
parents: 80523
diff changeset
  2563
  "log a (x / y) = (if x\<noteq>0 \<and> y\<noteq>0 then log a x - log a y else 0)"
80521
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2564
  by (simp add: diff_divide_distrib ln_div log_def)
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2565
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2566
lemma log_divide_pos:
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2567
  "x>0 \<Longrightarrow> y>0 \<Longrightarrow> log a (x / y) = log a x - log a y"
5c691b178e08 Totalisation of ln and therefore log and powr
paulson <lp15@cam.ac.uk>
parents: 80519
diff changeset
  2568
  using log_divide by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2569
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2570
lemma powr_gt_zero [simp]: "0 < x powr a \<longleftrightarrow> x \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2571
  for a x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2572
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2573
67573
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2574
lemma powr_nonneg_iff[simp]: "a powr x \<le> 0 \<longleftrightarrow> a = 0"
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2575
  for a x::real
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2576
  by (meson not_less powr_gt_zero)
ed0a7090167d added lemmas, avoid 'float_of 0'
immler
parents: 67443
diff changeset
  2577
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2578
lemma log_add_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> x\<noteq>0 \<Longrightarrow> log b x + y = log b (x * b powr y)"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2579
  and add_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> x\<noteq>0 \<Longrightarrow> y + log b x = log b (b powr y * x)"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2580
  and log_minus_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> x\<noteq>0 \<Longrightarrow> log b x - y = log b (x * b powr -y)"
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2581
  by (simp_all add: log_mult log_divide)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2582
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2583
lemma minus_log_eq_powr: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> x\<noteq>0 \<Longrightarrow> y - log b x = log b (b powr y / x)"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2584
  by (simp add: diff_divide_eq_iff ln_div log_def powr_def)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2585
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2586
lemma log_less_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x < log a y \<longleftrightarrow> x < y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2587
  using powr_less_cancel_iff [of a] powr_log_cancel [of a x] powr_log_cancel [of a y]
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2588
  by (metis less_eq_real_def less_trans not_le zero_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2589
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2590
lemma log_inj:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2591
  assumes "1 < b"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2592
  shows "inj_on (log b) {0 <..}"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2593
proof (rule inj_onI, simp)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2594
  fix x y
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2595
  assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2596
  show "x = y"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2597
  proof (cases rule: linorder_cases)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2598
    assume "x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2599
    then show ?thesis by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2600
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2601
    assume "x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2602
    then have "log b x < log b y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2603
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2604
    then show ?thesis using * by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2605
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2606
    assume "y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2607
    then have "log b y < log b x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2608
      using log_less_cancel_iff[OF \<open>1 < b\<close>] pos by simp
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2609
    then show ?thesis using * by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2610
  qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2611
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2612
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2613
lemma log_le_cancel_iff [simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> log a x \<le> log a y \<longleftrightarrow> x \<le> y"
79492
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2614
  by (simp flip: linorder_not_less)
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2615
80034
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  2616
lemma log_mono: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y"
79492
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2617
  by simp
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2618
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2619
lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y"
c1b0f64eb865 A few new results (mostly brought in from other developments)
paulson <lp15@cam.ac.uk>
parents: 78890
diff changeset
  2620
  by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2621
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2622
lemma zero_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < log a x \<longleftrightarrow> 1 < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2623
  using log_less_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2624
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2625
lemma zero_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 \<le> log a x \<longleftrightarrow> 1 \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2626
  using log_le_cancel_iff[of a 1 x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2627
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2628
lemma log_less_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 0 \<longleftrightarrow> x < 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2629
  using log_less_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2630
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2631
lemma log_le_zero_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 0 \<longleftrightarrow> x \<le> 1"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2632
  using log_le_cancel_iff[of a x 1] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2633
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2634
lemma one_less_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 < log a x \<longleftrightarrow> a < x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2635
  using log_less_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2636
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2637
lemma one_le_log_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> 1 \<le> log a x \<longleftrightarrow> a \<le> x"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2638
  using log_le_cancel_iff[of a a x] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2639
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2640
lemma log_less_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x < 1 \<longleftrightarrow> x < a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2641
  using log_less_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2642
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2643
lemma log_le_one_cancel_iff[simp]: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> log a x \<le> 1 \<longleftrightarrow> x \<le> a"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2644
  using log_le_cancel_iff[of a x a] by simp
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2645
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2646
lemma le_log_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2647
  fixes b x y :: real
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2648
  assumes "1 < b" "x > 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2649
  shows "y \<le> log b x \<longleftrightarrow> b powr y \<le> x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  2650
  using assms
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  2651
  by (metis less_irrefl less_trans powr_le_cancel_iff powr_log_cancel zero_less_one)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2652
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2653
lemma less_log_iff:
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2654
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2655
  shows "y < log b x \<longleftrightarrow> b powr y < x"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2656
  by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2657
    powr_log_cancel zero_less_one)
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2658
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2659
lemma
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2660
  assumes "1 < b" "x > 0"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2661
  shows log_less_iff: "log b x < y \<longleftrightarrow> x < b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2662
    and log_le_iff: "log b x \<le> y \<longleftrightarrow> x \<le> b powr y"
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2663
  using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2664
  by auto
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2665
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2666
lemmas powr_le_iff = le_log_iff[symmetric]
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2667
  and powr_less_iff = less_log_iff[symmetric]
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2668
  and less_powr_iff = log_less_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2669
  and le_powr_iff = log_le_iff[symmetric]
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2670
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2671
lemma le_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2672
  assumes "b ^ n \<le> m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2673
  shows "n \<le> log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2674
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2675
  from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2676
  thus ?thesis using assms by (simp add: le_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2677
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2678
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2679
lemma le_log2_of_power: "2 ^ n \<le> m \<Longrightarrow> n \<le> log 2 m" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2680
using le_log_of_power[of 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2681
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2682
lemma log_of_power_le: "\<lbrakk> m \<le> b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) \<le> n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2683
by (simp add: log_le_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2684
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2685
lemma log2_of_power_le: "\<lbrakk> m \<le> 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m \<le> n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2686
using log_of_power_le[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2687
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2688
lemma log_of_power_less: "\<lbrakk> m < b ^ n; b > 1; m > 0 \<rbrakk> \<Longrightarrow> log b (real m) < n"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2689
by (simp add: log_less_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2690
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2691
lemma log2_of_power_less: "\<lbrakk> m < 2 ^ n; m > 0 \<rbrakk> \<Longrightarrow> log 2 m < n" for m n :: nat
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2692
using log_of_power_less[of _ 2] by simp
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2693
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2694
lemma less_log_of_power:
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2695
  assumes "b ^ n < m" "1 < b"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2696
  shows "n < log b m"
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2697
proof -
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2698
  have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2699
  thus ?thesis using assms by (simp add: less_log_iff powr_realpow)
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2700
qed
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2701
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2702
lemma less_log2_of_power: "2 ^ n < m \<Longrightarrow> n < log 2 m" for m n :: nat
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2703
  using less_log_of_power[of 2] by simp
66511
9756684f4d74 tuned proofs
nipkow
parents: 66510
diff changeset
  2704
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2705
lemma gr_one_powr[simp]:
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2706
  fixes x y :: real shows "\<lbrakk> x > 1; y > 0 \<rbrakk> \<Longrightarrow> 1 < x powr y"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2707
  by(simp add: less_powr_iff)
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2708
70350
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2709
lemma log_pow_cancel [simp]:
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2710
  "a > 0 \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log a (a ^ b) = b"
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2711
  by (simp add: ln_realpow log_def)
571ae57313a4 moved some theorems into HOL main corpus
haftmann
parents: 70270
diff changeset
  2712
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2713
lemma floor_log_eq_powr_iff: "x > 0 \<Longrightarrow> b > 1 \<Longrightarrow> \<lfloor>log b x\<rfloor> = k \<longleftrightarrow> b powr k \<le> x \<and> x < b powr (k + 1)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2714
  by (auto simp: floor_eq_iff powr_le_iff less_powr_iff)
58984
ae0c56c485ae added lemmas: convert between powr and log in comparisons, pull log out of addition/subtraction
immler
parents: 58981
diff changeset
  2715
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2716
lemma floor_log_nat_eq_powr_iff: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2717
  fixes b n k :: nat
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2718
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow> floor (log b (real k)) = n \<longleftrightarrow> b^n \<le> k \<and> k < b^(n+1)"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2719
by (auto simp: floor_log_eq_powr_iff powr_add powr_realpow
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2720
               of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2721
         simp del: of_nat_power of_nat_mult)
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2722
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2723
lemma floor_log_nat_eq_if: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2724
  fixes b n k :: nat
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2725
  assumes "b^n \<le> k" "k < b^(n+1)" "b \<ge> 2"
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2726
  shows "floor (log b (real k)) = n" 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2727
proof -
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2728
  have "k \<ge> 1"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2729
    using assms linorder_le_less_linear by force
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2730
  with assms show ?thesis 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2731
    by(simp add: floor_log_nat_eq_powr_iff)
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2732
qed
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2733
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2734
lemma ceiling_log_eq_powr_iff: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2735
  "\<lbrakk> x > 0; b > 1 \<rbrakk> \<Longrightarrow> \<lceil>log b x\<rceil> = int k + 1 \<longleftrightarrow> b powr k < x \<and> x \<le> b powr (k + 1)"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2736
  by (auto simp: ceiling_eq_iff powr_less_iff le_powr_iff)
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2737
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2738
lemma ceiling_log_nat_eq_powr_iff: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2739
  fixes b n k :: nat
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2740
  shows "\<lbrakk> b \<ge> 2; k > 0 \<rbrakk> \<Longrightarrow> \<lceil>log b (real k)\<rceil> = int n + 1 \<longleftrightarrow> (b^n < k \<and> k \<le> b^(n+1))"
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2741
  using ceiling_log_eq_powr_iff
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2742
  by (auto simp: powr_add powr_realpow of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2743
      simp del: of_nat_power of_nat_mult)
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2744
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2745
lemma ceiling_log_nat_eq_if: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2746
  fixes b n k :: nat
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2747
  assumes "b^n < k" "k \<le> b^(n+1)" "b \<ge> 2"
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2748
  shows "\<lceil>log (real b) (real k)\<rceil> = int n + 1"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2749
  using assms ceiling_log_nat_eq_powr_iff by force
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2750
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2751
lemma floor_log2_div2: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2752
  fixes n :: nat 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2753
  assumes "n \<ge> 2"
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2754
  shows "\<lfloor>log 2 (real n)\<rfloor> = \<lfloor>log 2 (n div 2)\<rfloor> + 1"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2755
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2756
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2757
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2758
  let ?m = "n div 2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2759
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2760
  hence "1 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2761
  then obtain i where i: "2 ^ i \<le> ?m" "?m < 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2762
    using ex_power_ivl1[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2763
  have "2^(i+1) \<le> 2*?m" using i(1) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2764
  also have "2*?m \<le> n" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2765
  finally have *: "2^(i+1) \<le> \<dots>" .
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2766
  have "n < 2^(i+1+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2767
  from floor_log_nat_eq_if[OF * this] floor_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2768
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2769
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2770
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2771
lemma ceiling_log2_div2: 
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2772
  assumes "n \<ge> 2"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2773
  shows "\<lceil>log 2 (real n)\<rceil> = \<lceil>log 2 ((n-1) div 2 + 1)\<rceil> + 1"
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2774
proof cases
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2775
  assume "n=2" thus ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2776
next
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2777
  let ?m = "(n-1) div 2 + 1"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2778
  assume "n\<noteq>2"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2779
  hence "2 \<le> ?m" using assms by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2780
  then obtain i where i: "2 ^ i < ?m" "?m \<le> 2 ^ (i + 1)"
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2781
    using ex_power_ivl2[of 2 ?m] by auto
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2782
  have "n \<le> 2*?m" by arith
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2783
  also have "2*?m \<le> 2 ^ ((i+1)+1)" using i(2) by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2784
  finally have *: "n \<le> \<dots>" .
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2785
  have "2^(i+1) < n" using i(1) by (auto simp: less_Suc_eq_0_disj)
66515
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2786
  from ceiling_log_nat_eq_if[OF this *] ceiling_log_nat_eq_if[OF i]
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2787
  show ?thesis by simp
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2788
qed
85c505c98332 reorganized and added log-related lemmas
nipkow
parents: 66511
diff changeset
  2789
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2790
lemma powr_real_of_int:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2791
  "x > 0 \<Longrightarrow> x powr real_of_int n = (if n \<ge> 0 then x ^ nat n else inverse (x ^ nat (- n)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2792
  using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2793
  by (auto simp: field_simps powr_minus)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61976
diff changeset
  2794
70270
4065e3b0e5bf Generalisations involving numerals; comparisons should now work for ennreal
paulson <lp15@cam.ac.uk>
parents: 70113
diff changeset
  2795
lemma powr_numeral [simp]: "0 \<le> x \<Longrightarrow> x powr (numeral n :: real) = x ^ (numeral n)"
4065e3b0e5bf Generalisations involving numerals; comparisons should now work for ennreal
paulson <lp15@cam.ac.uk>
parents: 70113
diff changeset
  2796
  by (metis less_le power_zero_numeral powr_0 of_nat_numeral powr_realpow)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2797
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2798
lemma powr_int:
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2799
  assumes "x > 0"
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2800
  shows "x powr i = (if i \<ge> 0 then x ^ nat i else 1/x ^ nat (-i))"
78250
400aecdfd71f Another tranche of HOL Light material on metric and topological spaces
paulson <lp15@cam.ac.uk>
parents: 77490
diff changeset
  2801
  by (simp add: assms inverse_eq_divide powr_real_of_int)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2802
78274
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2803
lemma power_of_nat_log_ge: "b > 1 \<Longrightarrow> b ^ nat \<lceil>log b x\<rceil> \<ge> x"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2804
  by (smt (verit) less_log_of_power of_nat_ceiling)
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2805
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2806
lemma power_of_nat_log_le:
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2807
  assumes "b > 1" "x\<ge>1"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2808
  shows "b ^ nat \<lfloor>log b x\<rfloor> \<le> x"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2809
proof -
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2810
  have "\<lfloor>log b x\<rfloor> \<ge> 0"
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2811
    using assms by auto
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2812
  then show ?thesis
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2813
    by (smt (verit) assms le_log_iff of_int_floor_le powr_int)
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2814
qed
f44aec9a6894 Last of the HOL Light metric space imports, and some supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 78250
diff changeset
  2815
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2816
definition powr_real :: "real \<Rightarrow> real \<Rightarrow> real"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2817
  where [code_abbrev, simp]: "powr_real = Transcendental.powr"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2818
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2819
lemma compute_powr_real [code]:
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2820
  "powr_real b i =
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2821
    (if b \<le> 0 then Code.abort (STR ''powr_real with nonpositive base'') (\<lambda>_. powr_real b i)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2822
     else if \<lfloor>i\<rfloor> = i then (if 0 \<le> i then b ^ nat \<lfloor>i\<rfloor> else 1 / b ^ nat \<lfloor>- i\<rfloor>)
68774
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2823
     else Code.abort (STR ''powr_real with non-integer exponent'') (\<lambda>_. powr_real b i))"
9fc50a3e07f6 proper code abbreviation for power on real
haftmann
parents: 68642
diff changeset
  2824
    for b i :: real
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 58984
diff changeset
  2825
  by (auto simp: powr_int)
58981
11b6c099f5f3 code equation for powr
immler
parents: 58889
diff changeset
  2826
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2827
lemma powr_one: "0 \<le> x \<Longrightarrow> x powr 1 = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2828
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2829
  using powr_realpow [of x 1] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2830
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2831
lemma powr_one' [simp]: "x powr 1 = \<bar>x\<bar>"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2832
  for x :: real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2833
  by (simp add: ln_real_def powr_def)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2834
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2835
lemma powr_neg_one: "0 < x \<Longrightarrow> x powr -1 = 1/x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2836
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2837
  using powr_int [of x "- 1"] by simp
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2838
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2839
lemma powr_neg_one' [simp]: "x powr -1 = 1/\<bar>x\<bar>"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2840
  for x :: real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2841
  by (simp add: powr_minus_divide)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2842
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  2843
lemma powr_neg_numeral: "0 < x \<Longrightarrow> x powr - numeral n = 1/x ^ numeral n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2844
  for x :: real
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54230
diff changeset
  2845
  using powr_int [of x "- numeral n"] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2846
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2847
lemma root_powr_inverse: "0 < n \<Longrightarrow> 0 \<le> x \<Longrightarrow> root n x = x powr (1/n)"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2848
  by (simp add: exp_divide_power_eq powr_def real_root_pos_unique)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2849
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2850
lemma powr_inverse_root: "0 < n \<Longrightarrow> x powr (1/n) = \<bar>root n x\<bar>"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2851
  by (metis abs_ge_zero mult_1 powr_one' powr_powr real_root_abs root_powr_inverse)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2852
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2853
lemma ln_powr [simp]: "ln (x powr y) = y * ln x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2854
  for x :: real
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2855
  by (simp add: powr_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2856
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2857
lemma ln_root: "n > 0 \<Longrightarrow> ln (root n b) =  ln b / n"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2858
  by (metis ln_powr mult_1 powr_inverse_root powr_one' times_divide_eq_left)
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2859
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2860
lemma ln_sqrt: "0 \<le> x \<Longrightarrow> ln (sqrt x) = ln x / 2"
80528
6dec6b1f31f5 Better multiplication and division rules for ln and log
paulson <lp15@cam.ac.uk>
parents: 80523
diff changeset
  2861
  by (metis (full_types) divide_inverse inverse_eq_divide ln_powr mult.commute of_nat_numeral pos2 root_powr_inverse sqrt_def)
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2862
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2863
lemma log_root: "n > 0 \<Longrightarrow> a \<ge> 0 \<Longrightarrow> log b (root n a) =  log b a / n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2864
  by (simp add: log_def ln_root)
56952
efa2a83d548b added lemmas
nipkow
parents: 56571
diff changeset
  2865
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2866
lemma log_powr: "log b (x powr y) = y * log b x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2867
  by (simp add: log_def)
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2868
64446
ec766f7b887e added simp rule
nipkow
parents: 64272
diff changeset
  2869
(* [simp] is not worth it, interferes with some proofs *)
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2870
lemma log_nat_power: "0 \<le> x \<Longrightarrow> log b (x^n) = real n * log b x"
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2871
  by (simp add: ln_realpow log_def)
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2872
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2873
lemma log_of_power_eq:
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2874
  assumes "m = b ^ n" "b > 1"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2875
  shows "n = log b (real m)"
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2876
proof -
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2877
  have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2878
  also have "\<dots> = log b m" using assms by simp
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2879
  finally show ?thesis .
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2880
qed
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2881
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2882
lemma log2_of_power_eq: "m = 2 ^ n \<Longrightarrow> n = log 2 m" for m n :: nat
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2883
  using log_of_power_eq[of _ 2] by simp
66510
ca7a369301f6 reorganization of tree lemmas; new lemmas
nipkow
parents: 66486
diff changeset
  2884
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2885
lemma log_base_change: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> log b x = log a x / log a b"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2886
  by (simp add: log_def)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2887
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2888
lemma log_base_pow: "0 < a \<Longrightarrow> log (a ^ n) x = log a x / n"
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2889
  by (simp add: log_def ln_realpow)
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2890
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2891
lemma log_base_powr: "a \<noteq> 0 \<Longrightarrow> log (a powr b) x = log a x / b"
56483
5b82c58b665c generalize ln/log_powr; add log_base_powr/pow
hoelzl
parents: 56479
diff changeset
  2892
  by (simp add: log_def ln_powr)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2893
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2894
lemma log_base_root: "n > 0 \<Longrightarrow> log (root n b) x = n * (log b x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2895
  by (simp add: log_def ln_root)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2896
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2897
lemma ln_bound: "0 < x \<Longrightarrow> ln x \<le> x" for x :: real
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67685
diff changeset
  2898
  using ln_le_minus_one by force
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2899
79530
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2900
lemma powr_less_one:
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2901
  fixes x::real
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2902
  assumes "1 < x" "y < 0"
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2903
  shows "x powr y < 1"
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2904
using assms less_log_iff by force
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2905
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2906
lemma powr_le_one_le: "\<And>x y::real. 0 < x \<Longrightarrow> x \<le> 1 \<Longrightarrow> 1 \<le> y \<Longrightarrow> x powr y \<le> x"
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2907
  by (smt (verit) ln_gt_zero_imp_gt_one ln_le_cancel_iff ln_powr mult_le_cancel_right2)
1b0fc6ceb750 Three new lemmas
paulson <lp15@cam.ac.uk>
parents: 79492
diff changeset
  2908
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2909
lemma powr_mono:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2910
  fixes x :: real
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2911
  assumes "a \<le> b" and "1 \<le> x" shows "x powr a \<le> x powr b"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2912
  using assms less_eq_real_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2913
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2914
lemma ge_one_powr_ge_zero: "1 \<le> x \<Longrightarrow> 0 \<le> a \<Longrightarrow> 1 \<le> x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2915
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2916
  using powr_mono by fastforce
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2917
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2918
lemma powr_less_mono2: "0 < a \<Longrightarrow> 0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> x powr a < y powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2919
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2920
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2921
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2922
lemma powr_less_mono2_neg: "a < 0 \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> y powr a < x powr a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2923
  for x :: real
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2924
  by (simp add: powr_def)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  2925
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2926
lemma powr_mono2: "x powr a \<le> y powr a" if "0 \<le> a" "0 \<le> x" "x \<le> y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2927
  for x :: real
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2928
  using less_eq_real_def powr_less_mono2 that by auto
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2929
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2930
lemma powr01_less_one: 
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2931
  fixes x::real 
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2932
  assumes "0 < x" "x < 1"  
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2933
  shows "x powr a < 1 \<longleftrightarrow> a>0"
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2934
proof
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2935
  show "x powr a < 1 \<Longrightarrow> a>0"
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2936
    using assms not_less_iff_gr_or_eq powr_less_mono2_neg by fastforce
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2937
  show "a>0 \<Longrightarrow> x powr a < 1"
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2938
    by (metis assms less_eq_real_def powr_less_mono2 powr_one_eq_one)
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2939
qed
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2940
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2941
lemma powr_le1: "0 \<le> a \<Longrightarrow> \<bar>x\<bar> \<le> 1 \<Longrightarrow> x powr a \<le> 1"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2942
  for x :: real
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2943
  by (smt (verit, best) powr_mono2 powr_one_eq_one uminus_powr_eq)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  2944
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2945
lemma powr_mono2':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2946
  fixes a x y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2947
  assumes "a \<le> 0" "x > 0" "x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2948
  shows "x powr a \<ge> y powr a"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2949
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2950
  from assms have "x powr - a \<le> y powr - a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2951
    by (intro powr_mono2) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2952
  with assms show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  2953
    by (auto simp: powr_minus field_simps)
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2954
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2955
80052
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2956
lemma powr_mono': "a \<le> (b::real) \<Longrightarrow> x \<ge> 0 \<Longrightarrow> x \<le> 1 \<Longrightarrow> x powr b \<le> x powr a"
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2957
  using powr_mono[of "-b" "-a" "inverse x"] by (auto simp: powr_def ln_inverse ln_div field_split_simps)
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2958
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2959
lemma powr_mono_both:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2960
  fixes x :: real
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2961
  assumes "0 \<le> a" "a \<le> b" "1 \<le> x" "x \<le> y"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2962
    shows "x powr a \<le> y powr b"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2963
  by (meson assms order.trans powr_mono powr_mono2 zero_le_one)
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65552
diff changeset
  2964
80052
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2965
lemma powr_mono_both':
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2966
  fixes x :: real
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2967
  assumes "a \<ge> b" "b\<ge>0" "0 < x" "x \<le> y" "y \<le> 1"
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2968
    shows "x powr a \<le> y powr b"
35b2143aeec6 An assortment of new material, mostly due to Manuel
paulson <lp15@cam.ac.uk>
parents: 80034
diff changeset
  2969
  by (meson assms nless_le order.trans powr_mono' powr_mono2)
79672
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2970
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2971
lemma powr_less_mono':
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2972
  assumes "(x::real) > 0" "x < 1" "a < b"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2973
  shows   "x powr b < x powr a"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2974
  by (metis assms log_powr_cancel order.strict_iff_order powr_mono')
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  2975
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2976
lemma powr_inj: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> a powr x = a powr y \<longleftrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2977
  for x :: real
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  2978
  by (metis log_powr_cancel)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2979
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2980
lemma powr_half_sqrt: "0 \<le> x \<Longrightarrow> x powr (1/2) = sqrt x"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2981
  by (simp add: powr_def root_powr_inverse sqrt_def)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60036
diff changeset
  2982
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2983
lemma powr_half_sqrt_powr: "0 \<le> x \<Longrightarrow> x powr (a/2) = sqrt(x powr a)"
80653
b98f1057da0e New library material; also fixed the spelling error powr_ge_pzero -> powr_ge_zero
paulson <lp15@cam.ac.uk>
parents: 80621
diff changeset
  2984
  by (metis divide_inverse mult.left_neutral powr_ge_zero powr_half_sqrt powr_powr)
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  2985
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2986
lemma square_powr_half [simp]:
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2987
  fixes x::real shows "x\<^sup>2 powr (1/2) = \<bar>x\<bar>"
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2988
  by (simp add: powr_half_sqrt)
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  2989
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2990
lemma ln_powr_bound: "1 \<le> x \<Longrightarrow> 0 < a \<Longrightarrow> ln x \<le> (x powr a) / a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2991
  for x :: real
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  2992
  by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2993
      mult_imp_le_div_pos not_less powr_gt_zero)
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2994
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2995
lemma ln_powr_bound2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2996
  fixes x :: real
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2997
  assumes "1 < x" and "0 < a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  2998
  shows "(ln x) powr a \<le> (a powr a) * x"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  2999
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3000
  from assms have "ln x \<le> (x powr (1 / a)) / (1 / a)"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  3001
    by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3002
  also have "\<dots> = a * (x powr (1 / a))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3003
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3004
  finally have "(ln x) powr a \<le> (a * (x powr (1 / a))) powr a"
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  3005
    by (metis assms less_imp_le ln_gt_zero powr_mono2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3006
  also have "\<dots> = (a powr a) * ((x powr (1 / a)) powr a)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  3007
    using assms powr_mult by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3008
  also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3009
    by (rule powr_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3010
  also have "\<dots> = x" using assms
54575
0b9ca2c865cb cleaned up more messy proofs
paulson
parents: 54573
diff changeset
  3011
    by auto
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3012
  finally show ?thesis .
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3013
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3014
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3015
lemma tendsto_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3016
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3017
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3018
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3019
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3020
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3021
  unfolding powr_def
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3022
proof (rule filterlim_If)
80175
200107cdd3ac Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents: 80052
diff changeset
  3023
  show "((\<lambda>x. 0) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
200107cdd3ac Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents: 80052
diff changeset
  3024
    using tendsto_imp_eventually_ne [OF f] a
200107cdd3ac Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents: 80052
diff changeset
  3025
    by (simp add: filterlim_iff eventually_inf_principal frequently_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3026
  from f g a show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> (if a = 0 then 0 else exp (b * ln a)))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3027
      (inf F (principal {x. f x \<noteq> 0}))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3028
    by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3029
qed
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3030
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3031
lemma tendsto_powr'[tendsto_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3032
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3033
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3034
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3035
    and a: "a \<noteq> 0 \<or> (b > 0 \<and> eventually (\<lambda>x. f x \<ge> 0) F)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3036
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3037
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3038
  from a consider "a \<noteq> 0" | "a = 0" "b > 0" "eventually (\<lambda>x. f x \<ge> 0) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3039
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3040
  then show ?thesis
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3041
  proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3042
    case 1
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3043
    with f g show ?thesis by (rule tendsto_powr)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3044
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3045
    case 2
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3046
    have "((\<lambda>x. if f x = 0 then 0 else exp (g x * ln (f x))) \<longlongrightarrow> 0) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3047
    proof (intro filterlim_If)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3048
      have "filterlim f (principal {0<..}) (inf F (principal {z. f z \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3049
        using \<open>eventually (\<lambda>x. f x \<ge> 0) F\<close>
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3050
        by (auto simp: filterlim_iff eventually_inf_principal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3051
            eventually_principal elim: eventually_mono)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3052
      moreover have "filterlim f (nhds a) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3053
        by (rule tendsto_mono[OF _ f]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3054
      ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x \<noteq> 0}))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3055
        by (simp add: at_within_def filterlim_inf \<open>a = 0\<close>)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3056
      have g: "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3057
        by (rule tendsto_mono[OF _ g]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3058
      show "((\<lambda>x. exp (g x * ln (f x))) \<longlongrightarrow> 0) (inf F (principal {x. f x \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3059
        by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3060
                 filterlim_compose[OF ln_at_0] f g \<open>b > 0\<close>)+
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3061
    qed simp_all
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3062
    with \<open>a = 0\<close> show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3063
      by (simp add: powr_def)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3064
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3065
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3066
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3067
lemma continuous_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3068
  assumes "continuous F f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3069
    and "continuous F g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3070
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  3071
  shows "continuous F (\<lambda>x. (f x) powr (g x :: real))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3072
  using assms unfolding continuous_def by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3073
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3074
lemma continuous_at_within_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3075
  fixes f g :: "_ \<Rightarrow> real"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3076
  assumes "continuous (at a within s) f"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3077
    and "continuous (at a within s) g"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3078
    and "f a \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3079
  shows "continuous (at a within s) (\<lambda>x. (f x) powr (g x))"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3080
  using assms unfolding continuous_within by (rule tendsto_powr)
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3081
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  3082
lemma continuous_on_powr[continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3083
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3084
  assumes "continuous_on s f" "continuous_on s g" and "\<forall>x\<in>s. f x \<noteq> 0"
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3085
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3086
  using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3087
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3088
lemma tendsto_powr2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3089
  fixes a :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3090
  assumes f: "(f \<longlongrightarrow> a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3091
    and g: "(g \<longlongrightarrow> b) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3092
    and "\<forall>\<^sub>F x in F. 0 \<le> f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3093
    and b: "0 < b"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3094
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> a powr b) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3095
  using tendsto_powr'[of f a F g b] assms by auto
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3096
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3097
lemma has_derivative_powr[derivative_intros]:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3098
  assumes g[derivative_intros]: "(g has_derivative g') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3099
    and f[derivative_intros]:"(f has_derivative f') (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3100
  assumes pos: "0 < g x" and "x \<in> X"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3101
  shows "((\<lambda>x. g x powr f x::real) has_derivative (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3102
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3103
  have "\<forall>\<^sub>F x in at x within X. g x > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3104
    by (rule order_tendstoD[OF _ pos])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3105
      (rule has_derivative_continuous[OF g, unfolded continuous_within])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3106
  then obtain d where "d > 0" and pos': "\<And>x'. x' \<in> X \<Longrightarrow> dist x' x < d \<Longrightarrow> 0 < g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3107
    using pos unfolding eventually_at by force
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3108
  have "((\<lambda>x. exp (f x * ln (g x))) has_derivative
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3109
    (\<lambda>h. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3110
    using pos
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  3111
    by (auto intro!: derivative_eq_intros simp: field_split_simps powr_def)
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3112
  then show ?thesis
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3113
    by (rule has_derivative_transform_within[OF _ \<open>d > 0\<close> \<open>x \<in> X\<close>]) (auto simp: powr_def dest: pos')
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3114
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3115
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3116
lemma has_derivative_const_powr [derivative_intros]:
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  3117
  fixes a::real
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  3118
  assumes "\<And>x. (f has_derivative f') (at x)" 
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3119
  shows "((\<lambda>x. a powr (f x)) has_derivative (\<lambda>y. f' y * ln a * a powr (f x))) (at x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3120
  using assms
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3121
  apply (simp add: powr_def)
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  3122
  using DERIV_compose_FDERIV DERIV_exp has_derivative_mult_left by blast
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3123
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3124
lemma has_real_derivative_const_powr [derivative_intros]:
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  3125
  fixes a::real
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3126
  assumes "\<And>x. (f has_real_derivative f' x) (at x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3127
  shows "((\<lambda>x. a powr (f x)) has_real_derivative (f' x * ln a * a powr (f x))) (at x)"
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3128
  using assms
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3129
  apply (simp add: powr_def)
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  3130
  apply (rule assms impI derivative_eq_intros refl | simp)+
79670
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3131
  done
f471e1715fc4 A small collection of new and useful facts, including the AM-GM inequality
paulson <lp15@cam.ac.uk>
parents: 79530
diff changeset
  3132
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3133
lemma DERIV_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3134
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3135
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3136
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3137
    and f: "DERIV f x :> r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3138
  shows "DERIV (\<lambda>x. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3139
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3140
  by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def algebra_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3141
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3142
lemma DERIV_fun_powr:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3143
  fixes r :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3144
  assumes g: "DERIV g x :> m"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3145
    and pos: "g x > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3146
  shows "DERIV (\<lambda>x. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3147
  using DERIV_powr[OF g pos DERIV_const, of r] pos
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  3148
  by (simp add: powr_diff field_simps)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3149
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3150
lemma has_real_derivative_powr:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3151
  assumes "z > 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3152
  shows "((\<lambda>z. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3153
proof (subst DERIV_cong_ev[OF refl _ refl])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3154
  from assms have "eventually (\<lambda>z. z \<noteq> 0) (nhds z)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3155
    by (intro t1_space_nhds) auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3156
  then show "eventually (\<lambda>z. z powr r = exp (r * ln z)) (nhds z)"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3157
    unfolding powr_def by eventually_elim simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3158
  from assms show "((\<lambda>z. exp (r * ln z)) has_real_derivative r * z powr (r - 1)) (at z)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3159
    by (auto intro!: derivative_eq_intros simp: powr_def field_simps exp_diff)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3160
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3161
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3162
declare has_real_derivative_powr[THEN DERIV_chain2, derivative_intros]
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  3163
80034
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3164
text \<open>A more general version, by Johannes Hölzl\<close>
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3165
lemma has_real_derivative_powr':
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3166
  fixes f g :: "real \<Rightarrow> real"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3167
  assumes "(f has_real_derivative f') (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3168
  assumes "(g has_real_derivative g') (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3169
  assumes "f x > 0"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3170
  defines "h \<equiv> \<lambda>x. f x powr g x * (g' * ln (f x) + f' * g x / f x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3171
  shows   "((\<lambda>x. f x powr g x) has_real_derivative h x) (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3172
proof (subst DERIV_cong_ev[OF refl _ refl])
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3173
  from assms have "isCont f x"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3174
    by (simp add: DERIV_continuous)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3175
  hence "f \<midarrow>x\<rightarrow> f x" by (simp add: continuous_at)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3176
  with \<open>f x > 0\<close> have "eventually (\<lambda>x. f x > 0) (nhds x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3177
    by (auto simp: tendsto_at_iff_tendsto_nhds dest: order_tendstoD)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3178
  thus "eventually (\<lambda>x. f x powr g x = exp (g x * ln (f x))) (nhds x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3179
    by eventually_elim (simp add: powr_def)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3180
next
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3181
  from assms show "((\<lambda>x. exp (g x * ln (f x))) has_real_derivative h x) (at x)"
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3182
    by (auto intro!: derivative_eq_intros simp: h_def powr_def)
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3183
qed
95b4fb2b5359 New material and a bit of refactoring
paulson <lp15@cam.ac.uk>
parents: 79945
diff changeset
  3184
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3185
lemma tendsto_zero_powrI:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3186
  assumes "(f \<longlongrightarrow> (0::real)) F" "(g \<longlongrightarrow> b) F" "\<forall>\<^sub>F x in F. 0 \<le> f x" "0 < b"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3187
  shows "((\<lambda>x. f x powr g x) \<longlongrightarrow> 0) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3188
  using tendsto_powr2[OF assms] by simp
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3189
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3190
lemma continuous_on_powr':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3191
  fixes f g :: "_ \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3192
  assumes "continuous_on s f" "continuous_on s g"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3193
    and "\<forall>x\<in>s. f x \<ge> 0 \<and> (f x = 0 \<longrightarrow> g x > 0)"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3194
  shows "continuous_on s (\<lambda>x. (f x) powr (g x))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3195
  unfolding continuous_on_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3196
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3197
  fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3198
  assume x: "x \<in> s"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3199
  from assms x show "((\<lambda>x. f x powr g x) \<longlongrightarrow> f x powr g x) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3200
  proof (cases "f x = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3201
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3202
    from assms(3) have "eventually (\<lambda>x. f x \<ge> 0) (at x within s)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3203
      by (auto simp: at_within_def eventually_inf_principal)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3204
    with True x assms show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3205
      by (auto intro!: tendsto_zero_powrI[of f _ g "g x"] simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3206
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3207
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3208
    with assms x show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3209
      by (auto intro!: tendsto_powr' simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3210
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3211
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63170
diff changeset
  3212
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3213
lemma tendsto_neg_powr:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3214
  assumes "s < 0"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3215
    and f: "LIM x F. f x :> at_top"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3216
  shows "((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3217
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3218
  have "((\<lambda>x. exp (s * ln (f x))) \<longlongrightarrow> (0::real)) F" (is "?X")
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3219
    by (auto intro!: filterlim_compose[OF exp_at_bot] filterlim_compose[OF ln_at_top]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3220
        filterlim_tendsto_neg_mult_at_bot assms)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3221
  also have "?X \<longleftrightarrow> ((\<lambda>x. f x powr s) \<longlongrightarrow> (0::real)) F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3222
    using f filterlim_at_top_dense[of f F]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3223
    by (intro filterlim_cong[OF refl refl]) (auto simp: neq_iff powr_def elim: eventually_mono)
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60162
diff changeset
  3224
  finally show ?thesis .
51527
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3225
qed
bd62e7ff103b move Ln.thy and Log.thy to Transcendental.thy
hoelzl
parents: 51482
diff changeset
  3226
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3227
lemma tendsto_exp_limit_at_right: "((\<lambda>y. (1 + x * y) powr (1 / y)) \<longlongrightarrow> exp x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3228
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3229
proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3230
  case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3231
  then show ?thesis by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3232
next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3233
  case False
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3234
  have "((\<lambda>y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3235
    by (auto intro!: derivative_eq_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3236
  then have "((\<lambda>y. ln (1 + x * y) / y) \<longlongrightarrow> x) (at 0)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3237
    by (auto simp: has_field_derivative_def field_has_derivative_at)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  3238
  then have *: "((\<lambda>y. exp (ln (1 + x * y) / y)) \<longlongrightarrow> exp x) (at 0)"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3239
    by (rule tendsto_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3240
  then show ?thesis
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3241
  proof (rule filterlim_mono_eventually)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3242
    show "eventually (\<lambda>xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3243
      unfolding eventually_at_right[OF zero_less_one]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3244
      using False
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  3245
      by (intro exI[of _ "1 / \<bar>x\<bar>"]) (auto simp: field_simps powr_def abs_if add_nonneg_eq_0_iff)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3246
  qed (simp_all add: at_eq_sup_left_right)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3247
qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3248
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3249
lemma tendsto_exp_limit_at_top: "((\<lambda>y. (1 + x / y) powr y) \<longlongrightarrow> exp x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3250
  for x :: real
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3251
  by (simp add: filterlim_at_top_to_right inverse_eq_divide tendsto_exp_limit_at_right)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3252
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3253
lemma tendsto_exp_limit_sequentially: "(\<lambda>n. (1 + x / n) ^ n) \<longlonglongrightarrow> exp x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3254
  for x :: real
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3255
proof (rule filterlim_mono_eventually)
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  3256
  from reals_Archimedean2 [of "\<bar>x\<bar>"] obtain n :: nat where *: "real n > \<bar>x\<bar>" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3257
  then have "eventually (\<lambda>n :: nat. 0 < 1 + x / real n) at_top"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  3258
    by (intro eventually_sequentiallyI [of n]) (auto simp: field_split_simps)
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3259
  then show "eventually (\<lambda>n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  3260
    by (rule eventually_mono) (erule powr_realpow)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  3261
  show "(\<lambda>n. (1 + x / real n) powr real n) \<longlonglongrightarrow> exp x"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3262
    by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3263
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57180
diff changeset
  3264
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3265
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3266
subsection \<open>Sine and Cosine\<close>
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3267
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3268
definition sin_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3269
  where "sin_coeff = (\<lambda>n. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3270
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3271
definition cos_coeff :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3272
  where "cos_coeff = (\<lambda>n. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3273
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3274
definition sin :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3275
  where "sin = (\<lambda>x. \<Sum>n. sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3276
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3277
definition cos :: "'a \<Rightarrow> 'a::{real_normed_algebra_1,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3278
  where "cos = (\<lambda>x. \<Sum>n. cos_coeff n *\<^sub>R x^n)"
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3279
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3280
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3281
  unfolding sin_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3282
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3283
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3284
  unfolding cos_coeff_def by simp
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3285
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3286
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3287
  unfolding cos_coeff_def sin_coeff_def
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3288
  by (simp del: mult_Suc)
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3289
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3290
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3291
  unfolding cos_coeff_def sin_coeff_def
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  3292
  by (simp del: mult_Suc) (auto elim: oddE)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3293
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3294
lemma summable_norm_sin: "summable (\<lambda>n. norm (sin_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3295
  for x :: "'a::{real_normed_algebra_1,banach}"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3296
proof (rule summable_comparison_test [OF _ summable_norm_exp])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3297
  show "\<exists>N. \<forall>n\<ge>N. norm (norm (sin_coeff n *\<^sub>R x ^ n)) \<le> norm (x ^ n /\<^sub>R fact n)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3298
    unfolding sin_coeff_def
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3299
    by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3300
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3301
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3302
lemma summable_norm_cos: "summable (\<lambda>n. norm (cos_coeff n *\<^sub>R x^n))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3303
  for x :: "'a::{real_normed_algebra_1,banach}"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3304
proof (rule summable_comparison_test [OF _ summable_norm_exp])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3305
  show "\<exists>N. \<forall>n\<ge>N. norm (norm (cos_coeff n *\<^sub>R x ^ n)) \<le> norm (x ^ n /\<^sub>R fact n)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3306
    unfolding cos_coeff_def
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3307
    by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3308
qed
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3309
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3310
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3311
lemma sin_converges: "(\<lambda>n. sin_coeff n *\<^sub>R x^n) sums sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3312
  unfolding sin_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3313
  by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3314
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3315
lemma cos_converges: "(\<lambda>n. cos_coeff n *\<^sub>R x^n) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3316
  unfolding cos_def
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3317
  by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3318
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3319
lemma sin_of_real: "sin (of_real x) = of_real (sin x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3320
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3321
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3322
  have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R  x^n)) = (\<lambda>n. sin_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3323
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3324
    show "of_real (sin_coeff n *\<^sub>R  x^n) = sin_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3325
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3326
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3327
  also have "\<dots> sums (sin (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3328
    by (rule sin_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3329
  finally have "(\<lambda>n. of_real (sin_coeff n *\<^sub>R x^n)) sums (sin (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3330
  then show ?thesis
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3331
    using sums_unique2 sums_of_real [OF sin_converges] by blast
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3332
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3333
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3334
corollary sin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> sin z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3335
  by (metis Reals_cases Reals_of_real sin_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3336
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3337
lemma cos_of_real: "cos (of_real x) = of_real (cos x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3338
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3339
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3340
  have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R  x^n)) = (\<lambda>n. cos_coeff n *\<^sub>R  (of_real x)^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3341
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3342
    show "of_real (cos_coeff n *\<^sub>R  x^n) = cos_coeff n *\<^sub>R of_real x^n" for n
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3343
      by (simp add: scaleR_conv_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3344
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3345
  also have "\<dots> sums (cos (of_real x))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3346
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3347
  finally have "(\<lambda>n. of_real (cos_coeff n *\<^sub>R x^n)) sums (cos (of_real x))" .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3348
  then show ?thesis
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3349
    using sums_unique2 sums_of_real [OF cos_converges]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3350
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3351
qed
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3352
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3353
corollary cos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cos z \<in> \<real>"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3354
  by (metis Reals_cases Reals_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  3355
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3356
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3357
  by (simp add: diffs_def sin_coeff_Suc del: of_nat_Suc)
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3358
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3359
lemma diffs_cos_coeff: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3360
  by (simp add: diffs_def cos_coeff_Suc del: of_nat_Suc)
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3361
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3362
lemma sin_int_times_real: "sin (of_int m * of_real x) = of_real (sin (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3363
  by (metis sin_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3364
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3365
lemma cos_int_times_real: "cos (of_int m * of_real x) = of_real (cos (of_int m * x))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3366
  by (metis cos_of_real of_real_mult of_real_of_int_eq)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  3367
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3368
text \<open>Now at last we can get the derivatives of exp, sin and cos.\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3369
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3370
lemma DERIV_sin [simp]: "DERIV sin x :> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3371
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3372
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3373
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3374
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3375
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3376
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3377
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3378
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3379
  done
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3380
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3381
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3382
  and DERIV_sin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3383
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3384
lemmas has_derivative_sin[derivative_intros] = DERIV_sin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3385
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3386
lemma DERIV_cos [simp]: "DERIV cos x :> - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3387
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3388
  unfolding sin_def cos_def scaleR_conv_of_real
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3389
  apply (rule DERIV_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3390
   apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3391
      apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3392
              diffs_sin_coeff diffs_cos_coeff
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3393
              summable_minus_iff scaleR_conv_of_real [symmetric]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3394
              summable_norm_sin [THEN summable_norm_cancel]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3395
              summable_norm_cos [THEN summable_norm_cancel])
44319
806e0390de53 move sin_coeff and cos_coeff lemmas to Transcendental.thy; simplify some proofs
huffman
parents: 44318
diff changeset
  3396
  done
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3397
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3398
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3399
  and DERIV_cos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3400
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3401
lemmas has_derivative_cos[derivative_intros] = DERIV_cos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  3402
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3403
lemma isCont_sin: "isCont sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3404
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3405
  by (rule DERIV_sin [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3406
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3407
lemma continuous_on_sin_real: "continuous_on {a..b} sin" for a::real
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3408
  using continuous_at_imp_continuous_on isCont_sin by blast
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3409
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3410
lemma isCont_cos: "isCont cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3411
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3412
  by (rule DERIV_cos [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3413
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3414
lemma continuous_on_cos_real: "continuous_on {a..b} cos" for a::real
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3415
  using continuous_at_imp_continuous_on isCont_cos by blast
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3416
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3417
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3418
context
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3419
  fixes f :: "'a::t2_space \<Rightarrow> 'b::{real_normed_field,banach}"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3420
begin
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3421
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3422
lemma isCont_sin' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. sin (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3423
  by (rule isCont_o2 [OF _ isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3424
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3425
lemma isCont_cos' [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. cos (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3426
  by (rule isCont_o2 [OF _ isCont_cos])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3427
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3428
lemma tendsto_sin [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sin (f x)) \<longlongrightarrow> sin a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3429
  by (rule isCont_tendsto_compose [OF isCont_sin])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3430
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3431
lemma tendsto_cos [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cos (f x)) \<longlongrightarrow> cos a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  3432
  by (rule isCont_tendsto_compose [OF isCont_cos])
29164
0d49c5b55046 move sin and cos to their own subsection
huffman
parents: 29163
diff changeset
  3433
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3434
lemma continuous_sin [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. sin (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3435
  unfolding continuous_def by (rule tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3436
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3437
lemma continuous_on_sin [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. sin (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3438
  unfolding continuous_on_def by (auto intro: tendsto_sin)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  3439
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3440
lemma continuous_cos [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. cos (f x))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3441
  unfolding continuous_def by (rule tendsto_cos)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3442
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3443
lemma continuous_on_cos [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. cos (f x))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3444
  unfolding continuous_on_def by (auto intro: tendsto_cos)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3445
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3446
end
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3447
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3448
lemma continuous_within_sin: "continuous (at z within s) sin"     
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3449
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3450
  by (simp add: continuous_within tendsto_sin)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3451
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3452
lemma continuous_within_cos: "continuous (at z within s) cos"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3453
  for z :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3454
  by (simp add: continuous_within tendsto_cos)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3455
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3456
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3457
subsection \<open>Properties of Sine and Cosine\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3458
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3459
lemma sin_zero [simp]: "sin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3460
  by (simp add: sin_def sin_coeff_def scaleR_conv_of_real)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3461
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3462
lemma cos_zero [simp]: "cos 0 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3463
  by (simp add: cos_def cos_coeff_def scaleR_conv_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3464
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3465
lemma DERIV_fun_sin: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. sin (g x)) x :> cos (g x) * m"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3466
  by (fact derivative_intros)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3467
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3468
lemma DERIV_fun_cos: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. cos(g x)) x :> - sin (g x) * m"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3469
  by (fact derivative_intros)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3470
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3471
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3472
subsection \<open>Deriving the Addition Formulas\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3473
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3474
text \<open>The product of two cosine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3475
lemma cos_x_cos_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3476
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3477
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3478
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3479
        if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3480
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3481
      sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3482
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3483
  have "(cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p - n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3484
    (if even p \<and> even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p - n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3485
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3486
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3487
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3488
    from that have *: "even n \<Longrightarrow> even p \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3489
        (-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3490
      by (metis div_add power_add le_add_diff_inverse odd_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3491
    with that show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3492
      by (auto simp: algebra_simps cos_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3493
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3494
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> even n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3495
                  then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3496
             (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n * cos_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3497
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3498
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (cos_coeff n *\<^sub>R x^n) * (cos_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3499
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3500
  also have "\<dots> sums (cos x * cos y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3501
    using summable_norm_cos
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3502
    by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3503
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3504
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3505
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3506
text \<open>The product of two sine series.\<close>
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3507
lemma sin_x_sin_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3508
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3509
  shows
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3510
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3511
        if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3512
        then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3513
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3514
      sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3515
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3516
  have "(sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3517
    (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3518
     then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3519
     else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3520
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3521
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3522
    have "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3523
      if np: "odd n" "even p"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3524
    proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3525
      have "p > 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3526
        using \<open>n \<le> p\<close> neq0_conv that(1) by blast
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3527
      then have \<section>: "(- 1::real) ^ (p div 2 - Suc 0) = - ((- 1) ^ (p div 2))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3528
        using \<open>even p\<close> by (auto simp add: dvd_def power_eq_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3529
      from \<open>n \<le> p\<close> np have *: "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0) \<le> p"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3530
        by arith+
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3531
      have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3532
        by simp
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3533
      with \<open>n \<le> p\<close> np  \<section> * show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3534
        by (simp add: flip: div_add power_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3535
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3536
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3537
      using \<open>n\<le>p\<close> by (auto simp: algebra_simps sin_coeff_def binomial_fact)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3538
  qed
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3539
  then have "(\<lambda>p. \<Sum>n\<le>p. if even p \<and> odd n
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3540
               then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3541
             (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n * sin_coeff (p - n)) *\<^sub>R (x^n * y^(p-n)))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3542
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3543
  also have "\<dots> = (\<lambda>p. \<Sum>n\<le>p. (sin_coeff n *\<^sub>R x^n) * (sin_coeff (p - n) *\<^sub>R y^(p-n)))"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3544
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3545
  also have "\<dots> sums (sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3546
    using summable_norm_sin
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3547
    by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3548
  finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3549
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3550
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3551
lemma sums_cos_x_plus_y:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3552
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3553
  shows
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3554
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3555
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3556
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3557
        else 0)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3558
      sums cos (x + y)"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3559
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3560
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3561
    "(\<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3562
      if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3563
      else 0) = cos_coeff p *\<^sub>R ((x + y) ^ p)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3564
    for p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3565
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3566
    have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3567
      "(\<Sum>n\<le>p. if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3568
       (if even p then \<Sum>n\<le>p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3569
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3570
    also have "\<dots> =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3571
       (if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3572
        then of_real ((-1) ^ (p div 2) / (fact p)) * (\<Sum>n\<le>p. (p choose n) *\<^sub>R (x^n) * y^(p-n))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3573
        else 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3574
      by (auto simp: sum_distrib_left field_simps scaleR_conv_of_real nonzero_of_real_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3575
    also have "\<dots> = cos_coeff p *\<^sub>R ((x + y) ^ p)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3576
      by (simp add: cos_coeff_def binomial_ring [of x y]  scaleR_conv_of_real atLeast0AtMost)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3577
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3578
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3579
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3580
    "(\<lambda>p. \<Sum>n\<le>p.
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3581
        if even p
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3582
        then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3583
        else 0) = (\<lambda>p. cos_coeff p *\<^sub>R ((x+y)^p))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3584
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3585
   also have "\<dots> sums cos (x + y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3586
    by (rule cos_converges)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3587
   finally show ?thesis .
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3588
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3589
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3590
theorem cos_add:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3591
  fixes x :: "'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3592
  shows "cos (x + y) = cos x * cos y - sin x * sin y"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3593
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3594
  have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3595
    "(if even p \<and> even n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3596
      then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3597
     (if even p \<and> odd n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3598
      then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3599
     (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3600
    if "n \<le> p" for n p :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3601
    by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3602
  then have
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3603
    "(\<lambda>p. \<Sum>n\<le>p. (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *\<^sub>R (x^n) * y^(p-n) else 0))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3604
      sums (cos x * cos y - sin x * sin y)"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3605
    using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  3606
    by (simp add: sum_subtractf [symmetric])
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3607
  then show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3608
    by (blast intro: sums_cos_x_plus_y sums_unique2)
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3609
qed
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3610
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3611
lemma sin_minus_converges: "(\<lambda>n. - (sin_coeff n *\<^sub>R (-x)^n)) sums sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3612
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3613
  have [simp]: "\<And>n. - (sin_coeff n *\<^sub>R (-x)^n) = (sin_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3614
    by (auto simp: sin_coeff_def elim!: oddE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3615
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3616
    by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3617
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3618
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3619
lemma sin_minus [simp]: "sin (- x) = - sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3620
  for x :: "'a::{real_normed_algebra_1,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3621
  using sin_minus_converges [of x]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3622
  by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3623
      suminf_minus sums_iff equation_minus_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3624
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3625
lemma cos_minus_converges: "(\<lambda>n. (cos_coeff n *\<^sub>R (-x)^n)) sums cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3626
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3627
  have [simp]: "\<And>n. (cos_coeff n *\<^sub>R (-x)^n) = (cos_coeff n *\<^sub>R x^n)"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3628
    by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3629
  show ?thesis
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3630
    by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3631
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3632
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3633
lemma cos_minus [simp]: "cos (-x) = cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3634
  for x :: "'a::{real_normed_algebra_1,banach}"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3635
  using cos_minus_converges [of x] by (metis cos_def sums_unique)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3636
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3637
lemma cos_abs_real [simp]: "cos \<bar>x :: real\<bar> = cos x"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  3638
  by (simp add: abs_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3639
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3640
lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3641
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3642
  using cos_add [of x "-x"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3643
  by (simp add: power2_eq_square algebra_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3644
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3645
lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3646
  for x :: "'a::{real_normed_field,banach}"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3647
  by (subst add.commute, rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3648
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3649
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3650
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3651
  using sin_cos_squared_add2 [unfolded power2_eq_square] .
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3652
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3653
lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3654
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3655
  unfolding eq_diff_eq by (rule sin_cos_squared_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3656
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3657
lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3658
  for x :: "'a::{real_normed_field,banach}"
44308
d2a6f9af02f4 Transcendental.thy: remove several unused lemmas and simplify some proofs
huffman
parents: 44307
diff changeset
  3659
  unfolding eq_diff_eq by (rule sin_cos_squared_add2)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3660
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3661
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3662
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3663
  by (rule power2_le_imp_le) (simp_all add: sin_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3664
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3665
lemma sin_ge_minus_one [simp]: "- 1 \<le> sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3666
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3667
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3668
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3669
lemma sin_le_one [simp]: "sin x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3670
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3671
  using abs_sin_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3672
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3673
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3674
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3675
  by (rule power2_le_imp_le) (simp_all add: cos_squared_eq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3676
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3677
lemma cos_ge_minus_one [simp]: "- 1 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3678
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3679
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3680
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3681
lemma cos_le_one [simp]: "cos x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3682
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3683
  using abs_cos_le_one [of x] by (simp add: abs_le_iff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3684
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3685
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3686
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3687
  using cos_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3688
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3689
lemma cos_double: "cos(2*x) = (cos x)\<^sup>2 - (sin x)\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3690
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3691
  using cos_add [where x=x and y=x] by (simp add: power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3692
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3693
lemma sin_cos_le1: "\<bar>sin x * sin y + cos x * cos y\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3694
  for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3695
  using cos_diff [of x y] by (metis abs_cos_le_one add.commute)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3696
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3697
lemma DERIV_fun_pow: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3698
  by (auto intro!: derivative_eq_intros simp:)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3699
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3700
lemma DERIV_fun_exp: "DERIV g x :> m \<Longrightarrow> DERIV (\<lambda>x. exp (g x)) x :> exp (g x) * m"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  3701
  by (auto intro!: derivative_intros)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3702
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3703
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3704
subsection \<open>The Constant Pi\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3705
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3706
definition pi :: real
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3707
  where "pi = 2 * (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3708
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  3709
text \<open>Show that there's a least positive \<^term>\<open>x\<close> with \<^term>\<open>cos x = 0\<close>;
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3710
   hence define pi.\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3711
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3712
lemma sin_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums  sin x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3713
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3714
proof -
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3715
  have "(\<lambda>n. \<Sum>k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3716
    by (rule sums_group) (use sin_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3717
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3718
    by (simp add: sin_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3719
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3720
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3721
lemma sin_gt_zero_02:
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3722
  fixes x :: real
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3723
  assumes "0 < x" and "x < 2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3724
  shows "0 < sin x"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3725
proof -
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3726
  let ?f = "\<lambda>n::nat. \<Sum>k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3727
  have pos: "\<forall>n. 0 < ?f n"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3728
  proof
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3729
    fix n :: nat
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3730
    let ?k2 = "real (Suc (Suc (4 * n)))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3731
    let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3732
    have "x * x < ?k2 * ?k3"
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3733
      using assms by (intro mult_strict_mono', simp_all)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3734
    then have "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  3735
      by (intro mult_strict_right_mono zero_less_power \<open>0 < x\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3736
    then show "0 < ?f n"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  3737
      by (simp add: ac_simps divide_less_eq)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3738
qed
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3739
  have sums: "?f sums sin x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3740
    by (rule sin_paired [THEN sums_group]) simp
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3741
  show "0 < sin x"
72219
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 72211
diff changeset
  3742
    unfolding sums_unique [OF sums] using sums_summable [OF sums] pos by (simp add: suminf_pos)
44728
86f43cca4886 convert lemma sin_gt_zero to Isar style;
huffman
parents: 44727
diff changeset
  3743
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3744
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3745
lemma cos_double_less_one: "0 < x \<Longrightarrow> x < 2 \<Longrightarrow> cos (2 * x) < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3746
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3747
  using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3748
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3749
lemma cos_paired: "(\<lambda>n. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3750
  for x :: real
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3751
proof -
31271
0237e5e40b71 add constants sin_coeff, cos_coeff
huffman
parents: 31148
diff changeset
  3752
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3753
    by (rule sums_group) (use cos_converges [of x, unfolded scaleR_conv_of_real] in auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3754
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3755
    by (simp add: cos_coeff_def ac_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3756
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3757
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3758
lemma sum_pos_lt_pair:
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  3759
  fixes f :: "nat \<Rightarrow> real"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3760
  assumes f: "summable f" and fplus: "\<And>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc (Suc 0) * d) + 1))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3761
  shows "sum f {..<k} < suminf f"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3762
proof -
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3763
  have "(\<lambda>n. \<Sum>n = n * Suc (Suc 0)..<n * Suc (Suc 0) +  Suc (Suc 0). f (n + k)) 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3764
             sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3765
  proof (rule sums_group)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3766
    show "(\<lambda>n. f (n + k)) sums (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3767
      by (simp add: f summable_iff_shift summable_sums)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3768
  qed auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3769
  with fplus have "0 < (\<Sum>n. f (n + k))"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3770
    apply (simp add: add.commute)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3771
    apply (metis (no_types, lifting) suminf_pos summable_def sums_unique)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3772
    done
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3773
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3774
    by (simp add: f suminf_minus_initial_segment)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3775
qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3776
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3777
lemma cos_two_less_zero [simp]: "cos 2 < (0::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3778
proof -
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3779
  note fact_Suc [simp del]
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3780
  from sums_minus [OF cos_paired]
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3781
  have *: "(\<lambda>n. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3782
    by simp
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3783
  then have sm: "summable (\<lambda>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3784
    by (rule sums_summable)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3785
  have "0 < (\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3786
    by (simp add: fact_num_eq_if power_eq_if)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3787
  moreover have "(\<Sum>n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n  * 2 ^ (2 * n) / (fact (2 * n)))) <
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3788
    (\<Sum>n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3789
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3790
    {
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3791
      fix d
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3792
      let ?six4d = "Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))"
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3793
      have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3794
        unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3795
      then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))"
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63365
diff changeset
  3796
        by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3797
      then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3798
        by (simp add: inverse_eq_divide less_divide_eq)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3799
    }
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60155
diff changeset
  3800
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3801
      by (force intro!: sum_pos_lt_pair [OF sm] simp add: divide_inverse algebra_simps)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3802
  qed
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3803
  ultimately have "0 < (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3804
    by (rule order_less_trans)
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59669
diff changeset
  3805
  moreover from * have "- cos 2 = (\<Sum>n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3806
    by (rule sums_unique)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3807
  ultimately have "(0::real) < - cos 2" by simp
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3808
  then show ?thesis by simp
0ae3db699a3e tuned proofs
haftmann
parents: 53599
diff changeset
  3809
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3810
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3811
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3812
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3813
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3814
lemma cos_is_zero: "\<exists>!x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3815
proof (rule ex_ex1I)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3816
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3817
    by (rule IVT2) simp_all
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3818
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3819
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3820
  assume ab: "0 \<le> a \<and> a \<le> 2 \<and> cos a = 0" "0 \<le> b \<and> b \<le> 2 \<and> cos b = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3821
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  3822
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3823
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3824
  proof (cases a b rule: linorder_cases)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3825
    case less
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3826
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3827
      using Rolle by (metis cosd continuous_on_cos_real ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3828
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3829
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3830
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3831
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3832
  next
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3833
    case greater
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3834
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  3835
      using Rolle by (metis cosd continuous_on_cos_real ab)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3836
    then have "sin z = 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3837
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3838
    then show ?thesis
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3839
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero_02)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3840
  qed auto
44730
11a1290fd0ac convert lemma cos_is_zero to Isar-style
huffman
parents: 44728
diff changeset
  3841
qed
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  3842
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3843
lemma pi_half: "pi/2 = (THE x. 0 \<le> x \<and> x \<le> 2 \<and> cos x = 0)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3844
  by (simp add: pi_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3845
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3846
lemma cos_pi_half [simp]: "cos (pi/2) = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3847
  by (simp add: pi_half cos_is_zero [THEN theI'])
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3848
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3849
lemma cos_of_real_pi_half [simp]: "cos ((of_real pi/2) :: 'a) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3850
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3851
  by (metis cos_pi_half cos_of_real eq_numeral_simps(4)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3852
      nonzero_of_real_divide of_real_0 of_real_numeral)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3853
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3854
lemma pi_half_gt_zero [simp]: "0 < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3855
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3856
  have "0 \<le> pi/2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3857
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3858
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3859
    by (metis cos_pi_half cos_zero less_eq_real_def one_neq_zero)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3860
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3861
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3862
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3863
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3864
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3865
lemma pi_half_less_two [simp]: "pi/2 < 2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3866
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3867
  have "pi/2 \<le> 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3868
    by (simp add: pi_half cos_is_zero [THEN theI'])
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3869
  then show ?thesis
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3870
    by (metis cos_pi_half cos_two_neq_zero le_less)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  3871
qed
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3872
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3873
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3874
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3875
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3876
lemma pi_gt_zero [simp]: "0 < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3877
  using pi_half_gt_zero by simp
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3878
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3879
lemma pi_ge_zero [simp]: "0 \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3880
  by (rule pi_gt_zero [THEN order_less_imp_le])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3881
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3882
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3883
  by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3884
23053
03fe1dafa418 define pi with THE instead of SOME; cleaned up
huffman
parents: 23052
diff changeset
  3885
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3886
  by (simp add: linorder_not_less)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3887
29165
562f95f06244 cleaned up some proofs; removed redundant simp rules
huffman
parents: 29164
diff changeset
  3888
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3889
  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3890
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3891
lemma m2pi_less_pi: "- (2*pi) < pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3892
  by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  3893
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3894
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3895
  using sin_cos_squared_add2 [where x = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3896
  using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3897
  by (simp add: power2_eq_1_iff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3898
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3899
lemma sin_of_real_pi_half [simp]: "sin ((of_real pi/2) :: 'a) = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3900
  if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3901
  using sin_pi_half
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3902
  by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3903
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3904
lemma sin_cos_eq: "sin x = cos (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3905
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3906
  by (simp add: cos_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3907
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3908
lemma minus_sin_cos_eq: "- sin x = cos (x + of_real pi/2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3909
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3910
  by (simp add: cos_add nonzero_of_real_divide)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3911
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3912
lemma cos_sin_eq: "cos x = sin (of_real pi/2 - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3913
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3914
  using sin_cos_eq [of "of_real pi/2 - x"] by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3915
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3916
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3917
  for x :: "'a::{real_normed_field,banach}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  3918
  using cos_add [of "of_real pi/2 - x" "-y"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3919
  by (simp add: cos_sin_eq) (simp add: sin_cos_eq)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3920
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3921
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3922
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3923
  using sin_add [of x "- y"] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3924
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3925
lemma sin_double: "sin(2 * x) = 2 * sin x * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3926
  for x :: "'a::{real_normed_field,banach}"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3927
  using sin_add [where x=x and y=x] by simp
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3928
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3929
lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3930
  using cos_add [where x = "pi/2" and y = "pi/2"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3931
  by (simp add: cos_of_real)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3932
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3933
lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3934
  using sin_add [where x = "pi/2" and y = "pi/2"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3935
  by (simp add: sin_of_real)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  3936
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3937
lemma cos_pi [simp]: "cos pi = -1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3938
  using cos_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3939
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3940
lemma sin_pi [simp]: "sin pi = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3941
  using sin_add [where x = "pi/2" and y = "pi/2"] by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3942
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3943
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3944
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3945
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3946
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3947
  by (simp add: sin_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3948
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3949
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3950
  by (simp add: cos_add)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3951
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3952
lemma cos_periodic_pi2 [simp]: "cos (pi + x) = - cos x"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3953
  by (simp add: cos_add)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3954
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3955
lemma sin_periodic [simp]: "sin (x + 2 * pi) = sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3956
  by (simp add: sin_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3957
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3958
lemma cos_periodic [simp]: "cos (x + 2 * pi) = cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3959
  by (simp add: cos_add sin_double cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3960
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3961
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  3962
  by (induct n) (auto simp: distrib_right)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3963
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  3964
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3965
  by (metis cos_npi mult.commute)
15383
c49e4225ef4f made proofs more robust
paulson
parents: 15251
diff changeset
  3966
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3967
lemma sin_npi [simp]: "sin (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3968
  for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3969
  by (induct n) (auto simp: distrib_right)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3970
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3971
lemma sin_npi2 [simp]: "sin (pi * real n) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3972
  for n :: nat
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  3973
  by (simp add: mult.commute [of pi])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3974
80241
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3975
lemma sin_npi_numeral [simp]: "sin(Num.numeral n * pi) = 0"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3976
  by (metis of_nat_numeral sin_npi)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3977
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3978
lemma sin_npi2_numeral [simp]: "sin (pi * Num.numeral n) = 0"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3979
  by (metis of_nat_numeral sin_npi2)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3980
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3981
lemma cos_npi_numeral [simp]: "cos (Num.numeral n * pi) = (- 1) ^ Num.numeral n"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3982
  by (metis cos_npi of_nat_numeral)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3983
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3984
lemma cos_npi2_numeral [simp]: "cos (pi * Num.numeral n) = (- 1) ^ Num.numeral n"
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3985
  by (metis cos_npi2 of_nat_numeral)
92a66f1df06e Simplification of sin, cos, exp of multiples of pi
paulson <lp15@cam.ac.uk>
parents: 80177
diff changeset
  3986
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3987
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  3988
  by (simp add: cos_double)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  3989
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3990
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3991
  by (simp add: sin_double)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  3992
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3993
context
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3994
  fixes w :: "'a::{real_normed_field,banach}"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3995
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3996
begin
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  3997
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  3998
lemma sin_times_sin: "sin w * sin z = (cos (w - z) - cos (w + z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  3999
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4000
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4001
lemma sin_times_cos: "sin w * cos z = (sin (w + z) + sin (w - z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4002
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4003
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4004
lemma cos_times_sin: "cos w * sin z = (sin (w + z) - sin (w - z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4005
  by (simp add: sin_diff sin_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4006
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4007
lemma cos_times_cos: "cos w * cos z = (cos (w - z) + cos (w + z)) / 2"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4008
  by (simp add: cos_diff cos_add)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4009
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4010
lemma cos_double_cos: "cos (2 * w) = 2 * cos w ^ 2 - 1"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4011
  by (simp add: cos_double sin_squared_eq)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4012
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4013
lemma cos_double_sin: "cos (2 * w) = 1 - 2 * sin w ^ 2"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4014
  by (simp add: cos_double sin_squared_eq)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4015
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4016
end
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4017
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4018
lemma sin_plus_sin: "sin w + sin z = 2 * sin ((w + z) / 2) * cos ((w - z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4019
  for w :: "'a::{real_normed_field,banach}" 
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4020
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4021
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4022
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4023
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4024
lemma sin_diff_sin: "sin w - sin z = 2 * sin ((w - z) / 2) * cos ((w + z) / 2)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4025
  for w :: "'a::{real_normed_field,banach}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4026
  apply (simp add: mult.assoc sin_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4027
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4028
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4029
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4030
lemma cos_plus_cos: "cos w + cos z = 2 * cos ((w + z) / 2) * cos ((w - z) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4031
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4032
  apply (simp add: mult.assoc cos_times_cos)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4033
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4034
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4035
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4036
lemma cos_diff_cos: "cos w - cos z = 2 * sin ((w + z) / 2) * sin ((z - w) / 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4037
  for w :: "'a::{real_normed_field,banach,field}"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4038
  apply (simp add: mult.assoc sin_times_sin)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4039
  apply (simp add: field_simps)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4040
  done
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4041
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4042
lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4043
  by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4044
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4045
lemma cos_pi_minus [simp]: "cos (pi - x) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4046
  by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4047
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4048
lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4049
  by (simp add: sin_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4050
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4051
lemma cos_minus_pi [simp]: "cos (x - pi) = - (cos x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4052
  by (simp add: cos_diff)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4053
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4054
lemma sin_2pi_minus [simp]: "sin (2 * pi - x) = - (sin x)"
59741
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4055
  by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)
5b762cd73a8e Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
paulson <lp15@cam.ac.uk>
parents: 59731
diff changeset
  4056
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4057
lemma cos_2pi_minus [simp]: "cos (2 * pi - x) = cos x"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72980
diff changeset
  4058
  by (metis (no_types, opaque_lifting) cos_add cos_minus cos_two_pi sin_minus sin_two_pi
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4059
      diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4060
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4061
lemma sin_gt_zero2: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4062
  by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4063
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4064
lemma sin_less_zero:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4065
  assumes "- pi/2 < x" and "x < 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4066
  shows "sin x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4067
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4068
  have "0 < sin (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4069
    using assms by (simp only: sin_gt_zero2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4070
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4071
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4072
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4073
lemma pi_less_4: "pi < 4"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4074
  using pi_half_less_two by auto
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4075
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4076
lemma cos_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4077
  by (simp add: cos_sin_eq sin_gt_zero2)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4078
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4079
lemma cos_gt_zero_pi: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cos x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4080
  using cos_gt_zero [of x] cos_gt_zero [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4081
  by (cases rule: linorder_cases [of x 0]) auto
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4082
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4083
lemma cos_ge_zero: "-(pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> 0 \<le> cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4084
  by (auto simp: order_le_less cos_gt_zero_pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4085
    (metis cos_pi_half eq_divide_eq eq_numeral_simps(4))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4086
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4087
lemma sin_gt_zero: "0 < x \<Longrightarrow> x < pi \<Longrightarrow> 0 < sin x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4088
  by (simp add: sin_cos_eq cos_gt_zero_pi)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4089
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4090
lemma sin_lt_zero: "pi < x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4091
  using sin_gt_zero [of "x - pi"]
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4092
  by (simp add: sin_diff)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4093
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4094
lemma pi_ge_two: "2 \<le> pi"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4095
proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4096
  assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4097
  then have "pi < 2" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4098
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4099
  proof (cases "2 < 2 * pi")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4100
    case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4101
    with dense[OF \<open>pi < 2\<close>] show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4102
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4103
    case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4104
    have "pi < 2 * pi" by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4105
    from dense[OF this] and False show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4106
  qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4107
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4108
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4109
  then have "0 < sin y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4110
    using sin_gt_zero_02 by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4111
  moreover have "sin y < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4112
    using sin_gt_zero[of "y - pi"] \<open>pi < y\<close> and \<open>y < 2 * pi\<close> sin_periodic_pi[of "y - pi"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4113
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4114
  ultimately show False by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4115
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4116
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4117
lemma sin_ge_zero: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> sin x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4118
  by (auto simp: order_le_less sin_gt_zero)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4119
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4120
lemma sin_le_zero: "pi \<le> x \<Longrightarrow> x < 2 * pi \<Longrightarrow> sin x \<le> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4121
  using sin_ge_zero [of "x - pi"] by (simp add: sin_diff)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4122
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4123
lemma sin_pi_divide_n_ge_0 [simp]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4124
  assumes "n \<noteq> 0"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4125
  shows "0 \<le> sin (pi/real n)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4126
  by (rule sin_ge_zero) (use assms in \<open>simp_all add: field_split_simps\<close>)
62948
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4127
7700f467892b lots of new theorems for multivariate analysis
paulson <lp15@cam.ac.uk>
parents: 62679
diff changeset
  4128
lemma sin_pi_divide_n_gt_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4129
  assumes "2 \<le> n"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4130
  shows "0 < sin (pi/real n)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4131
  by (rule sin_gt_zero) (use assms in \<open>simp_all add: field_split_simps\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4132
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69272
diff changeset
  4133
text\<open>Proof resembles that of \<open>cos_is_zero\<close> but with \<^term>\<open>pi\<close> for the upper bound\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4134
lemma cos_total:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4135
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4136
  shows "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4137
proof (rule ex_ex1I)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4138
  show "\<exists>x::real. 0 \<le> x \<and> x \<le> pi \<and> cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4139
    by (rule IVT2) (simp_all add: y)
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4140
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4141
  fix a b :: real
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4142
  assume ab: "0 \<le> a \<and> a \<le> pi \<and> cos a = y" "0 \<le> b \<and> b \<le> pi \<and> cos b = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4143
  have cosd: "\<And>x::real. cos differentiable (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 56167
diff changeset
  4144
    unfolding real_differentiable_def by (auto intro: DERIV_cos)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4145
  show "a = b"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4146
  proof (cases a b rule: linorder_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4147
    case less
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4148
    then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4149
      using Rolle by (metis cosd continuous_on_cos_real ab)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4150
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4151
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4152
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4153
      by (metis \<open>a < z\<close> \<open>z < b\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4154
  next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4155
    case greater
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4156
    then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4157
      using Rolle by (metis cosd continuous_on_cos_real ab)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4158
    then have "sin z = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4159
      using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4160
    then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4161
      by (metis \<open>b < z\<close> \<open>z < a\<close> ab order_less_le_trans less_le sin_gt_zero)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4162
  qed auto
44745
b068207a7400 convert lemma cos_total to Isar-style proof
huffman
parents: 44730
diff changeset
  4163
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4164
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4165
lemma sin_total:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4166
  assumes y: "-1 \<le> y" "y \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4167
  shows "\<exists>!x. - (pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4168
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4169
  from cos_total [OF y]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4170
  obtain x where x: "0 \<le> x" "x \<le> pi" "cos x = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4171
    and uniq: "\<And>x'. 0 \<le> x' \<Longrightarrow> x' \<le> pi \<Longrightarrow> cos x' = y \<Longrightarrow> x' = x "
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4172
    by blast
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4173
  show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4174
    unfolding sin_cos_eq
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4175
  proof (rule ex1I [where a="pi/2 - x"])
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4176
    show "- (pi/2) \<le> z \<and> z \<le> pi/2 \<and> cos (of_real pi/2 - z) = y \<Longrightarrow>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4177
          z = pi/2 - x" for z
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4178
      using uniq [of "pi/2 -z"] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4179
  qed (use x in auto)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4180
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4181
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4182
lemma cos_zero_lemma:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4183
  assumes "0 \<le> x" "cos x = 0"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4184
  shows "\<exists>n. odd n \<and> x = of_nat n * (pi/2)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4185
proof -
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4186
  have xle: "x < (1 + real_of_int \<lfloor>x/pi\<rfloor>) * pi"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4187
    using floor_correct [of "x/pi"]
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4188
    by (simp add: add.commute divide_less_eq)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4189
  obtain n where "real n * pi \<le> x" "x < real (Suc n) * pi"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4190
  proof 
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4191
    show "real (nat \<lfloor>x / pi\<rfloor>) * pi \<le> x"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4192
      using assms floor_divide_lower [of pi x] by auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4193
    show "x < real (Suc (nat \<lfloor>x / pi\<rfloor>)) * pi"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4194
      using assms floor_divide_upper [of pi x]  by (simp add: xle)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  4195
  qed
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4196
  then have x: "0 \<le> x - n * pi" "(x - n * pi) \<le> pi" "cos (x - n * pi) = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4197
    by (auto simp: algebra_simps cos_diff assms)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4198
  then have "\<exists>!x. 0 \<le> x \<and> x \<le> pi \<and> cos x = 0"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4199
    by (auto simp: intro!: cos_total)
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4200
  then obtain \<theta> where \<theta>: "0 \<le> \<theta>" "\<theta> \<le> pi" "cos \<theta> = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4201
    and uniq: "\<And>\<phi>. 0 \<le> \<phi> \<Longrightarrow> \<phi> \<le> pi \<Longrightarrow> cos \<phi> = 0 \<Longrightarrow> \<phi> = \<theta>"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4202
    by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4203
  then have "x - real n * pi = \<theta>"
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4204
    using x by blast
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4205
  moreover have "pi/2 = \<theta>"
62679
092cb9c96c99 add le_log_of_power and le_log2_of_power by Tobias Nipkow
hoelzl
parents: 62393
diff changeset
  4206
    using pi_half_ge_zero uniq by fastforce
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4207
  ultimately show ?thesis
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4208
    by (rule_tac x = "Suc (2 * n)" in exI) (simp add: algebra_simps)
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4209
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4210
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4211
lemma sin_zero_lemma:
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4212
  assumes "0 \<le> x" "sin x = 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4213
  shows "\<exists>n::nat. even n \<and> x = real n * (pi/2)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4214
proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4215
  obtain n where "odd n" and n: "x + pi/2 = of_nat n * (pi/2)" "n > 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4216
    using cos_zero_lemma [of "x + pi/2"] assms by (auto simp add: cos_add)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4217
  then have "x = real (n - 1) * (pi/2)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4218
    by (simp add: algebra_simps of_nat_diff)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4219
  then show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4220
    by (simp add: \<open>odd n\<close>)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4221
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4222
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4223
lemma cos_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4224
  "cos x = 0 \<longleftrightarrow> ((\<exists>n. odd n \<and> x = real n * (pi/2)) \<or> (\<exists>n. odd n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4225
  (is "?lhs = ?rhs")
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4226
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4227
  have *: "cos (real n * pi/2) = 0" if "odd n" for n :: nat
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4228
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4229
    from that obtain m where "n = 2 * m + 1" ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4230
    then show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4231
      by (simp add: field_simps) (simp add: cos_add add_divide_distrib)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4232
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4233
  show ?thesis
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4234
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4235
    show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4236
      using that cos_zero_lemma [of x] cos_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4237
    show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4238
      using that by (auto dest: * simp del: eq_divide_eq_numeral1)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4239
  qed
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  4240
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4241
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4242
lemma sin_zero_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4243
  "sin x = 0 \<longleftrightarrow> ((\<exists>n. even n \<and> x = real n * (pi/2)) \<or> (\<exists>n. even n \<and> x = - (real n * (pi/2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4244
  (is "?lhs = ?rhs")
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4245
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4246
  show ?rhs if ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4247
    using that sin_zero_lemma [of x] sin_zero_lemma [of "-x"] by force
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4248
  show ?lhs if ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4249
    using that by (auto elim: evenE)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  4250
qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4251
70532
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4252
lemma sin_zero_pi_iff:
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4253
  fixes x::real
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4254
  assumes "\<bar>x\<bar> < pi"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4255
  shows "sin x = 0 \<longleftrightarrow> x = 0"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4256
proof
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4257
  show "x = 0" if "sin x = 0"
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4258
    using that assms by (auto simp: sin_zero_iff)
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4259
qed auto
fcf3b891ccb1 new material; rotated premises of Lim_transform_eventually
paulson <lp15@cam.ac.uk>
parents: 70365
diff changeset
  4260
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4261
lemma cos_zero_iff_int: "cos x = 0 \<longleftrightarrow> (\<exists>i. odd i \<and> x = of_int i * (pi/2))"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4262
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4263
  have 1: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> real n = real_of_int i"
74592
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73932
diff changeset
  4264
    by (metis even_of_nat_iff of_int_of_nat_eq)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4265
  have 2: "\<And>n. odd n \<Longrightarrow> \<exists>i. odd i \<and> - (real n * pi) = real_of_int i * pi"
74592
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73932
diff changeset
  4266
    by (metis even_minus even_of_nat_iff mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4267
  have 3: "\<lbrakk>odd i;  \<forall>n. even n \<or> real_of_int i \<noteq> - (real n)\<rbrakk>
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4268
         \<Longrightarrow> \<exists>n. odd n \<and> real_of_int i = real n" for i
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4269
    by (cases i rule: int_cases2) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4270
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4271
    by (force simp: cos_zero_iff intro!: 1 2 3)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4272
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4273
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4274
lemma sin_zero_iff_int: "sin x = 0 \<longleftrightarrow> (\<exists>i. even i \<and> x = of_int i * (pi/2))" (is "?lhs = ?rhs")
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4275
proof safe
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4276
  assume ?lhs
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4277
  then consider (plus) n where "even n" "x = real n * (pi/2)" | (minus) n where "even n"  "x = - (real n * (pi/2))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4278
    using sin_zero_iff by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4279
  then show "\<exists>n. even n \<and> x = of_int n * (pi/2)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4280
  proof cases
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4281
    case plus
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4282
    then show ?rhs
74592
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73932
diff changeset
  4283
      by (metis even_of_nat_iff of_int_of_nat_eq)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4284
  next
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4285
    case minus
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4286
    then show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4287
      by (rule_tac x="- (int n)" in exI) simp
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4288
  qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4289
next
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4290
  fix i :: int
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4291
  assume "even i"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4292
  then show "sin (of_int i * (pi/2)) = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4293
    by (cases i rule: int_cases2, simp_all add: sin_zero_iff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4294
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4295
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4296
lemma sin_zero_iff_int2: "sin x = 0 \<longleftrightarrow> (\<exists>i::int. x = of_int i * pi)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4297
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4298
  have "sin x = 0 \<longleftrightarrow> (\<exists>i. even i \<and> x = real_of_int i * (pi/2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4299
    by (auto simp: sin_zero_iff_int)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4300
  also have "... = (\<exists>j. x = real_of_int (2*j) * (pi/2))"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4301
    using dvd_triv_left by blast
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4302
  also have "... = (\<exists>i::int. x = of_int i * pi)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4303
    by auto
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4304
  finally show ?thesis .
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4305
qed
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4306
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4307
lemma cos_zero_iff_int2:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4308
  fixes x::real
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4309
  shows "cos x = 0 \<longleftrightarrow> (\<exists>n::int. x = n * pi +  pi/2)"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4310
  using sin_zero_iff_int2[of "x-pi/2"] unfolding sin_cos_eq 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4311
  by (auto simp add: algebra_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4312
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4313
lemma sin_npi_int [simp]: "sin (pi * of_int n) = 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4314
  by (simp add: sin_zero_iff_int2)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4315
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4316
lemma cos_monotone_0_pi:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4317
  assumes "0 \<le> y" and "y < x" and "x \<le> pi"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4318
  shows "cos x < cos y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4319
proof -
33549
39f2855ce41b tuned proofs;
wenzelm
parents: 32960
diff changeset
  4320
  have "- (x - y) < 0" using assms by auto
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4321
  from MVT2[OF \<open>y < x\<close> DERIV_cos]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4322
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4323
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4324
  then have "0 < z" and "z < pi"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4325
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4326
  then have "0 < sin z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4327
    using sin_gt_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4328
  then have "cos x - cos y < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4329
    unfolding cos_diff minus_mult_commute[symmetric]
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4330
    using \<open>- (x - y) < 0\<close> by (rule mult_pos_neg2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4331
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4332
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4333
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4334
lemma cos_monotone_0_pi_le:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4335
  assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4336
  shows "cos x \<le> cos y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4337
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4338
  case True
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4339
  show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4340
    using cos_monotone_0_pi[OF \<open>0 \<le> y\<close> True \<open>x \<le> pi\<close>] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4341
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4342
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4343
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4344
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4345
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4346
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4347
lemma cos_monotone_minus_pi_0:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4348
  assumes "- pi \<le> y" and "y < x" and "x \<le> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4349
  shows "cos y < cos x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4350
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4351
  have "0 \<le> - x" and "- x < - y" and "- y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4352
    using assms by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4353
  from cos_monotone_0_pi[OF this] show ?thesis
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4354
    unfolding cos_minus .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4355
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4356
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4357
lemma cos_monotone_minus_pi_0':
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4358
  assumes "- pi \<le> y" and "y \<le> x" and "x \<le> 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4359
  shows "cos y \<le> cos x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4360
proof (cases "y < x")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4361
  case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4362
  show ?thesis using cos_monotone_minus_pi_0[OF \<open>-pi \<le> y\<close> True \<open>x \<le> 0\<close>]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4363
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4364
next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4365
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4366
  then have "y = x" using \<open>y \<le> x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4367
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4368
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4369
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4370
lemma sin_monotone_2pi:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4371
  assumes "- (pi/2) \<le> y" and "y < x" and "x \<le> pi/2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4372
  shows "sin y < sin x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4373
  unfolding sin_cos_eq
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4374
  using assms by (auto intro: cos_monotone_0_pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4375
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4376
lemma sin_monotone_2pi_le:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4377
  assumes "- (pi/2) \<le> y" and "y \<le> x" and "x \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4378
  shows "sin y \<le> sin x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4379
  by (metis assms le_less sin_monotone_2pi)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4380
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4381
lemma sin_x_le_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4382
  fixes x :: real
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4383
  assumes "x \<ge> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4384
  shows "sin x \<le> x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4385
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4386
  let ?f = "\<lambda>x. x - sin x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4387
  have "\<And>u. \<lbrakk>0 \<le> u; u \<le> x\<rbrakk> \<Longrightarrow> \<exists>y. (?f has_real_derivative 1 - cos u) (at u)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4388
    by (auto intro!: derivative_eq_intros simp: field_simps)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4389
  then have "?f x \<ge> ?f 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4390
    by (metis cos_le_one diff_ge_0_iff_ge DERIV_nonneg_imp_nondecreasing [OF assms])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4391
  then show "sin x \<le> x" by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4392
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4393
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4394
lemma sin_x_ge_neg_x:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4395
  fixes x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4396
  assumes x: "x \<ge> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4397
  shows "sin x \<ge> - x"
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4398
proof -
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4399
  let ?f = "\<lambda>x. x + sin x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4400
  have \<section>: "\<And>u. \<lbrakk>0 \<le> u; u \<le> x\<rbrakk> \<Longrightarrow> \<exists>y. (?f has_real_derivative 1 + cos u) (at u)"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4401
    by (auto intro!: derivative_eq_intros simp: field_simps)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4402
  have "?f x \<ge> ?f 0"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4403
    by (rule DERIV_nonneg_imp_nondecreasing [OF assms]) (use \<section> real_0_le_add_iff in force)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4404
  then show "sin x \<ge> -x" by simp
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4405
qed
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4406
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4407
lemma abs_sin_x_le_abs_x: "\<bar>sin x\<bar> \<le> \<bar>x\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4408
  for x :: real
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4409
  using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4410
  by (auto simp: abs_real_def)
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4411
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4412
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4413
subsection \<open>More Corollaries about Sine and Cosine\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4414
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4415
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi/2) = (-1) ^ n"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4416
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4417
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4418
    by (auto simp: algebra_simps sin_add)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4419
  then show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4420
    by (simp add: distrib_right add_divide_distrib add.commute mult.commute [of pi])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4421
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4422
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4423
lemma cos_2npi [simp]: "cos (2 * real n * pi) = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4424
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4425
  by (cases "even n") (simp_all add: cos_double mult.assoc)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4426
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4427
lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4428
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4429
  have "cos (3/2*pi) = cos (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4430
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4431
  also have "... = 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4432
    by (subst cos_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4433
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4434
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4435
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4436
lemma sin_2npi [simp]: "sin (2 * real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4437
  for n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4438
  by (auto simp: mult.assoc sin_double)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4439
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4440
lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4441
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4442
  have "sin (3/2*pi) = sin (pi + pi/2)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4443
    by simp
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4444
  also have "... = -1"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4445
    by (subst sin_add, simp)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4446
  finally show ?thesis .
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4447
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4448
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4449
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4450
  by (simp only: cos_add sin_add of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4451
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4452
lemma DERIV_cos_add [simp]: "DERIV (\<lambda>x. cos (x + k)) xa :> - sin (xa + k)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4453
  by (auto intro!: derivative_eq_intros)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4454
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4455
lemma sin_zero_norm_cos_one:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4456
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4457
  assumes "sin x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4458
  shows "norm (cos x) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4459
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4460
  by (simp add: square_norm_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4461
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4462
lemma sin_zero_abs_cos_one: "sin x = 0 \<Longrightarrow> \<bar>cos x\<bar> = (1::real)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4463
  using sin_zero_norm_cos_one by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4464
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4465
lemma cos_one_sin_zero:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4466
  fixes x :: "'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4467
  assumes "cos x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4468
  shows "sin x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4469
  using sin_cos_squared_add [of x, unfolded assms]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4470
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4471
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4472
lemma sin_times_pi_eq_0: "sin (x * pi) = 0 \<longleftrightarrow> x \<in> \<int>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4473
  by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_of_int)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4474
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  4475
lemma cos_one_2pi: "cos x = 1 \<longleftrightarrow> (\<exists>n::nat. x = n * 2 * pi) \<or> (\<exists>n::nat. x = - (n * 2 * pi))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4476
  (is "?lhs = ?rhs")
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4477
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4478
  assume ?lhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4479
  then have "sin x = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4480
    by (simp add: cos_one_sin_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4481
  then show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4482
  proof (simp only: sin_zero_iff, elim exE disjE conjE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4483
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4484
    assume n: "even n" "x = real n * (pi/2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4485
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4486
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4487
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4488
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4489
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4490
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4491
      by (auto simp: field_simps elim!: evenE)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4492
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4493
    fix n :: nat
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4494
    assume n: "even n" "x = - (real n * (pi/2))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4495
    then obtain m where m: "n = 2 * m"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4496
      using dvdE by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4497
    then have me: "even m" using \<open>?lhs\<close> n
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4498
      by (auto simp: field_simps) (metis one_neq_neg_one  power_minus_odd power_one)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4499
    show ?rhs
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4500
      using m me n
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4501
      by (auto simp: field_simps elim!: evenE)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4502
  qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4503
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4504
  assume ?rhs
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4505
  then show "cos x = 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4506
    by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4507
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4508
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4509
lemma cos_one_2pi_int: "cos x = 1 \<longleftrightarrow> (\<exists>n::int. x = n * 2 * pi)" (is "?lhs = ?rhs")
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4510
proof
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4511
  assume "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4512
  then show ?rhs
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4513
    by (metis cos_one_2pi mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4514
next
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4515
  assume ?rhs
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4516
  then show "cos x = 1"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4517
    by (clarsimp simp add: cos_one_2pi) (metis mult_minus_right of_int_of_nat)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4518
qed
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4519
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4520
lemma cos_npi_int [simp]:
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4521
  fixes n::int shows "cos (pi * of_int n) = (if even n then 1 else -1)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64758
diff changeset
  4522
    by (auto simp: algebra_simps cos_one_2pi_int elim!: oddE evenE)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4523
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4524
lemma sin_cos_sqrt: "0 \<le> sin x \<Longrightarrow> sin x = sqrt (1 - (cos(x) ^ 2))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4525
  using sin_squared_eq real_sqrt_unique by fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4526
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4527
lemma sin_eq_0_pi: "- pi < x \<Longrightarrow> x < pi \<Longrightarrow> sin x = 0 \<Longrightarrow> x = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4528
  by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4529
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4530
lemma cos_treble_cos: "cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4531
  for x :: "'a::{real_normed_field,banach}"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4532
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4533
  have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4534
    by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4535
  have "cos(3 * x) = cos(2*x + x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4536
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4537
  also have "\<dots> = 4 * cos x ^ 3 - 3 * cos x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4538
    unfolding cos_add cos_double sin_double
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4539
    by (simp add: * field_simps power2_eq_square power3_eq_cube)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4540
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4541
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4542
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4543
lemma cos_45: "cos (pi/4) = sqrt 2 / 2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4544
proof -
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4545
  let ?c = "cos (pi/4)"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4546
  let ?s = "sin (pi/4)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4547
  have nonneg: "0 \<le> ?c"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4548
    by (simp add: cos_ge_zero)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4549
  have "0 = cos (pi/4 + pi/4)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4550
    by simp
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4551
  also have "cos (pi/4 + pi/4) = ?c\<^sup>2 - ?s\<^sup>2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4552
    by (simp only: cos_add power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4553
  also have "\<dots> = 2 * ?c\<^sup>2 - 1"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4554
    by (simp add: sin_squared_eq)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4555
  finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4556
    by (simp add: power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4557
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4558
    using nonneg by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4559
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4560
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4561
lemma cos_30: "cos (pi/6) = sqrt 3/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4562
proof -
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4563
  let ?c = "cos (pi/6)"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4564
  let ?s = "sin (pi/6)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4565
  have pos_c: "0 < ?c"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4566
    by (rule cos_gt_zero) simp_all
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4567
  have "0 = cos (pi/6 + pi/6 + pi/6)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4568
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4569
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4570
    by (simp only: cos_add sin_add)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4571
  also have "\<dots> = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4572
    by (simp add: algebra_simps power2_eq_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4573
  finally have "?c\<^sup>2 = (sqrt 3/2)\<^sup>2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4574
    using pos_c by (simp add: sin_squared_eq power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4575
  then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4576
    using pos_c [THEN order_less_imp_le]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4577
    by (rule power2_eq_imp_eq) simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4578
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4579
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4580
lemma sin_45: "sin (pi/4) = sqrt 2 / 2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4581
  by (simp add: sin_cos_eq cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4582
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4583
lemma sin_60: "sin (pi/3) = sqrt 3/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4584
  by (simp add: sin_cos_eq cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4585
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4586
lemma cos_60: "cos (pi/3) = 1/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4587
proof -
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4588
  have "0 \<le> cos (pi/3)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4589
    by (rule cos_ge_zero) (use pi_half_ge_zero in \<open>linarith+\<close>)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4590
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4591
    by (simp add: cos_squared_eq sin_60 power_divide power2_eq_imp_eq)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4592
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4593
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4594
lemma sin_30: "sin (pi/6) = 1/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4595
  by (simp add: sin_cos_eq cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4596
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4597
lemma cos_120: "cos (2 * pi/3) = -1/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4598
  and sin_120: "sin (2 * pi/3) = sqrt 3 / 2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4599
  using sin_double[of "pi/3"] cos_double[of "pi/3"]
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4600
  by (simp_all add: power2_eq_square sin_60 cos_60)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4601
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4602
lemma cos_120': "cos (pi * 2 / 3) = -1/2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4603
  using cos_120 by (subst mult.commute)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4604
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4605
lemma sin_120': "sin (pi * 2 / 3) = sqrt 3 / 2"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4606
  using sin_120 by (subst mult.commute)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4607
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4608
lemma cos_integer_2pi: "n \<in> \<int> \<Longrightarrow> cos(2 * pi * n) = 1"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4609
  by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4610
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4611
lemma sin_integer_2pi: "n \<in> \<int> \<Longrightarrow> sin(2 * pi * n) = 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4612
  by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4613
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4614
lemma cos_int_2pin [simp]: "cos ((2 * pi) * of_int n) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4615
  by (simp add: cos_one_2pi_int)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4616
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4617
lemma sin_int_2pin [simp]: "sin ((2 * pi) * of_int n) = 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  4618
  by (metis Ints_of_int sin_integer_2pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4619
78890
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4620
lemma sin_cos_eq_iff: "sin y = sin x \<and> cos y = cos x \<longleftrightarrow> (\<exists>n::int. y = x + 2 * pi * n)" (is "?L=?R")
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4621
proof
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4622
  assume ?L
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4623
  then have "cos (y-x) = 1"
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4624
    using cos_add [of y "-x"] by simp
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4625
  then show ?R
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4626
    by (metis cos_one_2pi_int add.commute diff_add_cancel mult.assoc mult.commute) 
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4627
next
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4628
  assume ?R
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4629
  then show ?L
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4630
    by (auto simp: sin_add cos_add)
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4631
qed
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4632
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4633
lemma sincos_principal_value: "\<exists>y. (- pi < y \<and> y \<le> pi) \<and> (sin y = sin x \<and> cos y = cos x)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4634
proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4635
  define y where "y \<equiv> pi - (2 * pi) * frac ((pi - x) / (2 * pi))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4636
  have "-pi < y"" y \<le> pi"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4637
    by (auto simp: field_simps frac_lt_1 y_def)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4638
  moreover
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4639
  have "sin y = sin x" "cos y = cos x"
78890
d8045bc0544e Added Kronecker's approximation theorem. Requires adding Real_Asymp to HOL-Analysis. Funny syntax issue in Probability/Projective_Family
paulson <lp15@cam.ac.uk>
parents: 78801
diff changeset
  4640
    by (simp_all add: y_def frac_def divide_simps sin_add cos_add mult_of_int_commute)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4641
  ultimately
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4642
  show ?thesis by metis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  4643
qed
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4644
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4645
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4646
subsection \<open>Tangent\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4647
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4648
definition tan :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4649
  where "tan = (\<lambda>x. sin x / cos x)"
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4650
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4651
lemma tan_of_real: "of_real (tan x) = (tan (of_real x) :: 'a::{real_normed_field,banach})"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4652
  by (simp add: tan_def sin_of_real cos_of_real)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4653
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4654
lemma tan_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> tan z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4655
  for z :: "'a::{real_normed_field,banach}"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4656
  by (simp add: tan_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  4657
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4658
lemma tan_zero [simp]: "tan 0 = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4659
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4660
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4661
lemma tan_pi [simp]: "tan pi = 0"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4662
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4663
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4664
lemma tan_npi [simp]: "tan (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4665
  for n :: nat
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4666
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4667
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4668
lemma tan_pi_half [simp]: "tan (pi / 2) = 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4669
  by (simp add: tan_def)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4670
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4671
lemma tan_minus [simp]: "tan (- x) = - tan x"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4672
  by (simp add: tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4673
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4674
lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4675
  by (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4676
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4677
lemma lemma_tan_add1: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4678
  by (simp add: tan_def cos_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4679
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4680
lemma add_tan_eq: "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> tan x + tan y = sin(x + y)/(cos x * cos y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4681
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4682
  by (simp add: tan_def sin_add field_simps)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4683
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4684
lemma tan_eq_0_cos_sin: "tan x = 0 \<longleftrightarrow> cos x = 0 \<or> sin x = 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4685
  by (auto simp: tan_def)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4686
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4687
text \<open>Note: half of these zeros would normally be regarded as undefined cases.\<close>
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4688
lemma tan_eq_0_Ex:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4689
  assumes "tan x = 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4690
  obtains k::int where "x = (k/2) * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4691
  using assms
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4692
  by (metis cos_zero_iff_int mult.commute sin_zero_iff_int tan_eq_0_cos_sin times_divide_eq_left) 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4693
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
  4694
lemma tan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4695
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x + y) \<noteq> 0 \<Longrightarrow> tan (x + y) = (tan x + tan y)/(1 - tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4696
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4697
  by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4698
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4699
lemma tan_double: "cos x \<noteq> 0 \<Longrightarrow> cos (2 * x) \<noteq> 0 \<Longrightarrow> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4700
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4701
  using tan_add [of x x] by (simp add: power2_eq_square)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4702
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4703
lemma tan_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < tan x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4704
  by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4705
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4706
lemma tan_less_zero:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4707
  assumes "- pi/2 < x" and "x < 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4708
  shows "tan x < 0"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4709
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4710
  have "0 < tan (- x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4711
    using assms by (simp only: tan_gt_zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4712
  then show ?thesis by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4713
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4714
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4715
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4716
  for x :: "'a::{real_normed_field,banach,field}"
44756
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4717
  unfolding tan_def sin_double cos_double sin_squared_eq
efcd71fbaeec simplify proof of tan_half, removing unused assumptions
huffman
parents: 44755
diff changeset
  4718
  by (simp add: power2_eq_square)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4719
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4720
lemma tan_30: "tan (pi/6) = 1 / sqrt 3"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4721
  unfolding tan_def by (simp add: sin_30 cos_30)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4722
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4723
lemma tan_45: "tan (pi/4) = 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4724
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4725
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4726
lemma tan_60: "tan (pi/3) = sqrt 3"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4727
  unfolding tan_def by (simp add: sin_60 cos_60)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4728
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4729
lemma DERIV_tan [simp]: "cos x \<noteq> 0 \<Longrightarrow> DERIV tan x :> inverse ((cos x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4730
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4731
  unfolding tan_def
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  4732
  by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4733
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4734
declare DERIV_tan[THEN DERIV_chain2, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4735
  and DERIV_tan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4736
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4737
lemmas has_derivative_tan[derivative_intros] = DERIV_tan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  4738
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4739
lemma isCont_tan: "cos x \<noteq> 0 \<Longrightarrow> isCont tan x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4740
  for x :: "'a::{real_normed_field,banach}"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4741
  by (rule DERIV_tan [THEN DERIV_isCont])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4742
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4743
lemma isCont_tan' [simp,continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4744
  fixes a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4745
  shows "isCont f a \<Longrightarrow> cos (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. tan (f x)) a"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4746
  by (rule isCont_o2 [OF _ isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4747
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4748
lemma tendsto_tan [tendsto_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4749
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4750
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cos a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tan (f x)) \<longlongrightarrow> tan a) F"
44311
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4751
  by (rule isCont_tendsto_compose [OF isCont_tan])
42c5cbf68052 Transcendental.thy: add tendsto_intros lemmas;
huffman
parents: 44308
diff changeset
  4752
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4753
lemma continuous_tan:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4754
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4755
  shows "continuous F f \<Longrightarrow> cos (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4756
  unfolding continuous_def by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4757
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4758
lemma continuous_on_tan [continuous_intros]:
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4759
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4760
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. cos (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. tan (f x))"
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4761
  unfolding continuous_on_def by (auto intro: tendsto_tan)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4762
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4763
lemma continuous_within_tan [continuous_intros]:
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  4764
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4765
  shows "continuous (at x within s) f \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4766
    cos (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. tan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4767
  unfolding continuous_within by (rule tendsto_tan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  4768
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  4769
lemma LIM_cos_div_sin: "(\<lambda>x. cos(x)/sin(x)) \<midarrow>pi/2\<rightarrow> 0"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70350
diff changeset
  4770
  by (rule tendsto_cong_limit, (rule tendsto_intros)+, simp_all)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4771
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4772
lemma lemma_tan_total: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4773
  assumes "0 < y" shows "\<exists>x. 0 < x \<and> x < pi/2 \<and> y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4774
proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4775
  obtain s where "0 < s" 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4776
    and s: "\<And>x. \<lbrakk>x \<noteq> pi/2; norm (x - pi/2) < s\<rbrakk> \<Longrightarrow> norm (cos x / sin x - 0) < inverse y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4777
    using LIM_D [OF LIM_cos_div_sin, of "inverse y"] that assms by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4778
  obtain e where e: "0 < e" "e < s" "e < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4779
    using \<open>0 < s\<close> field_lbound_gt_zero pi_half_gt_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4780
  show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4781
  proof (intro exI conjI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4782
    have "0 < sin e" "0 < cos e"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4783
      using e by (auto intro: cos_gt_zero sin_gt_zero2 simp: mult.commute)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4784
    then 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4785
    show "y < tan (pi/2 - e)"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4786
      using s [of "pi/2 - e"] e assms
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4787
      by (simp add: tan_def sin_diff cos_diff) (simp add: field_simps split: if_split_asm)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4788
  qed (use e in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4789
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4790
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4791
lemma tan_total_pos: 
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4792
  assumes "0 \<le> y" shows "\<exists>x. 0 \<le> x \<and> x < pi/2 \<and> tan x = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4793
proof (cases "y = 0")
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4794
  case True
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4795
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4796
    using pi_half_gt_zero tan_zero by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4797
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4798
  case False
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4799
  with assms have "y > 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4800
    by linarith
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4801
  obtain x where x: "0 < x" "x < pi/2" "y < tan x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4802
    using lemma_tan_total \<open>0 < y\<close> by blast
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4803
  have "\<exists>u\<ge>0. u \<le> x \<and> tan u = y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4804
  proof (intro IVT allI impI)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4805
    show "isCont tan u" if "0 \<le> u \<and> u \<le> x" for u
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4806
    proof -
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4807
      have "cos u \<noteq> 0"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4808
        using antisym_conv2 cos_gt_zero that x(2) by fastforce
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4809
      with assms show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4810
        by (auto intro!: DERIV_tan [THEN DERIV_isCont])
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4811
    qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4812
  qed (use assms x in auto)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4813
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4814
    using x(2) by auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4815
qed
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4816
    
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4817
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4818
proof (cases "0::real" y rule: le_cases)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4819
  case le
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4820
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4821
    by (meson less_le_trans minus_pi_half_less_zero tan_total_pos)
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4822
next
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4823
  case ge
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4824
  with tan_total_pos [of "-y"] obtain x where "0 \<le> x" "x < pi/2" "tan x = - y"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4825
    by force
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4826
  then show ?thesis
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4827
    by (rule_tac x="-x" in exI) auto
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4828
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  4829
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4830
proposition tan_total: "\<exists>! x. -(pi/2) < x \<and> x < (pi/2) \<and> tan x = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4831
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4832
  have "u = v" if u: "- (pi/2) < u" "u < pi/2" and v: "- (pi/2) < v" "v < pi/2"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4833
    and eq: "tan u = tan v" for u v
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4834
  proof (cases u v rule: linorder_cases)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4835
    case less
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4836
    have "\<And>x. u \<le> x \<and> x \<le> v \<longrightarrow> isCont tan x"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4837
      by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(1) v(2))
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4838
    then have "continuous_on {u..v} tan"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4839
      by (simp add: continuous_at_imp_continuous_on)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4840
    moreover have "\<And>x. u < x \<and> x < v \<Longrightarrow> tan differentiable (at x)"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  4841
      by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(1) v(2))
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4842
    ultimately obtain z where "u < z" "z < v" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4843
      by (metis less Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4844
    moreover have "cos z \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4845
      by (metis (no_types) \<open>u < z\<close> \<open>z < v\<close> cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(1) v(2))
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4846
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4847
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4848
  next
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4849
    case greater
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4850
    have "\<And>x. v \<le> x \<and> x \<le> u \<Longrightarrow> isCont tan x"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4851
      by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(2) v(1))
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4852
    then have "continuous_on {v..u} tan"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4853
      by (simp add: continuous_at_imp_continuous_on)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4854
    moreover have "\<And>x. v < x \<and> x < u \<Longrightarrow> tan differentiable (at x)"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  4855
      by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(2) v(1))
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4856
    ultimately obtain z where "v < z" "z < u" "DERIV tan z :> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4857
      by (metis greater Rolle eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4858
    moreover have "cos z \<noteq> 0"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  4859
      by (metis \<open>v < z\<close> \<open>z < u\<close> cos_gt_zero_pi less_eq_real_def less_le_trans order_less_irrefl u(2) v(1))
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4860
    ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4861
      using DERIV_unique [OF _ DERIV_tan] by fastforce
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4862
  qed auto
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4863
  then have "\<exists>!x. - (pi/2) < x \<and> x < pi/2 \<and> tan x = y" 
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  4864
    if x: "- (pi/2) < x" "x < pi/2" "tan x = y" for x
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4865
    using that by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4866
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4867
    using lemma_tan_total1 [where y = y]
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4868
    by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  4869
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4870
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4871
lemma tan_monotone:
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4872
  assumes "- (pi/2) < y" and "y < x" and "x < pi/2"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4873
  shows "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4874
proof -
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4875
  have "DERIV tan x' :> inverse ((cos x')\<^sup>2)" if "y \<le> x'" "x' \<le> x" for x'
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4876
  proof -
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4877
    have "-(pi/2) < x'" and "x' < pi/2"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4878
      using that assms by auto
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  4879
    with cos_gt_zero_pi have "cos x' \<noteq> 0" by force
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4880
    then show "DERIV tan x' :> inverse ((cos x')\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4881
      by (rule DERIV_tan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4882
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4883
  from MVT2[OF \<open>y < x\<close> this]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4884
  obtain z where "y < z" and "z < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4885
    and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4886
  then have "- (pi/2) < z" and "z < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4887
    using assms by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4888
  then have "0 < cos z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4889
    using cos_gt_zero_pi by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4890
  then have inv_pos: "0 < inverse ((cos z)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4891
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  4892
  have "0 < x - y" using \<open>y < x\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4893
  with inv_pos have "0 < tan x - tan y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4894
    unfolding tan_diff by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4895
  then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4896
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4897
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4898
lemma tan_monotone':
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4899
  assumes "- (pi/2) < y"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4900
    and "y < pi/2"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4901
    and "- (pi/2) < x"
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4902
    and "x < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4903
  shows "y < x \<longleftrightarrow> tan y < tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4904
proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4905
  assume "y < x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4906
  then show "tan y < tan x"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4907
    using tan_monotone and \<open>- (pi/2) < y\<close> and \<open>x < pi/2\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4908
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4909
  assume "tan y < tan x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4910
  show "y < x"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4911
  proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4912
    assume "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4913
    then have "x \<le> y" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4914
    then have "tan x \<le> tan y"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4915
    proof (cases "x = y")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4916
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4917
      then show ?thesis by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4918
    next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4919
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4920
      then have "x < y" using \<open>x \<le> y\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4921
      from tan_monotone[OF \<open>- (pi/2) < x\<close> this \<open>y < pi/2\<close>] show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4922
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4923
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4924
    then show False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4925
      using \<open>tan y < tan x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4926
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4927
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4928
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  4929
lemma tan_inverse: "1 / (tan y) = tan (pi/2 - y)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4930
  unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4931
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  4932
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4933
  by (simp add: tan_def)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4934
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4935
lemma tan_periodic_nat[simp]: "tan (x + real n * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4936
proof (induct n arbitrary: x)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4937
  case 0
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4938
  then show ?case by simp
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4939
next
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4940
  case (Suc n)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4941
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4942
    unfolding Suc_eq_plus1 of_nat_add  distrib_right by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4943
  show ?case
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4944
    unfolding split_pi_off using Suc by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4945
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4946
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4947
lemma tan_periodic_int[simp]: "tan (x + of_int i * pi) = tan x"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4948
proof (cases "0 \<le> i")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  4949
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4950
  then have i_nat: "of_int i = - of_int (nat (- i))" by auto
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4951
  then show ?thesis
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4952
    by (smt (verit, best) mult_minus_left of_int_of_nat_eq tan_periodic_nat)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4953
qed (use zero_le_imp_eq_int in fastforce)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  4954
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46240
diff changeset
  4955
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  4956
  using tan_periodic_int[of _ "numeral n" ] by simp
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  4957
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  4958
lemma tan_minus_45 [simp]: "tan (-(pi/4)) = -1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4959
  unfolding tan_def by (simp add: sin_45 cos_45)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4960
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4961
lemma tan_diff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4962
  "cos x \<noteq> 0 \<Longrightarrow> cos y \<noteq> 0 \<Longrightarrow> cos (x - y) \<noteq> 0 \<Longrightarrow> tan (x - y) = (tan x - tan y)/(1 + tan x * tan y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4963
  for x :: "'a::{real_normed_field,banach}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4964
  using tan_add [of x "-y"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4965
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4966
lemma tan_pos_pi2_le: "0 \<le> x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 \<le> tan x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4967
  using less_eq_real_def tan_gt_zero by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4968
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4969
lemma cos_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> cos x = 1 / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4970
  using cos_gt_zero_pi [of x]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4971
  by (simp add: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4972
77089
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4973
lemma cos_tan_half: "cos x \<noteq>0 \<Longrightarrow>  cos (2*x) = (1 - (tan x)^2) / (1 + (tan x)^2)"
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4974
  unfolding cos_double tan_def by (auto simp add:field_simps )
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4975
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4976
lemma sin_tan: "\<bar>x\<bar> < pi/2 \<Longrightarrow> sin x = tan x / sqrt (1 + tan x ^ 2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4977
  using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  4978
  by (force simp: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4979
77089
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4980
lemma sin_tan_half: "sin (2*x) = 2 * tan x / (1 + (tan x)^2)"
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4981
  unfolding sin_double tan_def
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4982
  by (cases "cos x=0") (auto simp add:field_simps power2_eq_square)
b4f892d0625d Some new material from the AFP
paulson <lp15@cam.ac.uk>
parents: 76819
diff changeset
  4983
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4984
lemma tan_mono_le: "-(pi/2) < x \<Longrightarrow> x \<le> y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4985
  using less_eq_real_def tan_monotone by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4986
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4987
lemma tan_mono_lt_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4988
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x < tan y \<longleftrightarrow> x < y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4989
  using tan_monotone' by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4990
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4991
lemma tan_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  4992
  "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> -(pi/2) < y \<Longrightarrow> y < pi/2 \<Longrightarrow> tan x \<le> tan y \<longleftrightarrow> x \<le> y"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4993
  by (meson tan_mono_le not_le tan_monotone)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4994
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  4995
lemma tan_bound_pi2: "\<bar>x\<bar> < pi/4 \<Longrightarrow> \<bar>tan x\<bar> < 1"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4996
  using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
62390
842917225d56 more canonical names
nipkow
parents: 62379
diff changeset
  4997
  by (auto simp: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4998
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  4999
lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5000
  by (simp add: tan_def sin_diff cos_diff)
59658
0cc388370041 sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents: 59647
diff changeset
  5001
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5002
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5003
subsection \<open>Cotangent\<close>
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5004
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5005
definition cot :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5006
  where "cot = (\<lambda>x. cos x / sin x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5007
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5008
lemma cot_of_real: "of_real (cot x) = (cot (of_real x) :: 'a::{real_normed_field,banach})"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5009
  by (simp add: cot_def sin_of_real cos_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5010
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5011
lemma cot_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> cot z \<in> \<real>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5012
  for z :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5013
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5014
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5015
lemma cot_zero [simp]: "cot 0 = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5016
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5017
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5018
lemma cot_pi [simp]: "cot pi = 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5019
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5020
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5021
lemma cot_npi [simp]: "cot (real n * pi) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5022
  for n :: nat
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5023
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5024
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5025
lemma cot_minus [simp]: "cot (- x) = - cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5026
  by (simp add: cot_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5027
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5028
lemma cot_periodic [simp]: "cot (x + 2 * pi) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5029
  by (simp add: cot_def)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5030
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5031
lemma cot_altdef: "cot x = inverse (tan x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5032
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5033
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5034
lemma tan_altdef: "tan x = inverse (cot x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5035
  by (simp add: cot_def tan_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5036
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5037
lemma tan_cot': "tan (pi/2 - x) = cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5038
  by (simp add: tan_cot cot_altdef)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5039
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5040
lemma cot_gt_zero: "0 < x \<Longrightarrow> x < pi/2 \<Longrightarrow> 0 < cot x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5041
  by (simp add: cot_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5042
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5043
lemma cot_less_zero:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5044
  assumes lb: "- pi/2 < x" and "x < 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5045
  shows "cot x < 0"
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5046
  by (smt (verit) assms cot_gt_zero cot_minus divide_minus_left)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5047
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5048
lemma DERIV_cot [simp]: "sin x \<noteq> 0 \<Longrightarrow> DERIV cot x :> -inverse ((sin x)\<^sup>2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5049
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5050
  unfolding cot_def using cos_squared_eq[of x]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5051
  by (auto intro!: derivative_eq_intros) (simp add: divide_inverse power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5052
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5053
lemma isCont_cot: "sin x \<noteq> 0 \<Longrightarrow> isCont cot x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5054
  for x :: "'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5055
  by (rule DERIV_cot [THEN DERIV_isCont])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5056
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5057
lemma isCont_cot' [simp,continuous_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5058
  "isCont f a \<Longrightarrow> sin (f a) \<noteq> 0 \<Longrightarrow> isCont (\<lambda>x. cot (f x)) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5059
  for a :: "'a::{real_normed_field,banach}" and f :: "'a \<Rightarrow> 'a"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5060
  by (rule isCont_o2 [OF _ isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5061
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5062
lemma tendsto_cot [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> sin a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. cot (f x)) \<longlongrightarrow> cot a) F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5063
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5064
  by (rule isCont_tendsto_compose [OF isCont_cot])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5065
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5066
lemma continuous_cot:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5067
  "continuous F f \<Longrightarrow> sin (f (Lim F (\<lambda>x. x))) \<noteq> 0 \<Longrightarrow> continuous F (\<lambda>x. cot (f x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5068
  for f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5069
  unfolding continuous_def by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5070
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5071
lemma continuous_on_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5072
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5073
  shows "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. sin (f x) \<noteq> 0) \<Longrightarrow> continuous_on s (\<lambda>x. cot (f x))"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5074
  unfolding continuous_on_def by (auto intro: tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5075
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5076
lemma continuous_within_cot [continuous_intros]:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5077
  fixes f :: "'a \<Rightarrow> 'a::{real_normed_field,banach}"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5078
  shows "continuous (at x within s) f \<Longrightarrow> sin (f x) \<noteq> 0 \<Longrightarrow> continuous (at x within s) (\<lambda>x. cot (f x))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5079
  unfolding continuous_within by (rule tendsto_cot)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5080
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  5081
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5082
subsection \<open>Inverse Trigonometric Functions\<close>
23043
5dbfd67516a4 rearranged sections
huffman
parents: 23011
diff changeset
  5083
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5084
definition arcsin :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5085
  where "arcsin y = (THE x. -(pi/2) \<le> x \<and> x \<le> pi/2 \<and> sin x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5086
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5087
definition arccos :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5088
  where "arccos y = (THE x. 0 \<le> x \<and> x \<le> pi \<and> cos x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5089
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5090
definition arctan :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5091
  where "arctan y = (THE x. -(pi/2) < x \<and> x < pi/2 \<and> tan x = y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5092
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5093
lemma arcsin: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2 \<and> sin (arcsin y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5094
  unfolding arcsin_def by (rule theI' [OF sin_total])
23011
3eae3140b4b2 use THE instead of SOME
huffman
parents: 23007
diff changeset
  5095
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5096
lemma arcsin_pi: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi \<and> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5097
  by (drule (1) arcsin) (force intro: order_trans)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5098
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5099
lemma sin_arcsin [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> sin (arcsin y) = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5100
  by (blast dest: arcsin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5101
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5102
lemma arcsin_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y \<and> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5103
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5104
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5105
lemma arcsin_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> - (pi/2) \<le> arcsin y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5106
  by (blast dest: arcsin)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5107
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5108
lemma arcsin_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin y \<le> pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5109
  by (blast dest: arcsin)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5110
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5111
lemma arcsin_lt_bounded:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5112
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5113
  shows  "- (pi/2) < arcsin y \<and> arcsin y < pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5114
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5115
  have "arcsin y \<noteq> pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5116
    by (metis arcsin assms not_less not_less_iff_gr_or_eq sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5117
  moreover have "arcsin y \<noteq> - pi/2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5118
    by (metis arcsin assms minus_divide_left not_less not_less_iff_gr_or_eq sin_minus sin_pi_half)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5119
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5120
    using arcsin_bounded [of y] assms by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5121
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5122
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5123
lemma arcsin_sin: "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> arcsin (sin x) = x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5124
  unfolding arcsin_def
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5125
  using the1_equality [OF sin_total]  by simp
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5126
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5127
lemma arcsin_unique:
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5128
  assumes "-pi/2 \<le> x" and "x \<le> pi/2" and "sin x = y" shows "arcsin y = x"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5129
  using arcsin_sin[of x] assms by force
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5130
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5131
lemma arcsin_0 [simp]: "arcsin 0 = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5132
  using arcsin_sin [of 0] by simp
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5133
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5134
lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5135
  using arcsin_sin [of "pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5136
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5137
lemma arcsin_minus_1 [simp]: "arcsin (- 1) = - (pi/2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5138
  using arcsin_sin [of "- pi/2"] by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5139
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5140
lemma arcsin_minus: "- 1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin (- x) = - arcsin x"
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 72980
diff changeset
  5141
  by (metis (no_types, opaque_lifting) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5142
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5143
lemma arcsin_one_half [simp]: "arcsin (1/2) = pi / 6"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5144
  and arcsin_minus_one_half [simp]: "arcsin (-(1/2)) = -pi / 6"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5145
  by (intro arcsin_unique; simp add: sin_30 field_simps)+
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5146
  
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5147
lemma arcsin_one_over_sqrt_2: "arcsin (1 / sqrt 2) = pi / 4"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5148
  by (rule arcsin_unique) (auto simp: sin_45 field_simps)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5149
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5150
lemma arcsin_eq_iff: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x = arcsin y \<longleftrightarrow> x = y"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  5151
  by (metis abs_le_iff arcsin minus_le_iff)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5152
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5153
lemma cos_arcsin_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> cos (arcsin x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5154
  using arcsin_lt_bounded cos_gt_zero_pi by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5155
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5156
lemma arccos: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi \<and> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5157
  unfolding arccos_def by (rule theI' [OF cos_total])
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5158
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5159
lemma cos_arccos [simp]: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> cos (arccos y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5160
  by (blast dest: arccos)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5161
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5162
lemma arccos_bounded: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y \<and> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5163
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5164
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5165
lemma arccos_lbound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> 0 \<le> arccos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5166
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5167
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5168
lemma arccos_ubound: "- 1 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> pi"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5169
  by (blast dest: arccos)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5170
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5171
lemma arccos_lt_bounded: 
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5172
  assumes "- 1 < y" "y < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5173
  shows  "0 < arccos y \<and> arccos y < pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5174
proof -
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5175
  have "arccos y \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5176
    by (metis (no_types) arccos assms(1) assms(2) cos_zero less_eq_real_def less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5177
  moreover have "arccos y \<noteq> -pi"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5178
    by (metis arccos assms(1) assms(2) cos_minus cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5179
  ultimately show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5180
    using arccos_bounded [of y] assms
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5181
    by (metis arccos cos_pi not_less not_less_iff_gr_or_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5182
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5183
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5184
lemma arccos_cos: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> arccos (cos x) = x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5185
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5186
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5187
lemma arccos_cos2: "x \<le> 0 \<Longrightarrow> - pi \<le> x \<Longrightarrow> arccos (cos x) = -x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5188
  by (auto simp: arccos_def intro!: the1_equality cos_total)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5189
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5190
lemma arccos_unique:
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5191
  assumes "0 \<le> x" and "x \<le> pi" and "cos x = y" shows "arccos y = x"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5192
  using arccos_cos assms by blast
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5193
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5194
lemma cos_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5195
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5196
  shows "cos (arcsin x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5197
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5198
  show "(cos (arcsin x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5199
    by (simp add: square_le_1 assms cos_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5200
  show "0 \<le> cos (arcsin x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5201
    using arcsin assms cos_ge_zero by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5202
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5203
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5204
qed
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5205
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5206
lemma sin_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5207
  assumes "- 1 \<le> x" "x \<le> 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5208
  shows "sin (arccos x) = sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5209
proof (rule power2_eq_imp_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5210
  show "(sin (arccos x))\<^sup>2 = (sqrt (1 - x\<^sup>2))\<^sup>2"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5211
    by (simp add: square_le_1 assms sin_squared_eq)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5212
  show "0 \<le> sin (arccos x)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5213
    by (simp add: arccos_bounded assms sin_ge_zero)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5214
  show "0 \<le> sqrt (1 - x\<^sup>2)"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5215
    by (simp add: square_le_1 assms)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5216
qed
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5217
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5218
lemma arccos_0 [simp]: "arccos 0 = pi/2"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5219
  using arccos_cos pi_half_ge_zero by fastforce
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5220
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5221
lemma arccos_1 [simp]: "arccos 1 = 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5222
  using arccos_cos by force
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5223
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5224
lemma arccos_minus_1 [simp]: "arccos (- 1) = pi"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5225
  by (metis arccos_cos cos_pi order_refl pi_ge_zero)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5226
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5227
lemma arccos_minus: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos (- x) = pi - arccos x"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5228
  by (smt (verit, ccfv_threshold) arccos arccos_cos cos_minus cos_minus_pi)
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5229
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5230
lemma arccos_one_half [simp]: "arccos (1/2) = pi / 3"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5231
  and arccos_minus_one_half [simp]: "arccos (-(1/2)) = 2 * pi / 3"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5232
  by (intro arccos_unique; simp add: cos_60 cos_120)+
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5233
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5234
lemma arccos_one_over_sqrt_2: "arccos (1 / sqrt 2) = pi / 4"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5235
  by (rule arccos_unique) (auto simp: cos_45 field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5236
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5237
corollary arccos_minus_abs:
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5238
  assumes "\<bar>x\<bar> \<le> 1"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5239
  shows "arccos (- x) = pi - arccos x"
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5240
using assms by (simp add: arccos_minus)
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5241
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5242
lemma sin_arccos_nonzero: "- 1 < x \<Longrightarrow> x < 1 \<Longrightarrow> sin (arccos x) \<noteq> 0"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5243
  using arccos_lt_bounded sin_gt_zero by force
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5244
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5245
lemma arctan: "- (pi/2) < arctan y \<and> arctan y < pi/2 \<and> tan (arctan y) = y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5246
  unfolding arctan_def by (rule theI' [OF tan_total])
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5247
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5248
lemma tan_arctan: "tan (arctan y) = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5249
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5250
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5251
lemma arctan_bounded: "- (pi/2) < arctan y \<and> arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5252
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5253
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5254
lemma arctan_lbound: "- (pi/2) < arctan y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5255
  by (simp add: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5256
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5257
lemma arctan_ubound: "arctan y < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5258
  by (auto simp only: arctan)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5259
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5260
lemma arctan_unique:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5261
  assumes "-(pi/2) < x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5262
    and "x < pi/2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5263
    and "tan x = y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5264
  shows "arctan y = x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5265
  using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5266
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5267
lemma arctan_tan: "-(pi/2) < x \<Longrightarrow> x < pi/2 \<Longrightarrow> arctan (tan x) = x"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5268
  by (rule arctan_unique) simp_all
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5269
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5270
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5271
  by (rule arctan_unique) simp_all
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5272
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5273
lemma arctan_minus: "arctan (- x) = - arctan x"
65057
799bbbb3a395 Some new lemmas thanks to Lukas Bulwahn. Also, NEWS.
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  5274
  using arctan [of "x"] by (auto simp: arctan_unique)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5275
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5276
lemma cos_arctan_not_zero [simp]: "cos (arctan x) \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5277
  by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5278
77230
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5279
lemma tan_eq_arctan_Ex:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5280
  shows "tan x = y \<longleftrightarrow> (\<exists>k::int. x = arctan y + k*pi \<or> (x = pi/2 + k*pi \<and> y=0))"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5281
proof
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5282
  assume lhs: "tan x = y"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5283
  obtain k::int where k:"-pi/2 < x-k*pi" "x-k*pi \<le> pi/2"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5284
  proof 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5285
    define k where "k \<equiv> ceiling (x/pi - 1/2)"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5286
    show "- pi / 2 < x - real_of_int k * pi" 
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5287
      using ceiling_divide_lower [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5288
    show  "x-k*pi \<le> pi/2"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5289
      using ceiling_divide_upper [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5290
  qed
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5291
  have "x = arctan y + of_int k * pi" when "x \<noteq> pi/2 + k*pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5292
  proof -
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5293
    have "tan (x - k * pi) = y" using lhs tan_periodic_int[of _ "-k"] by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5294
    then have "arctan y = x - real_of_int k * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5295
      by (smt (verit) arctan_tan lhs divide_minus_left k mult_minus_left of_int_minus tan_periodic_int that)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5296
    then show ?thesis by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5297
  qed
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5298
  then show "\<exists>k. x = arctan y + of_int k * pi \<or> (x = pi/2 + k*pi \<and> y=0)"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5299
    using lhs k by force
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5300
qed (auto simp: arctan)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5301
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5302
lemma arctan_tan_eq_abs_pi:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5303
  assumes "cos \<theta> \<noteq> 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5304
  obtains k where "arctan (tan \<theta>) = \<theta> - of_int k * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5305
  by (metis add.commute assms cos_zero_iff_int2 eq_diff_eq tan_eq_arctan_Ex)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5306
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5307
lemma tan_eq:
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5308
  assumes "tan x = tan y" "tan x \<noteq> 0"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5309
  obtains k::int where "x = y + k * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5310
proof -
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5311
  obtain k0 where k0: "x = arctan (tan y) + real_of_int k0 * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5312
    using assms tan_eq_arctan_Ex[of x "tan y"] by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5313
  obtain k1 where k1: "arctan (tan y) = y - of_int k1 * pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5314
    using arctan_tan_eq_abs_pi assms tan_eq_0_cos_sin by auto
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5315
  have "x = y + (k0-k1)*pi"
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5316
    using k0 k1 by (auto simp: algebra_simps)
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5317
  with that show ?thesis
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5318
    by blast
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5319
qed
2d26af072990 Some basis results about trigonometric functions
paulson <lp15@cam.ac.uk>
parents: 77221
diff changeset
  5320
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5321
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5322
proof (rule power2_eq_imp_eq)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5323
  have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg)
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5324
  show "0 \<le> 1 / sqrt (1 + x\<^sup>2)" by simp
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5325
  show "0 \<le> cos (arctan x)"
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5326
    by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5327
  have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 47489
diff changeset
  5328
    unfolding tan_def by (simp add: distrib_left power_divide)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5329
  then show "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5330
    using \<open>0 < 1 + x\<^sup>2\<close> by (simp add: arctan power_divide eq_divide_eq)
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5331
qed
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5332
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5333
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)"
44725
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5334
  using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5335
  using tan_arctan [of x] unfolding tan_def cos_arctan
d3bf0e33c98a add lemmas cos_arctan and sin_arctan
huffman
parents: 44710
diff changeset
  5336
  by (simp add: eq_divide_eq)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5337
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5338
lemma tan_sec: "cos x \<noteq> 0 \<Longrightarrow> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5339
  for x :: "'a::{real_normed_field,banach,field}"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5340
  by (simp add: add_divide_eq_iff inverse_eq_divide power2_eq_square tan_def)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  5341
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5342
lemma arctan_less_iff: "arctan x < arctan y \<longleftrightarrow> x < y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5343
  by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5344
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5345
lemma arctan_le_iff: "arctan x \<le> arctan y \<longleftrightarrow> x \<le> y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5346
  by (simp only: not_less [symmetric] arctan_less_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5347
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5348
lemma arctan_eq_iff: "arctan x = arctan y \<longleftrightarrow> x = y"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5349
  by (simp only: eq_iff [where 'a=real] arctan_le_iff)
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5350
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5351
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5352
  using arctan_less_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5353
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5354
lemma arctan_less_zero_iff [simp]: "arctan x < 0 \<longleftrightarrow> x < 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5355
  using arctan_less_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5356
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5357
lemma zero_le_arctan_iff [simp]: "0 \<le> arctan x \<longleftrightarrow> 0 \<le> x"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5358
  using arctan_le_iff [of 0 x] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5359
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5360
lemma arctan_le_zero_iff [simp]: "arctan x \<le> 0 \<longleftrightarrow> x \<le> 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5361
  using arctan_le_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5362
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5363
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \<longleftrightarrow> x = 0"
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5364
  using arctan_eq_iff [of x 0] by simp
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5365
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5366
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5367
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5368
  have "continuous_on (sin ` {- pi/2 .. pi/2}) arcsin"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5369
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5370
  also have "sin ` {- pi/2 .. pi/2} = {-1 .. 1}"
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5371
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5372
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5373
    assume "x \<in> {-1..1}"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5374
    then show "x \<in> sin ` {- pi/2..pi/2}"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5375
      using arcsin_lbound arcsin_ubound
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  5376
      by (intro image_eqI[where x="arcsin x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5377
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5378
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5379
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5380
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5381
lemma continuous_on_arcsin [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5382
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arcsin (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5383
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arcsin']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5384
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5385
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5386
lemma isCont_arcsin: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arcsin x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5387
  using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5388
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5389
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5390
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5391
proof -
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5392
  have "continuous_on (cos ` {0 .. pi}) arccos"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5393
    by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5394
  also have "cos ` {0 .. pi} = {-1 .. 1}"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5395
  proof safe
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5396
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5397
    assume "x \<in> {-1..1}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5398
    then show "x \<in> cos ` {0..pi}"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5399
      using arccos_lbound arccos_ubound
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5400
      by (intro image_eqI[where x="arccos x"]) auto
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5401
  qed simp
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5402
  finally show ?thesis .
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5403
qed
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5404
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56261
diff changeset
  5405
lemma continuous_on_arccos [continuous_intros]:
51482
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5406
  "continuous_on s f \<Longrightarrow> (\<forall>x\<in>s. -1 \<le> f x \<and> f x \<le> 1) \<Longrightarrow> continuous_on s (\<lambda>x. arccos (f x))"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5407
  using continuous_on_compose[of s f, OF _ continuous_on_subset[OF  continuous_on_arccos']]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5408
  by (auto simp: comp_def subset_eq)
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5409
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5410
lemma isCont_arccos: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> isCont arccos x"
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5411
  using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
80efd8c49f52 arcsin and arccos are continuous on {0 .. 1} (including the endpoints)
hoelzl
parents: 51481
diff changeset
  5412
  by (auto simp: continuous_on_eq_continuous_at subset_eq)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5413
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5414
lemma isCont_arctan: "isCont arctan x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5415
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5416
  obtain u where u: "- (pi/2) < u" "u < arctan x"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5417
    by (meson arctan arctan_less_iff linordered_field_no_lb)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5418
  obtain v where v: "arctan x < v" "v < pi/2"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5419
    by (meson arctan_less_iff arctan_ubound linordered_field_no_ub)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5420
  have "isCont arctan (tan (arctan x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5421
  proof (rule isCont_inverse_function2 [of u "arctan x" v])
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5422
    show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> arctan (tan z) = z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5423
      using arctan_unique u(1) v(2) by auto
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5424
    then show "\<And>z. \<lbrakk>u \<le> z; z \<le> v\<rbrakk> \<Longrightarrow> isCont tan z"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5425
      by (metis arctan cos_gt_zero_pi isCont_tan less_irrefl)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5426
  qed (use u v in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5427
  then show ?thesis
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5428
    by (simp add: arctan)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5429
qed
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5430
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5431
lemma tendsto_arctan [tendsto_intros]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. arctan (f x)) \<longlongrightarrow> arctan x) F"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5432
  by (rule isCont_tendsto_compose [OF isCont_arctan])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5433
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5434
lemma continuous_arctan [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arctan (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5435
  unfolding continuous_def by (rule tendsto_arctan)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5436
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5437
lemma continuous_on_arctan [continuous_intros]:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5438
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. arctan (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51477
diff changeset
  5439
  unfolding continuous_on_def by (auto intro: tendsto_arctan)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5440
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5441
lemma DERIV_arcsin:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5442
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5443
  shows "DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5444
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5445
  show "(sin has_real_derivative sqrt (1 - x\<^sup>2)) (at (arcsin x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5446
    by (rule derivative_eq_intros | use assms cos_arcsin in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5447
  show "sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5448
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5449
qed (use assms isCont_arcsin in auto)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5450
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5451
lemma DERIV_arccos:
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5452
  assumes "- 1 < x" "x < 1"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5453
  shows "DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5454
proof (rule DERIV_inverse_function)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5455
  show "(cos has_real_derivative - sqrt (1 - x\<^sup>2)) (at (arccos x))"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5456
    by (rule derivative_eq_intros | use assms sin_arccos in force)+
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5457
  show "- sqrt (1 - x\<^sup>2) \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5458
    using abs_square_eq_1 assms by force
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5459
qed (use assms isCont_arccos in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5460
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  5461
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5462
proof (rule DERIV_inverse_function)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5463
  have "inverse ((cos (arctan x))\<^sup>2) = 1 + x\<^sup>2"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5464
    by (metis arctan cos_arctan_not_zero power_inverse tan_sec)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5465
  then show "(tan has_real_derivative 1 + x\<^sup>2) (at (arctan x))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  5466
    by (auto intro!: derivative_eq_intros)
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5467
  show "\<And>y. \<lbrakk>x - 1 < y; y < x + 1\<rbrakk> \<Longrightarrow> tan (arctan y) = y"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5468
    using tan_arctan by blast
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5469
  show "1 + x\<^sup>2 \<noteq> 0"
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5470
    by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  5471
qed (use isCont_arctan in auto)
23045
95e04f335940 add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents: 23043
diff changeset
  5472
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5473
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5474
  DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5475
  DERIV_arcsin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5476
  DERIV_arccos[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5477
  DERIV_arccos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  5478
  DERIV_arctan[THEN DERIV_chain2, derivative_intros]
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61284
diff changeset
  5479
  DERIV_arctan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31790
diff changeset
  5480
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5481
lemmas has_derivative_arctan[derivative_intros] = DERIV_arctan[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5482
  and has_derivative_arccos[derivative_intros] = DERIV_arccos[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5483
  and has_derivative_arcsin[derivative_intros] = DERIV_arcsin[THEN DERIV_compose_FDERIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67574
diff changeset
  5484
61881
b4bfa62e799d Transcendental: use [simp]-canonical form - (pi/2)
hoelzl
parents: 61810
diff changeset
  5485
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- (pi/2)))"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5486
  by (rule filterlim_at_bot_at_right[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5487
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5488
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5489
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5490
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5491
  by (rule filterlim_at_top_at_left[where Q="\<lambda>x. - pi/2 < x \<and> x < pi/2" and P="\<lambda>x. True" and g=arctan])
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5492
     (auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5493
           intro!: tan_monotone exI[of _ "pi/2"])
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5494
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5495
lemma tendsto_arctan_at_top: "(arctan \<longlongrightarrow> (pi/2)) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5496
proof (rule tendstoI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5497
  fix e :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5498
  assume "0 < e"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
  5499
  define y where "y = pi/2 - min (pi/2) e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5500
  then have y: "0 \<le> y" "y < pi/2" "pi/2 \<le> e + y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5501
    using \<open>0 < e\<close> by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5502
  show "eventually (\<lambda>x. dist (arctan x) (pi/2) < e) at_top"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5503
  proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5504
    fix x
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5505
    assume "tan y < x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5506
    then have "arctan (tan y) < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5507
      by (simp add: arctan_less_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5508
    with y have "y < arctan x"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5509
      by (subst (asm) arctan_tan) simp_all
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5510
    with arctan_ubound[of x, arith] y \<open>0 < e\<close>
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5511
    show "dist (arctan x) (pi/2) < e"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5512
      by (simp add: dist_real_def)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5513
  qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5514
qed
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5515
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  5516
lemma tendsto_arctan_at_bot: "(arctan \<longlongrightarrow> - (pi/2)) at_bot"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5517
  unfolding filterlim_at_bot_mirror arctan_minus
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5518
  by (intro tendsto_minus tendsto_arctan_at_top)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5519
79672
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5520
lemma sin_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5521
  "sin (x * numeral n :: 'a :: {real_normed_field, banach}) = 
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5522
     sin x * cos (x * of_nat (pred_numeral n)) + cos x * sin (x * of_nat (pred_numeral n))"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5523
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5524
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5525
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5526
  also have "sin (x * \<dots>) = sin (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5527
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5528
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5529
    by (simp add: sin_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5530
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5531
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5532
lemma cos_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5533
  "cos (x * numeral n :: 'a :: {real_normed_field, banach}) =
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5534
     cos (x * of_nat (pred_numeral n)) * cos x - sin (x * of_nat (pred_numeral n)) * sin x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5535
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5536
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5537
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5538
  also have "cos (x * \<dots>) = cos (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5539
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5540
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5541
    by (simp add: cos_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5542
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5543
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5544
lemma arccos_eq_pi_iff: "x \<in> {-1..1} \<Longrightarrow> arccos x = pi \<longleftrightarrow> x = -1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5545
  by (metis arccos arccos_minus_1 atLeastAtMost_iff cos_pi)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5546
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5547
lemma arccos_eq_0_iff: "x \<in> {-1..1} \<Longrightarrow> arccos x = 0 \<longleftrightarrow> x = 1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  5548
  by (metis arccos arccos_1 atLeastAtMost_iff cos_zero)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50326
diff changeset
  5549
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5550
subsection \<open>Prove Totality of the Trigonometric Functions\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5551
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5552
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5553
  by (simp add: abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5554
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5555
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<^sup>2)"
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5556
  by (simp add: sin_arccos abs_le_iff)
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5557
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5558
lemma sin_mono_less_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5559
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x < sin y \<longleftrightarrow> x < y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5560
  by (metis not_less_iff_gr_or_eq sin_monotone_2pi)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5561
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5562
lemma sin_mono_le_eq:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5563
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x \<le> sin y \<longleftrightarrow> x \<le> y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5564
  by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5565
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5566
lemma sin_inj_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5567
  "- (pi/2) \<le> x \<Longrightarrow> x \<le> pi/2 \<Longrightarrow> - (pi/2) \<le> y \<Longrightarrow> y \<le> pi/2 \<Longrightarrow> sin x = sin y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5568
  by (metis arcsin_sin)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5569
70722
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5570
lemma arcsin_le_iff:
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5571
  assumes "x \<ge> -1" "x \<le> 1" "y \<ge> -pi/2" "y \<le> pi/2"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5572
  shows   "arcsin x \<le> y \<longleftrightarrow> x \<le> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5573
proof -
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5574
  have "arcsin x \<le> y \<longleftrightarrow> sin (arcsin x) \<le> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5575
    using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5576
  also from assms have "sin (arcsin x) = x" by simp
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5577
  finally show ?thesis .
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5578
qed
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5579
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5580
lemma le_arcsin_iff:
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5581
  assumes "x \<ge> -1" "x \<le> 1" "y \<ge> -pi/2" "y \<le> pi/2"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5582
  shows   "arcsin x \<ge> y \<longleftrightarrow> x \<ge> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5583
proof -
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5584
  have "arcsin x \<ge> y \<longleftrightarrow> sin (arcsin x) \<ge> sin y"
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5585
    using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5586
  also from assms have "sin (arcsin x) = x" by simp
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5587
  finally show ?thesis .
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5588
qed
ae2528273eeb A couple of new theorems, stolen from AFP entries
paulson <lp15@cam.ac.uk>
parents: 70532
diff changeset
  5589
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5590
lemma cos_mono_less_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x < cos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5591
  by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5592
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5593
lemma cos_mono_le_eq: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x \<le> cos y \<longleftrightarrow> y \<le> x"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5594
  by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5595
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5596
lemma cos_inj_pi: "0 \<le> x \<Longrightarrow> x \<le> pi \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> pi \<Longrightarrow> cos x = cos y \<Longrightarrow> x = y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5597
  by (metis arccos_cos)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5598
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5599
lemma arccos_le_pi2: "\<lbrakk>0 \<le> y; y \<le> 1\<rbrakk> \<Longrightarrow> arccos y \<le> pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  5600
  by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5601
      cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5602
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5603
lemma sincos_total_pi_half:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5604
  assumes "0 \<le> x" "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5605
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi/2 \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5606
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5607
  have x1: "x \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5608
    using assms by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5609
  with assms have *: "0 \<le> arccos x" "cos (arccos x) = x"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5610
    by (auto simp: arccos)
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  5611
  from assms have "y = sqrt (1 - x\<^sup>2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5612
    by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5613
  with x1 * assms arccos_le_pi2 [of x] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5614
    by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5615
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5616
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5617
lemma sincos_total_pi:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5618
  assumes "0 \<le> y" "x\<^sup>2 + y\<^sup>2 = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5619
  shows "\<exists>t. 0 \<le> t \<and> t \<le> pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5620
proof (cases rule: le_cases [of 0 x])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5621
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5622
  from sincos_total_pi_half [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5623
    by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5624
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5625
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5626
  then have "0 \<le> -x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5627
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5628
  then obtain t where t: "t\<ge>0" "t \<le> pi/2" "-x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5629
    using sincos_total_pi_half assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5630
    by auto (metis \<open>0 \<le> - x\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5631
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5632
    by (rule exI [where x = "pi -t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5633
qed
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5634
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5635
lemma sincos_total_2pi_le:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5636
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5637
  shows "\<exists>t. 0 \<le> t \<and> t \<le> 2 * pi \<and> x = cos t \<and> y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5638
proof (cases rule: le_cases [of 0 y])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5639
  case le
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5640
  from sincos_total_pi [OF le] show ?thesis
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5641
    by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5642
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5643
  case ge
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5644
  then have "0 \<le> -y"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5645
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5646
  then obtain t where t: "t\<ge>0" "t \<le> pi" "x = cos t" "-y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5647
    using sincos_total_pi assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5648
    by auto (metis \<open>0 \<le> - y\<close> power2_minus)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5649
  show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5650
    by (rule exI [where x = "2 * pi - t"]) (use t in auto)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  5651
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5652
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5653
lemma sincos_total_2pi:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5654
  assumes "x\<^sup>2 + y\<^sup>2 = 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5655
  obtains t where "0 \<le> t" "t < 2*pi" "x = cos t" "y = sin t"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5656
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5657
  from sincos_total_2pi_le [OF assms]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5658
  obtain t where t: "0 \<le> t" "t \<le> 2*pi" "x = cos t" "y = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5659
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5660
  show ?thesis
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5661
    by (cases "t = 2 * pi") (use t that in \<open>force+\<close>)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5662
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59741
diff changeset
  5663
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5664
lemma arcsin_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x < arcsin y \<longleftrightarrow> x < y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5665
  by (rule trans [OF sin_mono_less_eq [symmetric]]) (use arcsin_ubound arcsin_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5666
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5667
lemma arcsin_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y \<longleftrightarrow> x \<le> y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5668
  using arcsin_less_mono not_le by blast
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5669
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5670
lemma arcsin_less_arcsin: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x < arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5671
  using arcsin_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5672
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5673
lemma arcsin_le_arcsin: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arcsin x \<le> arcsin y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5674
  using arcsin_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5675
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5676
lemma arcsin_nonneg: "x \<in> {0..1} \<Longrightarrow> arcsin x \<ge> 0"
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5677
  using arcsin_le_arcsin[of 0 x] by simp
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5678
  
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5679
lemma arccos_less_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x < arccos y \<longleftrightarrow> y < x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5680
  by (rule trans [OF cos_mono_less_eq [symmetric]]) (use arccos_ubound arccos_lbound in auto)
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5681
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61942
diff changeset
  5682
lemma arccos_le_mono: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x \<le> arccos y \<longleftrightarrow> y \<le> x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5683
  using arccos_less_mono [of y x] by (simp add: not_le [symmetric])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5684
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5685
lemma arccos_less_arccos: "- 1 \<le> x \<Longrightarrow> x < y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y < arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5686
  using arccos_less_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5687
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5688
lemma arccos_le_arccos: "- 1 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> arccos y \<le> arccos x"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5689
  using arccos_le_mono by auto
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5690
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5691
lemma arccos_eq_iff: "\<bar>x\<bar> \<le> 1 \<and> \<bar>y\<bar> \<le> 1 \<Longrightarrow> arccos x = arccos y \<longleftrightarrow> x = y"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5692
  using cos_arccos_abs by fastforce
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5693
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5694
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5695
lemma arccos_cos_eq_abs:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5696
  assumes "\<bar>\<theta>\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5697
  shows "arccos (cos \<theta>) = \<bar>\<theta>\<bar>"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5698
  unfolding arccos_def
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5699
proof (intro the_equality conjI; clarify?)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5700
  show "cos \<bar>\<theta>\<bar> = cos \<theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5701
    by (simp add: abs_real_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5702
  show "x = \<bar>\<theta>\<bar>" if "cos x = cos \<theta>" "0 \<le> x" "x \<le> pi" for x
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5703
    by (simp add: \<open>cos \<bar>\<theta>\<bar> = cos \<theta>\<close> assms cos_inj_pi that)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5704
qed (use assms in auto)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5705
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5706
lemma arccos_cos_eq_abs_2pi:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5707
  obtains k where "arccos (cos \<theta>) = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5708
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5709
  define k where "k \<equiv>  \<lfloor>(\<theta> + pi) / (2 * pi)\<rfloor>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5710
  have lepi: "\<bar>\<theta> - of_int k * (2 * pi)\<bar> \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5711
    using floor_divide_lower [of "2*pi" "\<theta> + pi"] floor_divide_upper [of "2*pi" "\<theta> + pi"]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5712
    by (auto simp: k_def abs_if algebra_simps)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5713
  have "arccos (cos \<theta>) = arccos (cos (\<theta> - of_int k * (2 * pi)))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5714
    using cos_int_2pin sin_int_2pin by (simp add: cos_diff mult.commute)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5715
  also have "\<dots> = \<bar>\<theta> - of_int k * (2 * pi)\<bar>"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5716
    using arccos_cos_eq_abs lepi by blast
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5717
  finally show ?thesis
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5718
    using that by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5719
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5720
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5721
lemma arccos_arctan:
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5722
  assumes "-1 < x" "x < 1"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5723
  shows "arccos x = pi/2 - arctan(x / sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5724
proof -
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5725
  have "arctan(x / sqrt(1 - x\<^sup>2)) - (pi/2 - arccos x) = 0"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5726
  proof (rule sin_eq_0_pi)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5727
    show "- pi < arctan (x / sqrt (1 - x\<^sup>2)) - (pi/2 - arccos x)"
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5728
      using arctan_lbound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5729
      by (simp add: algebra_simps)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5730
  next
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5731
    show "arctan (x / sqrt (1 - x\<^sup>2)) - (pi/2 - arccos x) < pi"
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5732
      using arctan_ubound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5733
      by (simp add: algebra_simps)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5734
  next
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5735
    show "sin (arctan (x / sqrt (1 - x\<^sup>2)) - (pi/2 - arccos x)) = 0"
76819
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5736
      using assms
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5737
      by (simp add: algebra_simps sin_diff cos_add sin_arccos sin_arctan cos_arctan
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5738
                    power2_eq_square square_eq_1_iff)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5739
  qed
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5740
  then show ?thesis
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5741
    by simp
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5742
qed
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5743
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5744
lemma arcsin_plus_arccos:
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5745
  assumes "-1 \<le> x" "x \<le> 1"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5746
    shows "arcsin x + arccos x = pi/2"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5747
proof -
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5748
  have "arcsin x = pi/2 - arccos x"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5749
    apply (rule sin_inj_pi)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5750
    using assms arcsin [OF assms] arccos [OF assms]
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5751
    by (auto simp: algebra_simps sin_diff)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5752
  then show ?thesis
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5753
    by (simp add: algebra_simps)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5754
qed
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5755
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5756
lemma arcsin_arccos_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = pi/2 - arccos x"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5757
  using arcsin_plus_arccos by force
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5758
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5759
lemma arccos_arcsin_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = pi/2 - arcsin x"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5760
  using arcsin_plus_arccos by force
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5761
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5762
lemma arcsin_arctan: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> arcsin x = arctan(x / sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5763
  by (simp add: arccos_arctan arcsin_arccos_eq)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5764
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5765
lemma arcsin_arccos_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = arccos(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5766
  by (smt (verit, del_insts) arccos_cos arcsin_0 arcsin_le_arcsin arcsin_pi cos_arcsin)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5767
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5768
lemma arcsin_arccos_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arcsin x = -arccos(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5769
  using arcsin_arccos_sqrt_pos [of "-x"]
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5770
  by (simp add: arcsin_minus)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5771
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5772
lemma arccos_arcsin_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = arcsin(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5773
  by (smt (verit, del_insts) arccos_lbound arccos_le_pi2 arcsin_sin sin_arccos)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5774
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5775
lemma arccos_arcsin_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arccos x = pi - arcsin(sqrt(1 - x\<^sup>2))"
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5776
  using arccos_arcsin_sqrt_pos [of "-x"]
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5777
  by (simp add: arccos_minus)
fc4ad2a2b6b1 reorganisation and simplification of theorems about transcendental functions
paulson <lp15@cam.ac.uk>
parents: 74592
diff changeset
  5778
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5779
lemma cos_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5780
  assumes "(\<lambda>j. cos (\<theta> j)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5781
  shows "\<exists>k. (\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5782
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5783
  have "\<forall>\<^sub>F j in sequentially. cos (\<theta> j) \<in> {- 1..1}"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5784
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5785
  then have "(\<lambda>j. arccos (cos (\<theta> j))) \<longlonglongrightarrow> arccos 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5786
    using continuous_on_tendsto_compose [OF continuous_on_arccos' assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5787
  moreover have "\<And>j. \<exists>k. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int k * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5788
    using arccos_cos_eq_abs_2pi by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5789
  then have "\<exists>k. \<forall>j. arccos (cos (\<theta> j)) = \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5790
    by metis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5791
  ultimately have "\<exists>k. (\<lambda>j. \<bar>\<theta> j - of_int (k j) * (2 * pi)\<bar>) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5792
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5793
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5794
    by (simp add: tendsto_rabs_zero_iff)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5795
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5796
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5797
lemma cos_diff_limit_1:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5798
  assumes "(\<lambda>j. cos (\<theta> j - \<Theta>)) \<longlonglongrightarrow> 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5799
  obtains k where "(\<lambda>j. \<theta> j - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> \<Theta>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5800
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5801
  obtain k where "(\<lambda>j. (\<theta> j - \<Theta>) - of_int (k j) * (2 * pi)) \<longlonglongrightarrow> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5802
    using cos_limit_1 [OF assms] by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5803
  then have "(\<lambda>j. \<Theta> + ((\<theta> j - \<Theta>) - of_int (k j) * (2 * pi))) \<longlonglongrightarrow> \<Theta> + 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5804
    by (rule tendsto_add [OF tendsto_const])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5805
  with that show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5806
    by auto
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5807
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68100
diff changeset
  5808
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5809
subsection \<open>Machin's formula\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5810
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5811
lemma arctan_one: "arctan 1 = pi/4"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5812
  by (rule arctan_unique) (simp_all add: tan_45 m2pi_less_pi)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5813
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5814
lemma tan_total_pi4:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5815
  assumes "\<bar>x\<bar> < 1"
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5816
  shows "\<exists>z. - (pi/4) < z \<and> z < pi/4 \<and> tan z = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5817
proof
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5818
  show "- (pi/4) < arctan x \<and> arctan x < pi/4 \<and> tan (arctan x) = x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5819
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5820
    unfolding arctan_less_iff
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  5821
    using assms by (auto simp: arctan)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5822
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5823
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5824
lemma arctan_add:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5825
  assumes "\<bar>x\<bar> \<le> 1" "\<bar>y\<bar> < 1"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5826
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5827
proof (rule arctan_unique [symmetric])
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5828
  have "- (pi/4) \<le> arctan x" "- (pi/4) < arctan y"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5829
    unfolding arctan_one [symmetric] arctan_minus [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5830
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5831
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5832
  from add_le_less_mono [OF this] show 1: "- (pi/2) < arctan x + arctan y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5833
    by simp
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5834
  have "arctan x \<le> pi/4" "arctan y < pi/4"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5835
    unfolding arctan_one [symmetric]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5836
    unfolding arctan_le_iff arctan_less_iff
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5837
    using assms by auto
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  5838
  from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi/2"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5839
    by simp
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5840
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
59869
3b5b53eb78ba arcsin and arccos lemmas
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  5841
    using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5842
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5843
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5844
lemma arctan_double: "\<bar>x\<bar> < 1 \<Longrightarrow> 2 * arctan x = arctan ((2 * x) / (1 - x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5845
  by (metis arctan_add linear mult_2 not_less power2_eq_square)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5846
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5847
theorem machin: "pi/4 = 4 * arctan (1 / 5) - arctan (1/239)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5848
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5849
  have "\<bar>1 / 5\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5850
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5851
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5852
    by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5853
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5854
  have "\<bar>5 / 12\<bar> < (1 :: real)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5855
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5856
  from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5857
    by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  5858
  moreover
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5859
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1/239\<bar> < (1::real)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5860
    by auto
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5861
  from arctan_add[OF this] have "arctan 1 + arctan (1/239) = arctan (120 / 119)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5862
    by auto
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5863
  ultimately have "arctan 1 + arctan (1/239) = 4 * arctan (1 / 5)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5864
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5865
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5866
    unfolding arctan_one by algebra
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5867
qed
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  5868
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  5869
lemma machin_Euler: "5 * arctan (1 / 7) + 2 * arctan (3 / 79) = pi/4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5870
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5871
  have 17: "\<bar>1 / 7\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5872
  with arctan_double have "2 * arctan (1 / 7) = arctan (7 / 24)"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5873
    by simp (simp add: field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5874
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5875
  have "\<bar>7 / 24\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5876
  with arctan_double have "2 * arctan (7 / 24) = arctan (336 / 527)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5877
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5878
  moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5879
  have "\<bar>336 / 527\<bar> < (1 :: real)" by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5880
  from arctan_add[OF less_imp_le[OF 17] this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5881
  have "arctan(1/7) + arctan (336 / 527) = arctan (2879 / 3353)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5882
    by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5883
  ultimately have I: "5 * arctan (1 / 7) = arctan (2879 / 3353)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5884
  have 379: "\<bar>3 / 79\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5885
  with arctan_double have II: "2 * arctan (3 / 79) = arctan (237 / 3116)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5886
    by simp (simp add: field_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5887
  have *: "\<bar>2879 / 3353\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5888
  have "\<bar>237 / 3116\<bar> < (1 :: real)" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5889
  from arctan_add[OF less_imp_le[OF *] this] have "arctan (2879/3353) + arctan (237/3116) = pi/4"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5890
    by (simp add: arctan_one)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5891
  with I II show ?thesis by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5892
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5893
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5894
(*But could also prove MACHIN_GAUSS:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5895
  12 * arctan(1/18) + 8 * arctan(1/57) - 5 * arctan(1/239) = pi/4*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  5896
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5897
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5898
subsection \<open>Introducing the inverse tangent power series\<close>
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5899
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5900
lemma monoseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5901
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5902
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5903
  shows "monoseq (\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5904
    (is "monoseq ?a")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5905
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5906
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5907
  then show ?thesis by (auto simp: monoseq_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5908
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5909
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5910
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5911
    using assms by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5912
  show "monoseq ?a"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5913
  proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5914
    have mono: "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le>
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5915
        1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5916
      if "0 \<le> x" and "x \<le> 1" for n and x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5917
    proof (rule mult_mono)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5918
      show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5919
        by (rule frac_le) simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5920
      show "0 \<le> 1 / real (Suc (n * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5921
        by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5922
      show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5923
        by (rule power_decreasing) (simp_all add: \<open>0 \<le> x\<close> \<open>x \<le> 1\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5924
      show "0 \<le> x ^ Suc (Suc n * 2)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5925
        by (rule zero_le_power) (simp add: \<open>0 \<le> x\<close>)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5926
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5927
    show ?thesis
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5928
    proof (cases "0 \<le> x")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5929
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5930
      from mono[OF this \<open>x \<le> 1\<close>, THEN allI]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5931
      show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5932
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5933
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5934
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5935
      then have "0 \<le> - x" and "- x \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5936
        using \<open>-1 \<le> x\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5937
      from mono[OF this]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5938
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5939
          1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5940
        using \<open>0 \<le> -x\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5941
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5942
        unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5943
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5944
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5945
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5946
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5947
lemma zeroseq_arctan_series:
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5948
  fixes x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5949
  assumes "\<bar>x\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5950
  shows "(\<lambda>n. 1 / real (n * 2 + 1) * x^(n * 2 + 1)) \<longlonglongrightarrow> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5951
    (is "?a \<longlonglongrightarrow> 0")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5952
proof (cases "x = 0")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5953
  case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5954
  then show ?thesis by simp
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5955
next
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5956
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5957
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5958
    using assms by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5959
  show "?a \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5960
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5961
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5962
    then have "norm x < 1" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  5963
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF \<open>norm x < 1\<close>, THEN LIMSEQ_Suc]]
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  5964
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) \<longlonglongrightarrow> 0"
31790
05c92381363c corrected and unified thm names
nipkow
parents: 31338
diff changeset
  5965
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5966
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5967
      using pos2 by (rule LIMSEQ_linear)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5968
  next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5969
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5970
    then have "x = -1 \<or> x = 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5971
      using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5972
    then have n_eq: "\<And> n. x ^ (n * 2 + 1) = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5973
      unfolding One_nat_def by auto
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  5974
    from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5975
    show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5976
      unfolding n_eq Suc_eq_plus1 by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5977
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5978
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5979
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5980
lemma summable_arctan_series:
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  5981
  fixes n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5982
  assumes "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5983
  shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5984
    (is "summable (?c x)")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5985
  by (rule summable_Leibniz(1),
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5986
      rule zeroseq_arctan_series[OF assms],
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5987
      rule monoseq_arctan_series[OF assms])
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5988
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5989
lemma DERIV_arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5990
  assumes "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5991
  shows "DERIV (\<lambda>x'. \<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x' ^ (k * 2 + 1))) x :>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5992
      (\<Sum>k. (-1)^k * x^(k * 2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5993
    (is "DERIV ?arctan _ :> ?Int")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  5994
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5995
  let ?f = "\<lambda>n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5996
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5997
  have n_even: "even n \<Longrightarrow> 2 * (n div 2) = n" for n :: nat
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  5998
    by presburger
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  5999
  then have if_eq: "?f n * real (Suc n) * x'^n =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6000
      (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6001
    for n x'
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6002
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6003
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6004
  have summable_Integral: "summable (\<lambda> n. (- 1) ^ n * x^(2 * n))" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6005
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6006
    from that have "x\<^sup>2 < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6007
      by (simp add: abs_square_less_1)
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  6008
    have "summable (\<lambda> n. (- 1) ^ n * (x\<^sup>2) ^n)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6009
      by (rule summable_Leibniz(1))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6010
        (auto intro!: LIMSEQ_realpow_zero monoseq_realpow \<open>x\<^sup>2 < 1\<close> order_less_imp_le[OF \<open>x\<^sup>2 < 1\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6011
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6012
      by (simp only: power_mult)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6013
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6014
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67268
diff changeset
  6015
  have sums_even: "(sums) f = (sums) (\<lambda> n. if even n then f (n div 2) else 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6016
    for f :: "nat \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6017
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6018
    have "f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x" for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6019
    proof
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6020
      assume "f sums x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6021
      from sums_if[OF sums_zero this] show "(\<lambda>n. if even n then f (n div 2) else 0) sums x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6022
        by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6023
    next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6024
      assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63145
diff changeset
  6025
      from LIMSEQ_linear[OF this[simplified sums_def] pos2, simplified sum_split_even_odd[simplified mult.commute]]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6026
      show "f sums x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6027
        unfolding sums_def by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6028
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6029
    then show ?thesis ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6030
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6031
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6032
  have Int_eq: "(\<Sum>n. ?f n * real (Suc n) * x^n) = ?Int"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6033
    unfolding if_eq mult.commute[of _ 2]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6034
      suminf_def sums_even[of "\<lambda> n. (- 1) ^ n * x ^ (2 * n)", symmetric]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6035
    by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6036
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6037
  have arctan_eq: "(\<Sum>n. ?f n * x^(Suc n)) = ?arctan x" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6038
  proof -
58410
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  6039
    have if_eq': "\<And>n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
6d46ad54a2ab explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents: 57514
diff changeset
  6040
      (if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6041
      using n_even by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6042
    have idx_eq: "\<And>n. n * 2 + 1 = Suc (2 * n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6043
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6044
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6045
      unfolding if_eq' idx_eq suminf_def
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6046
        sums_even[of "\<lambda> n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6047
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6048
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6049
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6050
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum>n. ?f n * real (Suc n) * x^n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6051
  proof (rule DERIV_power_series')
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6052
    show "x \<in> {- 1 <..< 1}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6053
      using \<open>\<bar> x \<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6054
    show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6055
      if x'_bounds: "x' \<in> {- 1 <..< 1}" for x' :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6056
    proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6057
      from that have "\<bar>x'\<bar> < 1" by auto
68614
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  6058
      then show ?thesis
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  6059
        using that sums_summable sums_if [OF sums_0 [of "\<lambda>x. 0"] summable_sums [OF summable_Integral]]   
3cb44b0abc5c more de-applying
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  6060
        by (auto simp add: if_distrib [of "\<lambda>x. x * y" for y] cong: if_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6061
    qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6062
  qed auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6063
  then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6064
    by (simp only: Int_eq arctan_eq)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6065
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6066
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6067
lemma arctan_series:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6068
  assumes "\<bar>x\<bar> \<le> 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6069
  shows "arctan x = (\<Sum>k. (-1)^k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6070
    (is "_ = suminf (\<lambda> n. ?c x n)")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6071
proof -
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6072
  let ?c' = "\<lambda>x n. (-1)^n * x^(n*2)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6073
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6074
  have DERIV_arctan_suminf: "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6075
    if "0 < r" and "r < 1" and "\<bar>x\<bar> < r" for r x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6076
  proof (rule DERIV_arctan_series)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6077
    from that show "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6078
      using \<open>r < 1\<close> and \<open>\<bar>x\<bar> < r\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6079
  qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6080
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6081
  {
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6082
    fix x :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6083
    assume "\<bar>x\<bar> \<le> 1"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6084
    note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6085
  } note arctan_series_borders = this
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6086
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6087
  have when_less_one: "arctan x = (\<Sum>k. ?c x k)" if "\<bar>x\<bar> < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6088
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6089
    obtain r where "\<bar>x\<bar> < r" and "r < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6090
      using dense[OF \<open>\<bar>x\<bar> < 1\<close>] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6091
    then have "0 < r" and "- r < x" and "x < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6092
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6093
    have suminf_eq_arctan_bounded: "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6094
      if "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b" for x a b
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6095
    proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6096
      from that have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6097
      show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6098
      proof (rule DERIV_isconst2[of "a" "b"])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6099
        show "a < b" and "a \<le> x" and "x \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6100
          using \<open>a < b\<close> \<open>a \<le> x\<close> \<open>x \<le> b\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6101
        have "\<forall>x. - r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6102
        proof (rule allI, rule impI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6103
          fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6104
          assume "-r < x \<and> x < r"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6105
          then have "\<bar>x\<bar> < r" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6106
          with \<open>r < 1\<close> have "\<bar>x\<bar> < 1" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6107
          have "\<bar>- (x\<^sup>2)\<bar> < 1" using abs_square_less_1 \<open>\<bar>x\<bar> < 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6108
          then have "(\<lambda>n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6109
            unfolding real_norm_def[symmetric] by (rule geometric_sums)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6110
          then have "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6111
            unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6112
          then have suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6113
            using sums_unique unfolding inverse_eq_divide by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6114
          have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6115
            unfolding suminf_c'_eq_geom
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6116
            by (rule DERIV_arctan_suminf[OF \<open>0 < r\<close> \<open>r < 1\<close> \<open>\<bar>x\<bar> < r\<close>])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6117
          from DERIV_diff [OF this DERIV_arctan] show "DERIV (\<lambda>x. suminf (?c x) - arctan x) x :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6118
            by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6119
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6120
        then have DERIV_in_rball: "\<forall>y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6121
          using \<open>-r < a\<close> \<open>b < r\<close> by auto
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  6122
        then show "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> DERIV (\<lambda>x. suminf (?c x) - arctan x) y :> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6123
          using \<open>\<bar>x\<bar> < r\<close> by auto
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  6124
        show "continuous_on {a..b} (\<lambda>x. suminf (?c x) - arctan x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68774
diff changeset
  6125
          using DERIV_in_rball DERIV_atLeastAtMost_imp_continuous_on by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6126
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6127
    qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6128
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6129
    have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6130
      unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6131
      by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6132
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6133
    have "suminf (?c x) - arctan x = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6134
    proof (cases "x = 0")
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6135
      case True
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6136
      then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6137
        using suminf_arctan_zero by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6138
    next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6139
      case False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6140
      then have "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6141
        by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6142
      have "suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>) = suminf (?c 0) - arctan 0"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6143
        by (rule suminf_eq_arctan_bounded[where x1=0 and a1="-\<bar>x\<bar>" and b1="\<bar>x\<bar>", symmetric])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6144
          (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>-\<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6145
      moreover
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6146
      have "suminf (?c x) - arctan x = suminf (?c (- \<bar>x\<bar>)) - arctan (- \<bar>x\<bar>)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6147
        by (rule suminf_eq_arctan_bounded[where x1=x and a1="- \<bar>x\<bar>" and b1="\<bar>x\<bar>"])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6148
           (simp_all only: \<open>\<bar>x\<bar> < r\<close> \<open>- \<bar>x\<bar> < \<bar>x\<bar>\<close> neg_less_iff_less)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6149
      ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6150
        using suminf_arctan_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6151
    qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6152
    then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6153
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6154
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6155
  show "arctan x = suminf (\<lambda>n. ?c x n)"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6156
  proof (cases "\<bar>x\<bar> < 1")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6157
    case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6158
    then show ?thesis by (rule when_less_one)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6159
  next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6160
    case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6161
    then have "\<bar>x\<bar> = 1" using \<open>\<bar>x\<bar> \<le> 1\<close> by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6162
    let ?a = "\<lambda>x n. \<bar>1 / real (n * 2 + 1) * x^(n * 2 + 1)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6163
    let ?diff = "\<lambda>x n. \<bar>arctan x - (\<Sum>i<n. ?c x i)\<bar>"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6164
    have "?diff 1 n \<le> ?a 1 n" for n :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6165
    proof -
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6166
      have "0 < (1 :: real)" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6167
      moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6168
      have "?diff x n \<le> ?a x n" if "0 < x" and "x < 1" for x :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6169
      proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6170
        from that have "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6171
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6172
        from \<open>0 < x\<close> have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6173
          by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6174
        note bounds = mp[OF arctan_series_borders(2)[OF \<open>\<bar>x\<bar> \<le> 1\<close>] this, unfolded when_less_one[OF \<open>\<bar>x\<bar> < 1\<close>, symmetric], THEN spec]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6175
        have "0 < 1 / real (n*2+1) * x^(n*2+1)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6176
          by (rule mult_pos_pos) (simp_all only: zero_less_power[OF \<open>0 < x\<close>], auto)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6177
        then have a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6178
          by (rule abs_of_pos)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6179
        show ?thesis
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6180
        proof (cases "even n")
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6181
          case True
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6182
          then have sgn_pos: "(-1)^n = (1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6183
          from \<open>even n\<close> obtain m where "n = 2 * m" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  6184
          then have "2 * m = n" ..
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6185
          from bounds[of m, unfolded this atLeastAtMost_iff]
56193
c726ecfb22b6 cleanup Series: sorted according to typeclass hierarchy, use {..<_} instead of {0..<_}
hoelzl
parents: 56181
diff changeset
  6186
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n + 1. (?c x i)) - (\<Sum>i<n. (?c x i))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6187
            by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6188
          also have "\<dots> = ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6189
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6190
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6191
        next
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6192
          case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6193
          then have sgn_neg: "(-1)^n = (-1::real)" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6194
          from \<open>odd n\<close> obtain m where "n = 2 * m + 1" ..
58709
efdc6c533bd3 prefer generic elimination rules for even/odd over specialized unfold rules for nat
haftmann
parents: 58656
diff changeset
  6195
          then have m_def: "2 * m + 1 = n" ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6196
          then have m_plus: "2 * (m + 1) = n + 1" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6197
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6198
          have "\<bar>arctan x - (\<Sum>i<n. (?c x i))\<bar> \<le> (\<Sum>i<n. (?c x i)) - (\<Sum>i<n+1. (?c x i))" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6199
          also have "\<dots> = - ?c x n" by auto
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6200
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6201
          finally show ?thesis .
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32047
diff changeset
  6202
        qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6203
      qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6204
      hence "\<forall>x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6205
      moreover have "isCont (\<lambda> x. ?a x n - ?diff x n) x" for x
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  6206
        unfolding diff_conv_add_uminus divide_inverse
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6207
        by (auto intro!: isCont_add isCont_rabs continuous_ident isCont_minus isCont_arctan
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68603
diff changeset
  6208
          continuous_at_within_inverse isCont_mult isCont_power continuous_const isCont_sum
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
  6209
          simp del: add_uminus_conv_diff)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6210
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6211
        by (rule LIM_less_bound)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6212
      then show ?thesis by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6213
    qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  6214
    have "?a 1 \<longlonglongrightarrow> 0"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44319
diff changeset
  6215
      unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6216
      by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat simp del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  6217
    have "?diff 1 \<longlonglongrightarrow> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6218
    proof (rule LIMSEQ_I)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6219
      fix r :: real
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6220
      assume "0 < r"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6221
      obtain N :: nat where N_I: "N \<le> n \<Longrightarrow> ?a 1 n < r" for n
61969
e01015e49041 more symbols;
wenzelm
parents: 61944
diff changeset
  6222
        using LIMSEQ_D[OF \<open>?a 1 \<longlonglongrightarrow> 0\<close> \<open>0 < r\<close>] by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6223
      have "norm (?diff 1 n - 0) < r" if "N \<le> n" for n
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6224
        using \<open>?diff 1 n \<le> ?a 1 n\<close> N_I[OF that] by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6225
      then show "\<exists>N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6226
    qed
44710
9caf6883f1f4 remove redundant lemmas about LIMSEQ
huffman
parents: 44568
diff changeset
  6227
    from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6228
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6229
    then have "arctan 1 = (\<Sum>i. ?c 1 i)" by (rule sums_unique)
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  6230
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6231
    show ?thesis
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6232
    proof (cases "x = 1")
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6233
      case True
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6234
      then show ?thesis by (simp add: \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close>)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6235
    next
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6236
      case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6237
      then have "x = -1" using \<open>\<bar>x\<bar> = 1\<close> by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  6238
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6239
      have "- (pi/2) < 0" using pi_gt_zero by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6240
      have "- (2 * pi) < 0" using pi_gt_zero by auto
41970
47d6e13d1710 generalize infinite sums
hoelzl
parents: 41550
diff changeset
  6241
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6242
      have c_minus_minus: "?c (- 1) i = - ?c 1 i" for i by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6243
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6244
      have "arctan (- 1) = arctan (tan (-(pi/4)))"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6245
        unfolding tan_45 tan_minus ..
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6246
      also have "\<dots> = - (pi/4)"
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6247
        by (rule arctan_tan) (auto simp: order_less_trans[OF \<open>- (pi/2) < 0\<close> pi_gt_zero])
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6248
      also have "\<dots> = - (arctan (tan (pi/4)))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6249
        unfolding neg_equal_iff_equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6250
        by (rule arctan_tan[symmetric]) (auto simp: order_less_trans[OF \<open>- (2 * pi) < 0\<close> pi_gt_zero])
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6251
      also have "\<dots> = - (arctan 1)"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6252
        unfolding tan_45 ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6253
      also have "\<dots> = - (\<Sum> i. ?c 1 i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6254
        using \<open>arctan 1 = (\<Sum> i. ?c 1 i)\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6255
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6256
        using suminf_minus[OF sums_summable[OF \<open>(?c 1) sums (arctan 1)\<close>]]
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6257
        unfolding c_minus_minus by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6258
      finally show ?thesis using \<open>x = -1\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6259
    qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6260
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6261
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6262
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6263
lemma arctan_half: "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6264
  for x :: real
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6265
proof -
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6266
  obtain y where low: "- (pi/2) < y" and high: "y < pi/2" and y_eq: "tan y = x"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6267
    using tan_total by blast
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6268
  then have low2: "- (pi/2) < y / 2" and high2: "y / 2 < pi/2"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6269
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6270
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6271
  have "0 < cos y" by (rule cos_gt_zero_pi[OF low high])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6272
  then have "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y"
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6273
    by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6274
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6275
  have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6276
    unfolding tan_def power_divide ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6277
  also have "\<dots> = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6278
    using \<open>cos y \<noteq> 0\<close> by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6279
  also have "\<dots> = 1 / (cos y)\<^sup>2"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6280
    unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
53076
47c9aff07725 more symbols;
wenzelm
parents: 53015
diff changeset
  6281
  finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6282
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6283
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6284
    unfolding tan_def using \<open>cos y \<noteq> 0\<close> by (simp add: field_simps)
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6285
  also have "\<dots> = tan y / (1 + 1 / cos y)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6286
    using \<open>cos y \<noteq> 0\<close> unfolding add_divide_distrib by auto
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6287
  also have "\<dots> = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6288
    unfolding cos_sqrt ..
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6289
  also have "\<dots> = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6290
    unfolding real_sqrt_divide by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6291
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6292
    unfolding \<open>1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2\<close> .
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6293
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6294
  have "arctan x = y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6295
    using arctan_tan low high y_eq by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6296
  also have "\<dots> = 2 * (arctan (tan (y/2)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6297
    using arctan_tan[OF low2 high2] by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6298
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6299
    unfolding tan_half by auto
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6300
  finally show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6301
    unfolding eq \<open>tan y = x\<close> .
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6302
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6303
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6304
lemma arctan_monotone: "x < y \<Longrightarrow> arctan x < arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6305
  by (simp only: arctan_less_iff)
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6306
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6307
lemma arctan_monotone': "x \<le> y \<Longrightarrow> arctan x \<le> arctan y"
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6308
  by (simp only: arctan_le_iff)
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6309
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6310
lemma arctan_inverse:
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6311
  assumes "x \<noteq> 0"
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  6312
  shows "arctan (1/x) = sgn x * pi/2 - arctan x"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6313
proof (rule arctan_unique)
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6314
  have \<section>: "x > 0 \<Longrightarrow> arctan x < pi"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6315
    using arctan_bounded [of x] by linarith 
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6316
  show "- (pi/2) < sgn x * pi/2 - arctan x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6317
    using assms by (auto simp: sgn_real_def arctan algebra_simps \<section>)
68603
73eeb3f31406 De-applying
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  6318
  show "sgn x * pi/2 - arctan x < pi/2"
44746
9e4f7d3b5376 add lemmas about arctan;
huffman
parents: 44745
diff changeset
  6319
    using arctan_bounded [of "- x"] assms
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6320
    by (auto simp: algebra_simps sgn_real_def arctan_minus)
78731
508c6ee2b6fb A couple of new lemmas
paulson <lp15@cam.ac.uk>
parents: 78685
diff changeset
  6321
  show "tan (sgn x * pi/2 - arctan x) = 1/x"
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6322
    unfolding tan_inverse [of "arctan x", unfolded tan_arctan] sgn_real_def
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  6323
    by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6324
qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6325
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6326
theorem pi_series: "pi/4 = (\<Sum>k. (-1)^k * 1 / real (k * 2 + 1))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6327
  (is "_ = ?SUM")
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6328
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6329
  have "pi/4 = arctan 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6330
    using arctan_one by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6331
  also have "\<dots> = ?SUM"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6332
    using arctan_series[of 1] by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6333
  finally show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29695
diff changeset
  6334
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6335
53079
ade63ccd6f4e tuned proofs;
wenzelm
parents: 53076
diff changeset
  6336
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6337
subsection \<open>Existence of Polar Coordinates\<close>
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6338
53015
a1119cf551e8 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents: 52139
diff changeset
  6339
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<^sup>2 + y\<^sup>2)\<bar> \<le> 1"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6340
  by (rule power2_le_imp_le [OF _ zero_le_one])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6341
    (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6342
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6343
lemma polar_Ex: "\<exists>r::real. \<exists>a. x = r * cos a \<and> y = r * sin a"
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6344
proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6345
  have polar_ex1: "\<exists>r a. x = r * cos a \<and> y = r * sin a" if "0 < y" for y
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6346
  proof -
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6347
    have "x = sqrt (x\<^sup>2 + y\<^sup>2) * cos (arccos (x / sqrt (x\<^sup>2 + y\<^sup>2)))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6348
      by (simp add: cos_arccos_abs [OF cos_x_y_le_one])
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6349
    moreover have "y = sqrt (x\<^sup>2 + y\<^sup>2) * sin (arccos (x / sqrt (x\<^sup>2 + y\<^sup>2)))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6350
      using that
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6351
      by (simp add: sin_arccos_abs [OF cos_x_y_le_one] power_divide right_diff_distrib flip: real_sqrt_mult)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6352
    ultimately show ?thesis
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6353
      by blast
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6354
  qed
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6355
  show ?thesis
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6356
  proof (cases "0::real" y rule: linorder_cases)
59669
de7792ea4090 renaming HOL/Fact.thy -> Binomial.thy
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  6357
    case less
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6358
    then show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6359
      by (rule polar_ex1)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6360
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6361
    case equal
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6362
    then show ?thesis
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6363
      by (force simp: intro!: cos_zero sin_zero)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6364
  next
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6365
    case greater
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6366
    with polar_ex1 [where y="-y"] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6367
      by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
54573
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6368
  qed
07864001495d cleaned up some messy proofs
paulson
parents: 54489
diff changeset
  6369
qed
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15013
diff changeset
  6370
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6371
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6372
subsection \<open>Basics about polynomial functions: products, extremal behaviour and root counts\<close>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6373
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6374
lemma polynomial_product_nat:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6375
  fixes x :: nat
78663
3032bc7d613d A little reorganisation
paulson <lp15@cam.ac.uk>
parents: 78274
diff changeset
  6376
  assumes m: "\<And>i. i > m \<Longrightarrow> int (a i) = 0"
3032bc7d613d A little reorganisation
paulson <lp15@cam.ac.uk>
parents: 78274
diff changeset
  6377
    and n: "\<And>j. j > n \<Longrightarrow> int (b j) = 0"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  6378
  shows "(\<Sum>i\<le>m. (a i) * x ^ i) * (\<Sum>j\<le>n. (b j) * x ^ j) =
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6379
         (\<Sum>r\<le>m + n. (\<Sum>k\<le>r. (a k) * (b (r - k))) * x ^ r)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6380
  using polynomial_product [of m a n b x] assms
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6381
  by (simp only: of_nat_mult [symmetric] of_nat_power [symmetric]
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6382
      of_nat_eq_iff Int.int_sum [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6383
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6384
lemma polyfun_diff: (*COMPLEX_SUB_POLYFUN in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6385
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6386
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6387
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6388
    (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6389
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6390
  have h: "bij_betw (\<lambda>(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6391
    by (auto simp: bij_betw_def inj_on_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6392
  have "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) = (\<Sum>i\<le>n. a i * (x^i - y^i))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6393
    by (simp add: right_diff_distrib sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6394
  also have "\<dots> = (\<Sum>i\<le>n. a i * (x - y) * (\<Sum>j<i. y^(i - Suc j) * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6395
    by (simp add: power_diff_sumr2 mult.assoc)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6396
  also have "\<dots> = (\<Sum>i\<le>n. \<Sum>j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6397
    by (simp add: sum_distrib_left)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6398
  also have "\<dots> = (\<Sum>(i,j) \<in> (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6399
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6400
  also have "\<dots> = (\<Sum>(j,i) \<in> (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
69654
bc758f4f09e5 uniform naming
nipkow
parents: 69593
diff changeset
  6401
    by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6402
  also have "\<dots> = (\<Sum>j<n. \<Sum>i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6403
    by (simp add: sum.Sigma)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6404
  also have "\<dots> = (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6405
    by (simp add: sum_distrib_left mult_ac)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6406
  finally show ?thesis .
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6407
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6408
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6409
lemma polyfun_diff_alt: (*COMPLEX_SUB_POLYFUN_ALT in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6410
  fixes x :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6411
  assumes "1 \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6412
  shows "(\<Sum>i\<le>n. a i * x^i) - (\<Sum>i\<le>n. a i * y^i) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6413
    (x - y) * ((\<Sum>j<n. \<Sum>k<n-j. a(j + k + 1) * y^k * x^j))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6414
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6415
  have "(\<Sum>i=Suc j..n. a i * y^(i - j - 1)) = (\<Sum>k<n-j. a(j+k+1) * y^k)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6416
    if "j < n" for j :: nat
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6417
  proof -
71585
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6418
    have "\<And>k. k < n - j \<Longrightarrow> k \<in> (\<lambda>i. i - Suc j) ` {Suc j..n}"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6419
      by (rule_tac x="k + Suc j" in image_eqI, auto)
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6420
    then have h: "bij_betw (\<lambda>i. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
4b1021677f15 tidying up some horrible proofs
paulson <lp15@cam.ac.uk>
parents: 70817
diff changeset
  6421
      by (auto simp: bij_betw_def inj_on_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6422
    then show ?thesis
69654
bc758f4f09e5 uniform naming
nipkow
parents: 69593
diff changeset
  6423
      by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6424
  qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6425
  then show ?thesis
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6426
    by (simp add: polyfun_diff [OF assms] sum_distrib_right)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6427
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6428
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6429
lemma polyfun_linear_factor:  (*COMPLEX_POLYFUN_LINEAR_FACTOR in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6430
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6431
  shows "\<exists>b. \<forall>z. (\<Sum>i\<le>n. c(i) * z^i) = (z - a) * (\<Sum>i<n. b(i) * z^i) + (\<Sum>i\<le>n. c(i) * a^i)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6432
proof (cases "n = 0")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6433
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6434
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6435
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6436
  case False
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6437
  have "(\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i) + (\<Sum>i\<le>n. c i * a^i)) \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6438
        (\<exists>b. \<forall>z. (\<Sum>i\<le>n. c i * z^i) - (\<Sum>i\<le>n. c i * a^i) = (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6439
    by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6440
  also have "\<dots> \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6441
    (\<exists>b. \<forall>z. (z - a) * (\<Sum>j<n. (\<Sum>i = Suc j..n. c i * a^(i - Suc j)) * z^j) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6442
      (z - a) * (\<Sum>i<n. b i * z^i))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6443
    using False by (simp add: polyfun_diff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6444
  also have "\<dots> = True" by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6445
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6446
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6447
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6448
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6449
lemma polyfun_linear_factor_root:  (*COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6450
  fixes a :: "'a::idom"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6451
  assumes "(\<Sum>i\<le>n. c(i) * a^i) = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6452
  obtains b where "\<And>z. (\<Sum>i\<le>n. c i * z^i) = (z - a) * (\<Sum>i<n. b i * z^i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6453
  using polyfun_linear_factor [of c n a] assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6454
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6455
(*The material of this section, up until this point, could go into a new theory of polynomials
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6456
  based on Main alone. The remaining material involves limits, continuity, series, etc.*)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  6457
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6458
lemma isCont_polynom: "isCont (\<lambda>w. \<Sum>i\<le>n. c i * w^i) a"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6459
  for c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6460
  by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6461
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6462
lemma zero_polynom_imp_zero_coeffs:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6463
  fixes c :: "nat \<Rightarrow> 'a::{ab_semigroup_mult,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6464
  assumes "\<And>w. (\<Sum>i\<le>n. c i * w^i) = 0"  "k \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6465
  shows "c k = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6466
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6467
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6468
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6469
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6470
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6471
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6472
  case (Suc n c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6473
  have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6474
    by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6475
  have "(\<Sum>i\<le>Suc n. c i * w^i) = w * (\<Sum>i\<le>n. c (Suc i) * w^i)" for w
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6476
  proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6477
    have "(\<Sum>i\<le>Suc n. c i * w^i) = (\<Sum>i\<le>n. c (Suc i) * w ^ Suc i)"
70113
c8deb8ba6d05 Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
paulson <lp15@cam.ac.uk>
parents: 70097
diff changeset
  6478
      unfolding Set_Interval.sum.atMost_Suc_shift
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6479
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6480
    also have "\<dots> = w * (\<Sum>i\<le>n. c (Suc i) * w^i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6481
      by (simp add: sum_distrib_left ac_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6482
    finally show ?thesis .
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6483
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6484
  then have w: "\<And>w. w \<noteq> 0 \<Longrightarrow> (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6485
    using Suc  by auto
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  6486
  then have "(\<lambda>h. \<Sum>i\<le>n. c (Suc i) * h^i) \<midarrow>0\<rightarrow> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6487
    by (simp cong: LIM_cong)  \<comment> \<open>the case \<open>w = 0\<close> by continuity\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6488
  then have "(\<Sum>i\<le>n. c (Suc i) * 0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6489
    using isCont_polynom [of 0 "\<lambda>i. c (Suc i)" n] LIM_unique
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6490
    by (force simp: Limits.isCont_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6491
  then have "\<And>w. (\<Sum>i\<le>n. c (Suc i) * w^i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6492
    using w by metis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6493
  then have "\<And>i. i \<le> n \<Longrightarrow> c (Suc i) = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6494
    using Suc.IH [of "\<lambda>i. c (Suc i)"] by blast
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  6495
  then show ?case using \<open>k \<le> Suc n\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6496
    by (cases k) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6497
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6498
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6499
lemma polyfun_rootbound: (*COMPLEX_POLYFUN_ROOTBOUND in HOL Light*)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6500
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6501
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6502
  shows "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<and> card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6503
  using assms
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6504
proof (induction n arbitrary: c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6505
  case 0
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6506
  then show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6507
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6508
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6509
  case (Suc m c k)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6510
  let ?succase = ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6511
  show ?case
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6512
  proof (cases "{z. (\<Sum>i\<le>Suc m. c(i) * z^i) = 0} = {}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6513
    case True
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6514
    then show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6515
      by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6516
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6517
    case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6518
    then obtain z0 where z0: "(\<Sum>i\<le>Suc m. c(i) * z0^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6519
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6520
    then obtain b where b: "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = (w - z0) * (\<Sum>i\<le>m. b i * w^i)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6521
      using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6522
      by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6523
    then have eq: "{z. (\<Sum>i\<le>Suc m. c i * z^i) = 0} = insert z0 {z. (\<Sum>i\<le>m. b i * z^i) = 0}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6524
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6525
    have "\<not> (\<forall>k\<le>m. b k = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6526
    proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6527
      assume [simp]: "\<forall>k\<le>m. b k = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6528
      then have "\<And>w. (\<Sum>i\<le>m. b i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6529
        by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6530
      then have "\<And>w. (\<Sum>i\<le>Suc m. c i * w^i) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6531
        using b by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6532
      then have "\<And>k. k \<le> Suc m \<Longrightarrow> c k = 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6533
        using zero_polynom_imp_zero_coeffs by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6534
      then show False using Suc.prems by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6535
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6536
    then obtain k' where bk': "b k' \<noteq> 0" "k' \<le> m"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6537
      by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6538
    show ?succase
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6539
      using Suc.IH [of b k'] bk'
70097
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 69654
diff changeset
  6540
      by (simp add: eq card_insert_if del: sum.atMost_Suc)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6541
    qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6542
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6543
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6544
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6545
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6546
  assumes "c k \<noteq> 0" "k\<le>n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6547
  shows polyfun_roots_finite: "finite {z. (\<Sum>i\<le>n. c(i) * z^i) = 0}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6548
    and polyfun_roots_card: "card {z. (\<Sum>i\<le>n. c(i) * z^i) = 0} \<le> n"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6549
  using polyfun_rootbound assms by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6550
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6551
lemma polyfun_finite_roots: (*COMPLEX_POLYFUN_FINITE_ROOTS in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6552
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6553
  shows "finite {x. (\<Sum>i\<le>n. c i * x^i) = 0} \<longleftrightarrow> (\<exists>i\<le>n. c i \<noteq> 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6554
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6555
proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6556
  assume ?lhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6557
  moreover have "\<not> finite {x. (\<Sum>i\<le>n. c i * x^i) = 0}" if "\<forall>i\<le>n. c i = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6558
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6559
    from that have "\<And>x. (\<Sum>i\<le>n. c i * x^i) = 0"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6560
      by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6561
    then show ?thesis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6562
      using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6563
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6564
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6565
  ultimately show ?rhs by metis
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6566
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6567
  assume ?rhs
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6568
  with polyfun_rootbound show ?lhs by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6569
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6570
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6571
lemma polyfun_eq_0: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = 0) \<longleftrightarrow> (\<forall>i\<le>n. c i = 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6572
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6573
  (*COMPLEX_POLYFUN_EQ_0 in HOL Light*)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6574
  using zero_polynom_imp_zero_coeffs by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6575
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6576
lemma polyfun_eq_coeffs: "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>i\<le>n. c i = d i)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6577
  for c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6578
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6579
  have "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = (\<Sum>i\<le>n. d i * x^i)) \<longleftrightarrow> (\<forall>x. (\<Sum>i\<le>n. (c i - d i) * x^i) = 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63918
diff changeset
  6580
    by (simp add: left_diff_distrib Groups_Big.sum_subtractf)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6581
  also have "\<dots> \<longleftrightarrow> (\<forall>i\<le>n. c i - d i = 0)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6582
    by (rule polyfun_eq_0)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6583
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6584
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6585
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6586
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6587
lemma polyfun_eq_const: (*COMPLEX_POLYFUN_EQ_CONST in HOL Light*)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6588
  fixes c :: "nat \<Rightarrow> 'a::{idom,real_normed_div_algebra}"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6589
  shows "(\<forall>x. (\<Sum>i\<le>n. c i * x^i) = k) \<longleftrightarrow> c 0 = k \<and> (\<forall>i \<in> {1..n}. c i = 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6590
    (is "?lhs = ?rhs")
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6591
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6592
  have *: "\<forall>x. (\<Sum>i\<le>n. (if i=0 then k else 0) * x^i) = k"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6593
    by (induct n) auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6594
  show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6595
  proof
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6596
    assume ?lhs
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6597
    with * have "(\<forall>i\<le>n. c i = (if i=0 then k else 0))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6598
      by (simp add: polyfun_eq_coeffs [symmetric])
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6599
    then show ?rhs by simp
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6600
  next
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6601
    assume ?rhs
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6602
    then show ?lhs by (induct n) auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6603
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6604
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6605
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6606
lemma root_polyfun:
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6607
  fixes z :: "'a::idom"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6608
  assumes "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6609
  shows "z^n = a \<longleftrightarrow> (\<Sum>i\<le>n. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
70097
4005298550a6 The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
paulson <lp15@cam.ac.uk>
parents: 69654
diff changeset
  6610
  using assms by (cases n) (simp_all add: sum.atLeast_Suc_atMost atLeast0AtMost [symmetric])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6611
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6612
lemma
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6613
  assumes "SORT_CONSTRAINT('a::{idom,real_normed_div_algebra})"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6614
    and "1 \<le> n"
63540
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6615
  shows finite_roots_unity: "finite {z::'a. z^n = 1}"
f8652d0534fa tuned proofs -- avoid unstructured calculation;
wenzelm
parents: 63467
diff changeset
  6616
    and card_roots_unity: "card {z::'a. z^n = 1} \<le> n"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63540
diff changeset
  6617
  using polyfun_rootbound [of "\<lambda>i. if i = 0 then -1 else if i=n then 1 else 0" n n] assms(2)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6618
  by (auto simp: root_polyfun [OF assms(2)])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59869
diff changeset
  6619
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  6620
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6621
subsection \<open>Hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6622
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6623
definition sinh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6624
  "sinh x = (exp x - exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6625
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6626
definition cosh :: "'a :: {banach, real_normed_algebra_1} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6627
  "cosh x = (exp x + exp (-x)) /\<^sub>R 2"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6628
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6629
definition tanh :: "'a :: {banach, real_normed_field} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6630
  "tanh x = sinh x / cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6631
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6632
definition arsinh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6633
  "arsinh x = ln (x + (x^2 + 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6634
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6635
definition arcosh :: "'a :: {banach, real_normed_algebra_1, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6636
  "arcosh x = ln (x + (x^2 - 1) powr of_real (1/2))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6637
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6638
definition artanh :: "'a :: {banach, real_normed_field, ln} \<Rightarrow> 'a" where
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6639
  "artanh x = ln ((1 + x) / (1 - x)) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6640
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6641
lemma arsinh_0 [simp]: "arsinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6642
  by (simp add: arsinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6643
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6644
lemma arcosh_1 [simp]: "arcosh 1 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6645
  by (simp add: arcosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6646
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6647
lemma artanh_0 [simp]: "artanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6648
  by (simp add: artanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6649
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6650
lemma tanh_altdef:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6651
  "tanh x = (exp x - exp (-x)) / (exp x + exp (-x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6652
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6653
  have "tanh x = (2 *\<^sub>R sinh x) / (2 *\<^sub>R cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6654
    by (simp add: tanh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6655
  also have "2 *\<^sub>R sinh x = exp x - exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6656
    by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6657
  also have "2 *\<^sub>R cosh x = exp x + exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6658
    by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6659
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6660
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6661
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6662
lemma tanh_real_altdef: "tanh (x::real) = (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6663
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6664
  have [simp]: "exp (2 * x) = exp x * exp x" "exp (x * 2) = exp x * exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6665
    by (subst exp_add [symmetric]; simp)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6666
  have "tanh x = (2 * exp (-x) * sinh x) / (2 * exp (-x) * cosh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6667
    by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6668
  also have "2 * exp (-x) * sinh x = 1 - exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6669
    by (simp add: exp_minus field_simps sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6670
  also have "2 * exp (-x) * cosh x = 1 + exp (-2*x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6671
    by (simp add: exp_minus field_simps cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6672
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6673
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6674
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6675
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6676
lemma sinh_converges: "(\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6677
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6678
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6679
    unfolding sinh_def by (intro sums_scaleR_right sums_diff exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6680
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n - (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6681
               (\<lambda>n. if even n then 0 else x ^ n /\<^sub>R fact n)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6682
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6683
qed
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6684
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6685
lemma cosh_converges: "(\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6686
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6687
  have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) sums cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6688
    unfolding cosh_def by (intro sums_scaleR_right sums_add exp_converges)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6689
  also have "(\<lambda>n. (x ^ n /\<^sub>R fact n + (-x) ^ n /\<^sub>R fact n) /\<^sub>R 2) =
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6690
               (\<lambda>n. if even n then x ^ n /\<^sub>R fact n else 0)" by auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6691
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6692
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6693
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6694
lemma sinh_0 [simp]: "sinh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6695
  by (simp add: sinh_def)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6696
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6697
lemma cosh_0 [simp]: "cosh 0 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6698
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6699
  have "cosh 0 = (1/2) *\<^sub>R (1 + 1)" by (simp add: cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6700
  also have "\<dots> = 1" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6701
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6702
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6703
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6704
lemma tanh_0 [simp]: "tanh 0 = 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6705
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6706
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6707
lemma sinh_minus [simp]: "sinh (- x) = -sinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6708
  by (simp add: sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6709
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6710
lemma cosh_minus [simp]: "cosh (- x) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6711
  by (simp add: cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6712
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6713
lemma tanh_minus [simp]: "tanh (-x) = -tanh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6714
  by (simp add: tanh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6715
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6716
lemma sinh_ln_real: "x > 0 \<Longrightarrow> sinh (ln x :: real) = (x - inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6717
  by (simp add: sinh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6718
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6719
lemma cosh_ln_real: "x > 0 \<Longrightarrow> cosh (ln x :: real) = (x + inverse x) / 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6720
  by (simp add: cosh_def exp_minus)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6721
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6722
lemma tanh_ln_real:
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6723
  "tanh (ln x :: real) = (x ^ 2 - 1) / (x ^ 2 + 1)" if "x > 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6724
proof -
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6725
  from that have "(x * 2 - inverse x * 2) * (x\<^sup>2 + 1) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6726
    (x\<^sup>2 - 1) * (2 * x + 2 * inverse x)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6727
    by (simp add: field_simps power2_eq_square)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6728
  moreover have "x\<^sup>2 + 1 > 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6729
    using that by (simp add: ac_simps add_pos_nonneg)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6730
  moreover have "2 * x + 2 * inverse x > 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6731
    using that by (simp add: add_pos_pos)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6732
  ultimately have "(x * 2 - inverse x * 2) /
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6733
    (2 * x + 2 * inverse x) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6734
    (x\<^sup>2 - 1) / (x\<^sup>2 + 1)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6735
    by (simp add: frac_eq_eq)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6736
  with that show ?thesis
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6737
    by (simp add: tanh_def sinh_ln_real cosh_ln_real)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6738
qed
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6739
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6740
lemma has_field_derivative_scaleR_right [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6741
  "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_field_derivative (c *\<^sub>R D)) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6742
  unfolding has_field_derivative_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6743
  using has_derivative_scaleR_right[of f "\<lambda>x. D * x" F c]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6744
  by (simp add: mult_scaleR_left [symmetric] del: mult_scaleR_left)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6745
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6746
lemma has_field_derivative_sinh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6747
  "(sinh has_field_derivative cosh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6748
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6749
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6750
lemma has_field_derivative_cosh [THEN DERIV_chain2, derivative_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6751
  "(cosh has_field_derivative sinh x) (at (x :: 'a :: {banach, real_normed_field}))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6752
  unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6753
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6754
lemma has_field_derivative_tanh [THEN DERIV_chain2, derivative_intros]:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6755
  "cosh x \<noteq> 0 \<Longrightarrow> (tanh has_field_derivative 1 - tanh x ^ 2)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6756
                     (at (x :: 'a :: {banach, real_normed_field}))"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6757
  unfolding tanh_def by (auto intro!: derivative_eq_intros simp: power2_eq_square field_split_simps)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6758
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6759
lemma has_derivative_sinh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6760
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6761
  assumes "(g has_derivative (\<lambda>x. Db * x)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6762
  shows   "((\<lambda>x. sinh (g x)) has_derivative (\<lambda>y. (cosh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6763
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6764
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6765
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6766
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>x. (-Db) * x)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6767
  finally have "((\<lambda>x. sinh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6768
    (\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6769
    unfolding sinh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6770
  also have "(\<lambda>y. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (cosh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6771
    by (simp add: fun_eq_iff cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6772
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6773
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6774
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6775
lemma has_derivative_cosh [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6776
  fixes g :: "'a \<Rightarrow> ('a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6777
  assumes "(g has_derivative (\<lambda>y. Db * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6778
  shows   "((\<lambda>x. cosh (g x)) has_derivative (\<lambda>y. (sinh (g x) * Db) * y)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6779
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6780
  have "((\<lambda>x. - g x) has_derivative (\<lambda>y. -(Db * y))) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6781
    using assms by (intro derivative_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6782
  also have "(\<lambda>y. -(Db * y)) = (\<lambda>y. (-Db) * y)" by (simp add: fun_eq_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6783
  finally have "((\<lambda>x. cosh (g x)) has_derivative
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6784
    (\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2)) (at x within s)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6785
    unfolding cosh_def by (intro derivative_intros assms)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6786
  also have "(\<lambda>y. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /\<^sub>R 2) = (\<lambda>y. (sinh (g x) * Db) * y)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6787
    by (simp add: fun_eq_iff sinh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6788
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6789
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6790
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6791
lemma sinh_plus_cosh: "sinh x + cosh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6792
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6793
  have "sinh x + cosh x = (1/2) *\<^sub>R (exp x + exp x)"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6794
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6795
  also have "\<dots> = exp x" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6796
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6797
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6798
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6799
lemma cosh_plus_sinh: "cosh x + sinh x = exp x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6800
  by (subst add.commute) (rule sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6801
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6802
lemma cosh_minus_sinh: "cosh x - sinh x = exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6803
proof -
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  6804
  have "cosh x - sinh x = (1/2) *\<^sub>R (exp (-x) + exp (-x))"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6805
    by (simp add: sinh_def cosh_def algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6806
  also have "\<dots> = exp (-x)" by (rule scaleR_half_double)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6807
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6808
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6809
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6810
lemma sinh_minus_cosh: "sinh x - cosh x = -exp (-x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6811
  using cosh_minus_sinh[of x] by (simp add: algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6812
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6813
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6814
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6815
  fixes x :: "'a :: {real_normed_field, banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6816
begin
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6817
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6818
lemma sinh_zero_iff: "sinh x = 0 \<longleftrightarrow> exp x \<in> {1, -1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6819
  by (auto simp: sinh_def field_simps exp_minus power2_eq_square square_eq_1_iff)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6820
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6821
lemma cosh_zero_iff: "cosh x = 0 \<longleftrightarrow> exp x ^ 2 = -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6822
  by (auto simp: cosh_def exp_minus field_simps power2_eq_square eq_neg_iff_add_eq_0)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6823
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6824
lemma cosh_square_eq: "cosh x ^ 2 = sinh x ^ 2 + 1"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6825
  by (simp add: cosh_def sinh_def algebra_simps power2_eq_square exp_add [symmetric]
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6826
                scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6827
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6828
lemma sinh_square_eq: "sinh x ^ 2 = cosh x ^ 2 - 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6829
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6830
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6831
lemma hyperbolic_pythagoras: "cosh x ^ 2 - sinh x ^ 2 = 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6832
  by (simp add: cosh_square_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6833
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6834
lemma sinh_add: "sinh (x + y) = sinh x * cosh y + cosh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6835
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6836
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6837
lemma sinh_diff: "sinh (x - y) = sinh x * cosh y - cosh x * sinh y"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6838
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6839
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6840
lemma cosh_add: "cosh (x + y) = cosh x * cosh y + sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6841
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6842
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6843
lemma cosh_diff: "cosh (x - y) = cosh x * cosh y - sinh x * sinh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6844
  by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6845
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6846
lemma tanh_add:
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6847
  "tanh (x + y) = (tanh x + tanh y) / (1 + tanh x * tanh y)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6848
  if "cosh x \<noteq> 0" "cosh y \<noteq> 0"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6849
proof -
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6850
  have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6851
    (cosh x * cosh y + sinh x * sinh y) * ((sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x))"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6852
    using that by (simp add: field_split_simps)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6853
  also have "(sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x) = sinh x / cosh x + sinh y / cosh y"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6854
    using that by (simp add: field_split_simps)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6855
  finally have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6856
    (sinh x / cosh x + sinh y / cosh y) * (cosh x * cosh y + sinh x * sinh y)"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6857
    by simp
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6858
  then show ?thesis
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6859
    using that by (auto simp add: tanh_def sinh_add cosh_add eq_divide_eq)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6860
     (simp_all add: field_split_simps)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6861
qed
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6862
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6863
lemma sinh_double: "sinh (2 * x) = 2 * sinh x * cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6864
  using sinh_add[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6865
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6866
lemma cosh_double: "cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6867
  using cosh_add[of x] by (simp add: power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6868
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6869
end
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6870
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6871
lemma sinh_field_def: "sinh z = (exp z - exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6872
  by (simp add: sinh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6873
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6874
lemma cosh_field_def: "cosh z = (exp z + exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6875
  by (simp add: cosh_def scaleR_conv_of_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6876
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6877
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6878
subsubsection \<open>More specific properties of the real functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6879
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6880
lemma plus_inverse_ge_2:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6881
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6882
  assumes "x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6883
  shows   "x + inverse x \<ge> 2"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6884
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6885
  have "0 \<le> (x - 1) ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6886
  also have "\<dots> = x^2 - 2*x + 1" by (simp add: power2_eq_square algebra_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6887
  finally show ?thesis using assms by (simp add: field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6888
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6889
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6890
lemma sinh_real_nonneg_iff [simp]: "sinh (x :: real) \<ge> 0 \<longleftrightarrow> x \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6891
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6892
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6893
lemma sinh_real_pos_iff [simp]: "sinh (x :: real) > 0 \<longleftrightarrow> x > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6894
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6895
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6896
lemma sinh_real_nonpos_iff [simp]: "sinh (x :: real) \<le> 0 \<longleftrightarrow> x \<le> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6897
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6898
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6899
lemma sinh_real_neg_iff [simp]: "sinh (x :: real) < 0 \<longleftrightarrow> x < 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6900
  by (simp add: sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6901
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6902
lemma cosh_real_ge_1: "cosh (x :: real) \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6903
  using plus_inverse_ge_2[of "exp x"] by (simp add: cosh_def exp_minus)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6904
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6905
lemma cosh_real_pos [simp]: "cosh (x :: real) > 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6906
  using cosh_real_ge_1[of x] by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6907
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6908
lemma cosh_real_nonneg[simp]: "cosh (x :: real) \<ge> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6909
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6910
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6911
lemma cosh_real_nonzero [simp]: "cosh (x :: real) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6912
  using cosh_real_ge_1[of x] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6913
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6914
lemma arsinh_real_def: "arsinh (x::real) = ln (x + sqrt (x^2 + 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6915
  by (simp add: arsinh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6916
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6917
lemma arcosh_real_def: "x \<ge> 1 \<Longrightarrow> arcosh (x::real) = ln (x + sqrt (x^2 - 1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6918
  by (simp add: arcosh_def powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6919
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6920
lemma arsinh_real_aux: "0 < x + sqrt (x ^ 2 + 1 :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6921
proof (cases "x < 0")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6922
  case True
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6923
  have "(-x) ^ 2 = x ^ 2" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6924
  also have "x ^ 2 < x ^ 2 + 1" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6925
  finally have "sqrt ((-x) ^ 2) < sqrt (x ^ 2 + 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6926
    by (rule real_sqrt_less_mono)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6927
  thus ?thesis using True by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6928
qed (auto simp: add_nonneg_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6929
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6930
lemma arsinh_minus_real [simp]: "arsinh (-x::real) = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6931
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6932
  have "arsinh (-x) = ln (sqrt (x\<^sup>2 + 1) - x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6933
    by (simp add: arsinh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6934
  also have "sqrt (x^2 + 1) - x = inverse (sqrt (x^2 + 1) + x)"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6935
    using arsinh_real_aux[of x] by (simp add: field_split_simps algebra_simps power2_eq_square)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6936
  also have "ln \<dots> = -arsinh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6937
    using arsinh_real_aux[of x] by (simp add: arsinh_real_def ln_inverse)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6938
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6939
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6940
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6941
lemma artanh_minus_real [simp]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6942
  assumes "abs x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6943
  shows   "artanh (-x::real) = -artanh x"
80519
d757f0f98447 The changes needed to reduce the need to snoop on edits to theory files
paulson <lp15@cam.ac.uk>
parents: 80241
diff changeset
  6944
  by (smt (verit) artanh_def assms field_sum_of_halves ln_div)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6945
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6946
lemma sinh_less_cosh_real: "sinh (x :: real) < cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6947
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6948
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6949
lemma sinh_le_cosh_real: "sinh (x :: real) \<le> cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6950
  by (simp add: sinh_def cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6951
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6952
lemma tanh_real_lt_1: "tanh (x :: real) < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6953
  by (simp add: tanh_def sinh_less_cosh_real)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6954
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6955
lemma tanh_real_gt_neg1: "tanh (x :: real) > -1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6956
proof -
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6957
  have "- cosh x < sinh x" by (simp add: sinh_def cosh_def field_split_simps)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6958
  thus ?thesis by (simp add: tanh_def field_simps)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6959
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6960
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6961
lemma tanh_real_bounds: "tanh (x :: real) \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6962
  using tanh_real_lt_1 tanh_real_gt_neg1 by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6963
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6964
context
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6965
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6966
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6967
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6968
lemma arsinh_sinh_real: "arsinh (sinh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6969
  by (simp add: arsinh_real_def powr_def sinh_square_eq sinh_plus_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6970
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6971
lemma arcosh_cosh_real: "x \<ge> 0 \<Longrightarrow> arcosh (cosh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6972
  by (simp add: arcosh_real_def powr_def cosh_square_eq cosh_real_ge_1 cosh_plus_sinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6973
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6974
lemma artanh_tanh_real: "artanh (tanh x) = x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6975
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6976
  have "artanh (tanh x) = ln (cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x))) / 2"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  6977
    by (simp add: artanh_def tanh_def field_split_simps)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6978
  also have "cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x)) =
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6979
               (cosh x + sinh x) / (cosh x - sinh x)" by simp
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  6980
  also have "\<dots> = (exp x)^2"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6981
    by (simp add: cosh_plus_sinh cosh_minus_sinh exp_minus field_simps power2_eq_square)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6982
  also have "ln ((exp x)^2) / 2 = x" by (simp add: ln_realpow)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6983
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6984
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  6985
77221
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6986
lemma sinh_real_zero_iff [simp]: "sinh x = 0 \<longleftrightarrow> x = 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6987
  by (metis arsinh_0 arsinh_sinh_real sinh_0)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6988
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6989
lemma cosh_real_one_iff [simp]: "cosh x = 1 \<longleftrightarrow> x = 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6990
  by (smt (verit, best) Transcendental.arcosh_cosh_real cosh_0 cosh_minus)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6991
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6992
lemma tanh_real_nonneg_iff [simp]: "tanh x \<ge> 0 \<longleftrightarrow> x \<ge> 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6993
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6994
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6995
lemma tanh_real_pos_iff [simp]: "tanh x > 0 \<longleftrightarrow> x > 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6996
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6997
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6998
lemma tanh_real_nonpos_iff [simp]: "tanh x \<le> 0 \<longleftrightarrow> x \<le> 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  6999
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7000
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7001
lemma tanh_real_neg_iff [simp]: "tanh x < 0 \<longleftrightarrow> x < 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7002
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7003
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7004
lemma tanh_real_zero_iff [simp]: "tanh x = 0 \<longleftrightarrow> x = 0"
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7005
  by (simp add: tanh_def field_simps)
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7006
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7007
end
77221
0cdb384bf56a More new theorems from the number theory development
paulson <lp15@cam.ac.uk>
parents: 77200
diff changeset
  7008
  
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7009
lemma sinh_real_strict_mono: "strict_mono (sinh :: real \<Rightarrow> real)"
80612
e65eed943bee A lot of new material from the Ramsey development, including a couple of new simprules.
paulson <lp15@cam.ac.uk>
parents: 80528
diff changeset
  7010
  by (force intro: strict_monoI DERIV_pos_imp_increasing [where f=sinh] derivative_intros)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7011
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7012
lemma cosh_real_strict_mono:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7013
  assumes "0 \<le> x" and "x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7014
  shows   "cosh x < cosh y"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7015
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7016
  from assms have "\<exists>z>x. z < y \<and> cosh y - cosh x = (y - x) * sinh z"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7017
    by (intro MVT2) (auto dest: connectedD_interval intro!: derivative_eq_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7018
  then obtain z where z: "z > x" "z < y" "cosh y - cosh x = (y - x) * sinh z" by blast
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7019
  note \<open>cosh y - cosh x = (y - x) * sinh z\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7020
  also from \<open>z > x\<close> and assms have "(y - x) * sinh z > 0" by (intro mult_pos_pos) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7021
  finally show "cosh x < cosh y" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7022
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7023
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7024
lemma tanh_real_strict_mono: "strict_mono (tanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7025
proof -
80612
e65eed943bee A lot of new material from the Ramsey development, including a couple of new simprules.
paulson <lp15@cam.ac.uk>
parents: 80528
diff changeset
  7026
  have "tanh x ^ 2 < 1" for x :: real
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7027
    using tanh_real_bounds[of x] by (simp add: abs_square_less_1 abs_if)
80612
e65eed943bee A lot of new material from the Ramsey development, including a couple of new simprules.
paulson <lp15@cam.ac.uk>
parents: 80528
diff changeset
  7028
  then show ?thesis
e65eed943bee A lot of new material from the Ramsey development, including a couple of new simprules.
paulson <lp15@cam.ac.uk>
parents: 80528
diff changeset
  7029
    by (force intro!: strict_monoI DERIV_pos_imp_increasing [where f=tanh] derivative_intros)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7030
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7031
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7032
lemma sinh_real_abs [simp]: "sinh (abs x :: real) = abs (sinh x)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7033
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7034
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7035
lemma cosh_real_abs [simp]: "cosh (abs x :: real) = cosh x"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7036
  by (simp add: abs_if)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7037
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7038
lemma tanh_real_abs [simp]: "tanh (abs x :: real) = abs (tanh x)"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7039
  by (auto simp: abs_if)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7040
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7041
lemma sinh_real_eq_iff [simp]: "sinh x = sinh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7042
  using sinh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7043
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7044
lemma tanh_real_eq_iff [simp]: "tanh x = tanh y \<longleftrightarrow> x = (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7045
  using tanh_real_strict_mono by (simp add: strict_mono_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7046
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7047
lemma cosh_real_eq_iff [simp]: "cosh x = cosh y \<longleftrightarrow> abs x = abs (y :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7048
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7049
  have "cosh x = cosh y \<longleftrightarrow> x = y" if "x \<ge> 0" "y \<ge> 0" for x y :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7050
    using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x] that
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7051
    by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7052
  from this[of "abs x" "abs y"] show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7053
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7054
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7055
lemma sinh_real_le_iff [simp]: "sinh x \<le> sinh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7056
  using sinh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7057
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7058
lemma cosh_real_nonneg_le_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7059
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7060
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7061
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7062
lemma cosh_real_nonpos_le_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x \<le> cosh y \<longleftrightarrow> x \<ge> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7063
  using cosh_real_nonneg_le_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7064
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7065
lemma tanh_real_le_iff [simp]: "tanh x \<le> tanh y \<longleftrightarrow> x \<le> (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7066
  using tanh_real_strict_mono by (simp add: strict_mono_less_eq)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7067
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7068
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7069
lemma sinh_real_less_iff [simp]: "sinh x < sinh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7070
  using sinh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7071
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7072
lemma cosh_real_nonneg_less_iff: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7073
  using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7074
  by (cases x y rule: linorder_cases) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7075
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7076
lemma cosh_real_nonpos_less_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> cosh x < cosh y \<longleftrightarrow> x > (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7077
  using cosh_real_nonneg_less_iff[of "-x" "-y"] by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7078
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7079
lemma tanh_real_less_iff [simp]: "tanh x < tanh y \<longleftrightarrow> x < (y::real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7080
  using tanh_real_strict_mono by (simp add: strict_mono_less)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7081
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7082
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7083
subsubsection \<open>Limits\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7084
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7085
lemma sinh_real_at_top: "filterlim (sinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7086
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7087
  have *: "((\<lambda>x. - exp (- x)) \<longlongrightarrow> (-0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7088
    by (intro tendsto_minus filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  7089
  have "filterlim (\<lambda>x. (1/2) * (-exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7090
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7091
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  7092
  also have "(\<lambda>x. (1/2) * (-exp (-x) + exp x) :: real) = sinh"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7093
    by (simp add: fun_eq_iff sinh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7094
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7095
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7096
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7097
lemma sinh_real_at_bot: "filterlim (sinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7098
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7099
  have "filterlim (\<lambda>x. -sinh x :: real) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7100
    by (simp add: filterlim_uminus_at_top [symmetric] sinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7101
  also have "(\<lambda>x. -sinh x :: real) = (\<lambda>x. sinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7102
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7103
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7104
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7105
lemma cosh_real_at_top: "filterlim (cosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7106
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7107
  have *: "((\<lambda>x. exp (- x)) \<longlongrightarrow> (0::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7108
    by (intro filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  7109
  have "filterlim (\<lambda>x. (1/2) * (exp (-x) + exp x) :: real) at_top at_top"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7110
    by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7111
               filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
77138
c8597292cd41 Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 77089
diff changeset
  7112
  also have "(\<lambda>x. (1/2) * (exp (-x) + exp x) :: real) = cosh"
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7113
    by (simp add: fun_eq_iff cosh_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7114
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7115
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7116
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7117
lemma cosh_real_at_bot: "filterlim (cosh :: real \<Rightarrow> real) at_top at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7118
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7119
  have "filterlim (\<lambda>x. cosh (-x) :: real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7120
    by (simp add: cosh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7121
  thus ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7122
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7123
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7124
lemma tanh_real_at_top: "(tanh \<longlongrightarrow> (1::real)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7125
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7126
  have "((\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) \<longlongrightarrow> (1 - 0) / (1 + 0)) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7127
    by (intro tendsto_intros filterlim_compose[OF exp_at_bot]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7128
              filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_ident) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7129
  also have "(\<lambda>x::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) = tanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7130
    by (rule ext) (simp add: tanh_real_altdef)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7131
  finally show ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7132
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7133
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7134
lemma tanh_real_at_bot: "(tanh \<longlongrightarrow> (-1::real)) at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7135
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7136
  have "((\<lambda>x::real. -tanh x) \<longlongrightarrow> -1) at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7137
    by (intro tendsto_minus tanh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7138
  also have "(\<lambda>x. -tanh x :: real) = (\<lambda>x. tanh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7139
  finally show ?thesis by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7140
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7141
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7142
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7143
subsubsection \<open>Properties of the inverse hyperbolic functions\<close>
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7144
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7145
lemma isCont_sinh: "isCont sinh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7146
  unfolding sinh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7147
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7148
lemma isCont_cosh: "isCont cosh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7149
  unfolding cosh_def [abs_def] by (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7150
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7151
lemma isCont_tanh: "cosh x \<noteq> 0 \<Longrightarrow> isCont tanh (x :: 'a :: {real_normed_field, banach})"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7152
  unfolding tanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7153
  by (auto intro!: continuous_intros isCont_divide isCont_sinh isCont_cosh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7154
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7155
lemma continuous_on_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7156
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7157
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7158
  shows   "continuous_on A (\<lambda>x. sinh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7159
  unfolding sinh_def using assms by (intro continuous_intros)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7160
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7161
lemma continuous_on_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7162
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7163
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7164
  shows   "continuous_on A (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7165
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7166
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7167
lemma continuous_sinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7168
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7169
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7170
  shows   "continuous F (\<lambda>x. sinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7171
  unfolding sinh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7172
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7173
lemma continuous_cosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7174
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7175
  assumes "continuous F f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7176
  shows   "continuous F (\<lambda>x. cosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7177
  unfolding cosh_def using assms by (intro continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7178
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7179
lemma continuous_on_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7180
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7181
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7182
  shows   "continuous_on A (\<lambda>x. tanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7183
  unfolding tanh_def using assms by (intro continuous_intros) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7184
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7185
lemma continuous_at_within_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7186
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7187
  assumes "continuous (at x within A) f" "cosh (f x) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7188
  shows   "continuous (at x within A) (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7189
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7190
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7191
lemma continuous_tanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7192
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7193
  assumes "continuous F f" "cosh (f (Lim F (\<lambda>x. x))) \<noteq> 0"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7194
  shows   "continuous F (\<lambda>x. tanh (f x))"
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7195
  unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7196
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7197
lemma tendsto_sinh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7198
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7199
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. sinh (f x)) \<longlongrightarrow> sinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7200
  by (rule isCont_tendsto_compose [OF isCont_sinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7201
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7202
lemma tendsto_cosh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7203
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7204
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. cosh (f x)) \<longlongrightarrow> cosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7205
  by (rule isCont_tendsto_compose [OF isCont_cosh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7206
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7207
lemma tendsto_tanh [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7208
  fixes f :: "_ \<Rightarrow>'a::{real_normed_field,banach}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7209
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> cosh a \<noteq> 0 \<Longrightarrow> ((\<lambda>x. tanh (f x)) \<longlongrightarrow> tanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7210
  by (rule isCont_tendsto_compose [OF isCont_tanh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7211
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7212
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7213
lemma arsinh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7214
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7215
  shows "(arsinh has_field_derivative (1 / (sqrt (x ^ 2 + 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7216
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7217
  have pos: "1 + x ^ 2 > 0" by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7218
  from pos arsinh_real_aux[of x] show ?thesis unfolding arsinh_def [abs_def]
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7219
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt field_split_simps)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7220
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7221
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7222
lemma arcosh_real_has_field_derivative [derivative_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7223
  fixes x :: real
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7224
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7225
  shows   "(arcosh has_field_derivative (1 / (sqrt (x ^ 2 - 1)))) (at x within A)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7226
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7227
  from assms have "x + sqrt (x\<^sup>2 - 1) > 0" by (simp add: add_pos_pos)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7228
  thus ?thesis using assms unfolding arcosh_def [abs_def]
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7229
    by (auto intro!: derivative_eq_intros
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7230
             simp: powr_minus powr_half_sqrt field_split_simps power2_eq_1_iff)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7231
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7232
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7233
lemma artanh_real_has_field_derivative [derivative_intros]:
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7234
  "(artanh has_field_derivative (1 / (1 - x ^ 2))) (at x within A)" if
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7235
    "\<bar>x\<bar> < 1" for x :: real
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7236
proof -
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7237
  from that have "- 1 < x" "x < 1" by linarith+
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7238
  hence "(artanh has_field_derivative (4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4))
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7239
           (at x within A)" unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7240
    by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7241
  also have "(4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4) = 1 / ((1 + x) * (1 - x))"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7242
    using \<open>-1 < x\<close> \<open>x < 1\<close> by (simp add: frac_eq_eq)
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7243
  also have "(1 + x) * (1 - x) = 1 - x ^ 2"
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70723
diff changeset
  7244
    by (simp add: algebra_simps power2_eq_square)
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7245
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7246
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7247
79672
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7248
lemma cosh_double_cosh: "cosh (2 * x :: 'a :: {banach, real_normed_field}) = 2 * (cosh x)\<^sup>2 - 1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7249
  using cosh_double[of x] by (simp add: sinh_square_eq)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7250
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7251
lemma sinh_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7252
  "sinh (x * numeral n :: 'a :: {real_normed_field, banach}) = 
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7253
     sinh x * cosh (x * of_nat (pred_numeral n)) + cosh x * sinh (x * of_nat (pred_numeral n))"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7254
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7255
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7256
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7257
  also have "sinh (x * \<dots>) = sinh (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7258
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7259
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7260
    by (simp add: sinh_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7261
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7262
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7263
lemma cosh_multiple_reduce:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7264
  "cosh (x * numeral n :: 'a :: {real_normed_field, banach}) =
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7265
     cosh (x * of_nat (pred_numeral n)) * cosh x + sinh (x * of_nat (pred_numeral n)) * sinh x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7266
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7267
  have "numeral n = of_nat (pred_numeral n) + (1 :: 'a)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7268
    by (metis add.commute numeral_eq_Suc of_nat_Suc of_nat_numeral)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7269
  also have "cosh (x * \<dots>) = cosh (x * of_nat (pred_numeral n) + x)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7270
    unfolding of_nat_Suc by (simp add: ring_distribs)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7271
  finally show ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7272
    by (simp add: cosh_add)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7273
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7274
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7275
lemma cosh_arcosh_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7276
  assumes "x \<ge> (1 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7277
  shows   "cosh (arcosh x) = x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7278
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7279
  have "eventually (\<lambda>t::real. cosh t \<ge> x) at_top"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7280
    using cosh_real_at_top by (simp add: filterlim_at_top)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7281
  then obtain t where "t \<ge> 1" "cosh t \<ge> x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7282
    by (metis eventually_at_top_linorder linorder_not_le order_le_less)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7283
  moreover have "isCont cosh (y :: real)" for y
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7284
    by (intro continuous_intros)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7285
  ultimately obtain y where "y \<ge> 0" "x = cosh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7286
    using IVT[of cosh 0 x t] assms by auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7287
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7288
    by (simp add: arcosh_cosh_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7289
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7290
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7291
lemma arcosh_eq_0_iff_real [simp]: "x \<ge> 1 \<Longrightarrow> arcosh x = 0 \<longleftrightarrow> x = (1 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7292
  using cosh_arcosh_real by fastforce
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7293
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7294
lemma arcosh_nonneg_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7295
  assumes "x \<ge> 1"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7296
  shows   "arcosh (x :: real) \<ge> 0"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7297
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7298
  have "1 + 0 \<le> x + (x\<^sup>2 - 1) powr (1 / 2)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7299
    using assms by (intro add_mono) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7300
  thus ?thesis unfolding arcosh_def by simp
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7301
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7302
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7303
lemma arcosh_real_strict_mono:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7304
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7305
  assumes "1 \<le> x" "x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7306
  shows   "arcosh x < arcosh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7307
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7308
  have "cosh (arcosh x) < cosh (arcosh y)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7309
    by (subst (1 2) cosh_arcosh_real) (use assms in auto)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7310
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7311
    using assms by (subst (asm) cosh_real_nonneg_less_iff) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7312
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7313
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7314
lemma arcosh_less_iff_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7315
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7316
  assumes "1 \<le> x" "1 \<le> y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7317
  shows   "arcosh x < arcosh y \<longleftrightarrow> x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7318
  using arcosh_real_strict_mono[of x y] arcosh_real_strict_mono[of y x] assms
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7319
  by (cases x y rule: linorder_cases) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7320
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7321
lemma arcosh_real_gt_1_iff [simp]: "x \<ge> 1 \<Longrightarrow> arcosh x > 0 \<longleftrightarrow> x \<noteq> (1 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7322
  using arcosh_less_iff_real[of 1 x] by (auto simp del: arcosh_less_iff_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7323
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7324
lemma sinh_arcosh_real: "x \<ge> 1 \<Longrightarrow> sinh (arcosh x) = sqrt (x\<^sup>2 - 1)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7325
  by (rule sym, rule real_sqrt_unique) (auto simp: sinh_square_eq)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7326
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7327
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7328
lemma sinh_arsinh_real [simp]: "sinh (arsinh x :: real) = x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7329
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7330
  have "eventually (\<lambda>t::real. sinh t \<ge> x) at_top"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7331
    using sinh_real_at_top by (simp add: filterlim_at_top)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7332
  then obtain t where "sinh t \<ge> x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7333
    by (metis eventually_at_top_linorder linorder_not_le order_le_less)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7334
  moreover have "eventually (\<lambda>t::real. sinh t \<le> x) at_bot"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7335
    using sinh_real_at_bot by (simp add: filterlim_at_bot)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7336
  then obtain t' where "t' \<le> t" "sinh t' \<le> x"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7337
    by (metis eventually_at_bot_linorder nle_le)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7338
  moreover have "isCont sinh (y :: real)" for y
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7339
    by (intro continuous_intros)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7340
  ultimately obtain y where "x = sinh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7341
    using IVT[of sinh t' x t] by auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7342
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7343
    by (simp add: arsinh_sinh_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7344
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7345
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7346
lemma arsinh_real_strict_mono:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7347
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7348
  assumes "x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7349
  shows   "arsinh x < arsinh y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7350
proof -
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7351
  have "sinh (arsinh x) < sinh (arsinh y)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7352
    by (subst (1 2) sinh_arsinh_real) (use assms in auto)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7353
  thus ?thesis
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7354
    using assms by (subst (asm) sinh_real_less_iff) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7355
qed
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7356
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7357
lemma arsinh_less_iff_real [simp]:
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7358
  fixes x y :: real
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7359
  shows "arsinh x < arsinh y \<longleftrightarrow> x < y"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7360
  using arsinh_real_strict_mono[of x y] arsinh_real_strict_mono[of y x]
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7361
  by (cases x y rule: linorder_cases) auto
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7362
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7363
lemma arsinh_real_eq_0_iff [simp]: "arsinh x = 0 \<longleftrightarrow> x = (0 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7364
  by (metis arsinh_0 sinh_arsinh_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7365
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7366
lemma arsinh_real_pos_iff [simp]: "arsinh x > 0 \<longleftrightarrow> x > (0 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7367
  using arsinh_less_iff_real[of 0 x] by (simp del: arsinh_less_iff_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7368
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7369
lemma arsinh_real_neg_iff [simp]: "arsinh x < 0 \<longleftrightarrow> x < (0 :: real)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7370
  using arsinh_less_iff_real[of x 0] by (simp del: arsinh_less_iff_real)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7371
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7372
lemma cosh_arsinh_real: "cosh (arsinh x) = sqrt (x\<^sup>2 + 1)"
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7373
  by (rule sym, rule real_sqrt_unique) (auto simp: cosh_square_eq)
76720aeab21e New material about transcendental functions, polynomials, et cetera, thanks to Manuel Eberl
paulson <lp15@cam.ac.uk>
parents: 79670
diff changeset
  7374
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7375
lemma continuous_on_arsinh [continuous_intros]: "continuous_on A (arsinh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7376
  by (rule DERIV_continuous_on derivative_intros)+
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7377
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7378
lemma continuous_on_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7379
  assumes "A \<subseteq> {1..}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7380
  shows   "continuous_on A (arcosh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7381
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7382
  have pos: "x + sqrt (x ^ 2 - 1) > 0" if "x \<ge> 1" for x
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7383
    using that by (intro add_pos_nonneg) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7384
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7385
  unfolding arcosh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7386
  by (intro continuous_on_subset [OF _ assms] continuous_on_ln continuous_on_add
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7387
               continuous_on_id continuous_on_powr')
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7388
     (auto dest: pos simp: powr_half_sqrt intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7389
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7390
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7391
lemma continuous_on_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7392
  assumes "A \<subseteq> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7393
  shows   "continuous_on A (artanh :: real \<Rightarrow> real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7394
  unfolding artanh_def [abs_def]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7395
  by (intro continuous_on_subset [OF _ assms]) (auto intro!: continuous_intros)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7396
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7397
lemma continuous_on_arsinh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7398
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7399
  assumes "continuous_on A f"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7400
  shows   "continuous_on A (\<lambda>x. arsinh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7401
  by (rule continuous_on_compose2[OF continuous_on_arsinh assms]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7402
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7403
lemma continuous_on_arcosh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7404
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7405
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7406
  shows   "continuous_on A (\<lambda>x. arcosh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7407
  by (rule continuous_on_compose2[OF continuous_on_arcosh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7408
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7409
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7410
lemma continuous_on_artanh' [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7411
  fixes f :: "real \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7412
  assumes "continuous_on A f" "\<And>x. x \<in> A \<Longrightarrow> f x \<in> {-1<..<1}"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7413
  shows   "continuous_on A (\<lambda>x. artanh (f x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7414
  by (rule continuous_on_compose2[OF continuous_on_artanh assms(1) order.refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7415
     (use assms(2) in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7416
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7417
lemma isCont_arsinh [continuous_intros]: "isCont arsinh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7418
  using continuous_on_arsinh[of UNIV] by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7419
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7420
lemma isCont_arcosh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7421
  assumes "x > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7422
  shows   "isCont arcosh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7423
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7424
  have "continuous_on {1::real<..} arcosh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7425
    by (rule continuous_on_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7426
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7427
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7428
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7429
lemma isCont_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7430
  assumes "x > -1" "x < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7431
  shows   "isCont artanh (x :: real)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7432
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7433
  have "continuous_on {-1<..<(1::real)} artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7434
    by (rule continuous_on_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7435
  with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7436
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7437
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7438
lemma tendsto_arsinh [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. arsinh (f x)) \<longlongrightarrow> arsinh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7439
  for f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7440
  by (rule isCont_tendsto_compose [OF isCont_arsinh])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7441
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7442
lemma tendsto_arcosh_strong [tendsto_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7443
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7444
  assumes "(f \<longlongrightarrow> a) F" "a \<ge> 1" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7445
  shows   "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7446
  by (rule continuous_on_tendsto_compose[OF continuous_on_arcosh[OF order.refl]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7447
     (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7448
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7449
lemma tendsto_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7450
  fixes f :: "_ \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7451
  assumes "(f \<longlongrightarrow> a) F" "a > 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7452
  shows "((\<lambda>x. arcosh (f x)) \<longlongrightarrow> arcosh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7453
  by (rule isCont_tendsto_compose [OF isCont_arcosh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7454
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7455
lemma tendsto_arcosh_at_left_1: "(arcosh \<longlongrightarrow> 0) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7456
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7457
  have "(arcosh \<longlongrightarrow> arcosh 1) (at_right (1::real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7458
    by (rule tendsto_arcosh_strong) (auto simp: eventually_at intro!: exI[of _ 1])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7459
  thus ?thesis by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7460
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7461
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7462
lemma tendsto_artanh [tendsto_intros]:
67574
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7463
  fixes f :: "'a \<Rightarrow> real"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7464
  assumes "(f \<longlongrightarrow> a) F" "a > -1" "a < 1"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7465
  shows   "((\<lambda>x. artanh (f x)) \<longlongrightarrow> artanh a) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7466
  by (rule isCont_tendsto_compose [OF isCont_artanh]) (use assms in auto)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7467
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7468
lemma continuous_arsinh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7469
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. arsinh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7470
  unfolding continuous_def by (rule tendsto_arsinh)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7471
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7472
(* TODO: This rule does not work for one-sided continuity at 1 *)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7473
lemma continuous_arcosh_strong [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7474
  assumes "continuous F f" "eventually (\<lambda>x. f x \<ge> 1) F"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7475
  shows   "continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7476
proof (cases "F = bot")
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7477
  case False
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7478
  show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7479
    unfolding continuous_def
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7480
  proof (intro tendsto_arcosh_strong)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7481
    show "1 \<le> f (Lim F (\<lambda>x. x))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7482
      using assms False unfolding continuous_def by (rule tendsto_lowerbound)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7483
  qed (insert assms, auto simp: continuous_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7484
qed auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7485
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7486
lemma continuous_arcosh:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7487
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) > 1 \<Longrightarrow> continuous F (\<lambda>x. arcosh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7488
  unfolding continuous_def by (rule tendsto_arcosh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7489
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7490
lemma continuous_artanh [continuous_intros]:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7491
  "continuous F f \<Longrightarrow> f (Lim F (\<lambda>x. x)) \<in> {-1<..<1} \<Longrightarrow> continuous F (\<lambda>x. artanh (f x :: real))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7492
  unfolding continuous_def by (rule tendsto_artanh) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7493
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7494
lemma arsinh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7495
  "filterlim (arsinh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7496
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7497
  show "filterlim (\<lambda>x. ln (x + sqrt (1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7498
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7499
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7500
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7501
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arsinh_real_def add_ac)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7502
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7503
lemma arsinh_real_at_bot:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7504
  "filterlim (arsinh :: real \<Rightarrow> real) at_bot at_bot"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7505
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7506
  have "filterlim (\<lambda>x::real. -arsinh x) at_bot at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7507
    by (subst filterlim_uminus_at_top [symmetric]) (rule arsinh_real_at_top)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7508
  also have "(\<lambda>x::real. -arsinh x) = (\<lambda>x. arsinh (-x))" by simp
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7509
  finally show ?thesis
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7510
    by (subst filterlim_at_bot_mirror)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7511
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7512
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7513
lemma arcosh_real_at_top:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7514
  "filterlim (arcosh :: real \<Rightarrow> real) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7515
proof (subst filterlim_cong[OF refl refl])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7516
  show "filterlim (\<lambda>x. ln (x + sqrt (-1 + x\<^sup>2))) at_top at_top"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7517
    by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7518
              filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7519
              filterlim_pow_at_top) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7520
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arcosh_real_def)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7521
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7522
lemma artanh_real_at_left_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7523
  "filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7524
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7525
  have *: "filterlim (\<lambda>x::real. (1 + x) / (1 - x)) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7526
    by (rule LIM_at_top_divide)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7527
       (auto intro!: tendsto_eq_intros eventually_mono[OF eventually_at_left_real[of 0]])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7528
  have "filterlim (\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7529
    by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const] *
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7530
                 filterlim_compose[OF ln_at_top]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7531
  also have "(\<lambda>x::real. (1/2) * ln ((1 + x) / (1 - x))) = artanh"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7532
    by (simp add: artanh_def [abs_def])
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7533
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7534
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7535
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7536
lemma artanh_real_at_right_1:
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7537
  "filterlim (artanh :: real \<Rightarrow> real) at_bot (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7538
proof -
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7539
  have "?thesis \<longleftrightarrow> filterlim (\<lambda>x::real. -artanh x) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7540
    by (simp add: filterlim_uminus_at_bot)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7541
  also have "\<dots> \<longleftrightarrow> filterlim (\<lambda>x::real. artanh (-x)) at_top (at_right (-1))"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7542
    by (intro filterlim_cong refl eventually_mono[OF eventually_at_right_real[of "-1" "1"]]) auto
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7543
  also have "\<dots> \<longleftrightarrow> filterlim (artanh :: real \<Rightarrow> real) at_top (at_left 1)"
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7544
    by (simp add: filterlim_at_left_to_right)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7545
  also have \<dots> by (rule artanh_real_at_left_1)
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7546
  finally show ?thesis .
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7547
qed
4a3d657adc62 Added hyperbolic functions
eberlm <eberlm@in.tum.de>
parents: 67573
diff changeset
  7548
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7549
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7550
subsection \<open>Simprocs for root and power literals\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7551
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7552
lemma numeral_powr_numeral_real [simp]:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7553
  "numeral m powr numeral n = (numeral m ^ numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7554
  by (simp add: powr_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7555
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7556
context
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7557
begin
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7558
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7559
private lemma sqrt_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7560
  assumes "m * m \<equiv> n"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7561
  shows   "sqrt (numeral n :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7562
proof -
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7563
  have "numeral n \<equiv> numeral m * (numeral m :: real)" by (simp add: assms [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7564
  moreover have "sqrt \<dots> \<equiv> numeral m" by (subst real_sqrt_abs2) simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7565
  ultimately show "sqrt (numeral n :: real) \<equiv> numeral m" by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7566
qed
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7567
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7568
private lemma root_numeral_simproc_aux:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7569
  assumes "Num.pow m n \<equiv> x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7570
  shows   "root (numeral n) (numeral x :: real) \<equiv> numeral m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7571
  by (subst assms [symmetric], subst numeral_pow, subst real_root_pos2) simp_all
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7572
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7573
private lemma powr_numeral_simproc_aux:
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7574
  assumes "Num.pow y n = x"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7575
  shows   "numeral x powr (m / numeral n :: real) \<equiv> numeral y powr m"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7576
  by (subst assms [symmetric], subst numeral_pow, subst powr_numeral [symmetric])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7577
     (simp, subst powr_powr, simp_all)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7578
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68594
diff changeset
  7579
private lemma numeral_powr_inverse_eq:
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7580
  "numeral x powr (inverse (numeral n)) = numeral x powr (1 / numeral n :: real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7581
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7582
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7583
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7584
ML \<open>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7585
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7586
signature ROOT_NUMERAL_SIMPROC = sig
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7587
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7588
val sqrt : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7589
val sqrt' : int option -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7590
val nth_root : int option -> int -> int -> int option
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7591
val nth_root' : int option -> int -> int -> int option
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7592
val sqrt_proc : Simplifier.proc
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7593
val root_proc : int * int -> Simplifier.proc
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7594
val powr_proc : int * int -> Simplifier.proc
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7595
30082
43c5b7bfc791 make more proofs work whether or not One_nat_def is a simp rule
huffman
parents: 29803
diff changeset
  7596
end
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7597
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7598
structure Root_Numeral_Simproc : ROOT_NUMERAL_SIMPROC = struct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7599
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7600
fun iterate NONE p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7601
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7602
        fun go x = if p x then x else go (f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7603
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7604
        SOME (go x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7605
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7606
  | iterate (SOME threshold) p f x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7607
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7608
        fun go (threshold, x) = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7609
          if p x then SOME x else if threshold = 0 then NONE else go (threshold - 1, f x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7610
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7611
        go (threshold, x)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7612
      end  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7613
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7614
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7615
fun nth_root _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7616
  | nth_root _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7617
  | nth_root _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7618
  | nth_root threshold n x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7619
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7620
    fun newton_step y = ((n - 1) * y + x div Integer.pow (n - 1) y) div n
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7621
    fun is_root y = Integer.pow n y <= x andalso x < Integer.pow n (y + 1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7622
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7623
    if x < n then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7624
      SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7625
    else if x < Integer.pow n 2 then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7626
      SOME 1 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7627
    else 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7628
      let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7629
        val y = Real.floor (Math.pow (Real.fromInt x, Real.fromInt 1 / Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7630
      in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7631
        if is_root y then
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7632
          SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7633
        else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7634
          iterate threshold is_root newton_step ((x + n - 1) div n)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7635
      end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7636
  end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7637
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7638
fun nth_root' _ 1 x = SOME x
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7639
  | nth_root' _ _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7640
  | nth_root' _ _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7641
  | nth_root' threshold n x = if x < n then NONE else if x < Integer.pow n 2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7642
      case nth_root threshold n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7643
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7644
      | SOME y => if Integer.pow n y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7645
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7646
fun sqrt _ 0 = SOME 0
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7647
  | sqrt _ 1 = SOME 1
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7648
  | sqrt threshold n =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7649
    let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7650
      fun aux (a, b) = if n >= b * b then aux (b, b * b) else (a, b)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7651
      val (lower_root, lower_n) = aux (1, 2)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7652
      fun newton_step x = (x + n div x) div 2
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7653
      fun is_sqrt r = r*r <= n andalso n < (r+1)*(r+1)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7654
      val y = Real.floor (Math.sqrt (Real.fromInt n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7655
    in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7656
      if is_sqrt y then 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7657
        SOME y
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7658
      else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7659
        Option.mapPartial (iterate threshold is_sqrt newton_step o (fn x => x * lower_root)) 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7660
          (sqrt threshold (n div lower_n))
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7661
    end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7662
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7663
fun sqrt' threshold x =
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7664
  case sqrt threshold x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7665
    NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7666
  | SOME y => if y * y = x then SOME y else NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7667
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7668
fun sqrt_proc ctxt ct =
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7669
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7670
    val n = ct |> Thm.term_of |> dest_comb |> snd |> dest_comb |> snd |> HOLogic.dest_numeral
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7671
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7672
    case sqrt' (SOME 10000) n of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7673
      NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7674
    | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7675
        SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7676
                  @{thm sqrt_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7677
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7678
    handle TERM _ => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7679
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7680
fun root_proc (threshold1, threshold2) ctxt ct =
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7681
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7682
    val [n, x] = 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7683
      ct |> Thm.term_of |> strip_comb |> snd |> map (dest_comb #> snd #> HOLogic.dest_numeral)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7684
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7685
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7686
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7687
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7688
      | SOME m => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7689
          SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n, x])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7690
            @{thm root_numeral_simproc_aux})
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7691
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7692
    handle TERM _ => NONE
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7693
         | Match => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7694
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7695
fun powr_proc (threshold1, threshold2) ctxt ct =
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7696
  let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7697
    val eq_thm = Conv.try_conv (Conv.rewr_conv @{thm numeral_powr_inverse_eq}) ct
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7698
    val ct = Thm.dest_equals_rhs (Thm.cprop_of eq_thm)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7699
    val (_, [x, t]) = strip_comb (Thm.term_of ct)
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7700
    val (_, [m, n]) = strip_comb t
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7701
    val [x, n] = map (dest_comb #> snd #> HOLogic.dest_numeral) [x, n]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7702
  in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7703
    if n > threshold1 orelse x > threshold2 then NONE else
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7704
      case nth_root' (SOME 100) n x of
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7705
        NONE => NONE
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7706
      | SOME y => 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7707
          let
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7708
            val [y, n, x] = map HOLogic.mk_numeral [y, n, x]
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7709
            val thm = Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt) [y, n, x, m])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7710
              @{thm powr_numeral_simproc_aux}
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7711
          in
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7712
            SOME (@{thm transitive} OF [eq_thm, thm])
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7713
          end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7714
  end
68642
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7715
    handle TERM _ => NONE
d812b6ee711b Made simproc for sqrt/root of numeral more robust
Manuel Eberl <eberlm@in.tum.de>
parents: 68638
diff changeset
  7716
         | Match => NONE
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7717
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7718
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7719
\<close>
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7720
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7721
end
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7722
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7723
simproc_setup sqrt_numeral ("sqrt (numeral n)") = 
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7724
  \<open>K Root_Numeral_Simproc.sqrt_proc\<close>
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7725
  
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7726
simproc_setup root_numeral ("root (numeral n) (numeral x)") = 
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7727
  \<open>K (Root_Numeral_Simproc.root_proc (200, Integer.pow 200 2))\<close>
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7728
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7729
simproc_setup powr_divide_numeral 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7730
  ("numeral x powr (m / numeral n :: real)" | "numeral x powr (inverse (numeral n) :: real)") = 
78801
42ae6e0ecfd4 tuned signature;
wenzelm
parents: 78800
diff changeset
  7731
    \<open>K (Root_Numeral_Simproc.powr_proc (200, Integer.pow 200 2))\<close>
66279
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7732
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7733
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7734
lemma "root 100 1267650600228229401496703205376 = 2"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7735
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7736
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7737
lemma "sqrt 196 = 14" 
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7738
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7739
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7740
lemma "256 powr (7 / 4 :: real) = 16384"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7741
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7742
    
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7743
lemma "27 powr (inverse 3) = (3::real)"
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7744
  by simp
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7745
2dba15d3c402 Simprocs for roots of numerals
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  7746
end