src/HOL/Hyperreal/NthRoot.thy
author paulson
Fri Mar 19 10:51:03 2004 +0100 (2004-03-19)
changeset 14477 cc61fd03e589
parent 14365 3d4df8c166ae
child 14767 d2b071e65e4c
permissions -rw-r--r--
conversion of Hyperreal/Lim to new-style
paulson@12196
     1
(*  Title       : NthRoot.thy
paulson@12196
     2
    Author      : Jacques D. Fleuriot
paulson@12196
     3
    Copyright   : 1998  University of Cambridge
paulson@14477
     4
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
paulson@12196
     5
*)
paulson@12196
     6
paulson@14324
     7
header{*Existence of Nth Root*}
paulson@14324
     8
paulson@14324
     9
theory NthRoot = SEQ + HSeries:
paulson@14324
    10
paulson@14324
    11
text{*Various lemmas needed for this result. We follow the proof
paulson@14324
    12
   given by John Lindsay Orr (jorr@math.unl.edu) in his Analysis
paulson@14324
    13
   Webnotes available on the www at http://www.math.unl.edu/~webnotes
paulson@14324
    14
   Lemmas about sequences of reals are used to reach the result.*}
paulson@14324
    15
paulson@14324
    16
lemma lemma_nth_realpow_non_empty:
paulson@14324
    17
     "[| (0::real) < a; 0 < n |] ==> \<exists>s. s : {x. x ^ n <= a & 0 < x}"
paulson@14324
    18
apply (case_tac "1 <= a")
paulson@14477
    19
apply (rule_tac x = 1 in exI)
paulson@14334
    20
apply (drule_tac [2] linorder_not_le [THEN iffD1])
paulson@14477
    21
apply (drule_tac [2] less_not_refl2 [THEN not0_implies_Suc], simp) 
paulson@14348
    22
apply (force intro!: realpow_Suc_le_self simp del: realpow_Suc)
paulson@14324
    23
done
paulson@14324
    24
paulson@14348
    25
text{*Used only just below*}
paulson@14348
    26
lemma realpow_ge_self2: "[| (1::real) \<le> r; 0 < n |] ==> r \<le> r ^ n"
paulson@14348
    27
by (insert power_increasing [of 1 n r], simp)
paulson@14348
    28
paulson@14324
    29
lemma lemma_nth_realpow_isUb_ex:
paulson@14324
    30
     "[| (0::real) < a; 0 < n |]  
paulson@14324
    31
      ==> \<exists>u. isUb (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
paulson@14324
    32
apply (case_tac "1 <= a")
paulson@14477
    33
apply (rule_tac x = a in exI)
paulson@14334
    34
apply (drule_tac [2] linorder_not_le [THEN iffD1])
paulson@14477
    35
apply (rule_tac [2] x = 1 in exI)
paulson@14477
    36
apply (rule_tac [!] setleI [THEN isUbI], safe)
paulson@14324
    37
apply (simp_all (no_asm))
paulson@14324
    38
apply (rule_tac [!] ccontr)
paulson@14334
    39
apply (drule_tac [!] linorder_not_le [THEN iffD1])
paulson@14477
    40
apply (drule realpow_ge_self2, assumption)
paulson@14477
    41
apply (drule_tac n = n in realpow_less)
paulson@14324
    42
apply (assumption+)
paulson@14477
    43
apply (drule real_le_trans, assumption)
paulson@14477
    44
apply (drule_tac y = "y ^ n" in order_less_le_trans, assumption, simp) 
paulson@14477
    45
apply (drule_tac n = n in zero_less_one [THEN realpow_less], auto)
paulson@14324
    46
done
paulson@14324
    47
paulson@14324
    48
lemma nth_realpow_isLub_ex:
paulson@14324
    49
     "[| (0::real) < a; 0 < n |]  
paulson@14324
    50
      ==> \<exists>u. isLub (UNIV::real set) {x. x ^ n <= a & 0 < x} u"
paulson@14365
    51
by (blast intro: lemma_nth_realpow_isUb_ex lemma_nth_realpow_non_empty reals_complete)
paulson@14365
    52
paulson@14324
    53
 
paulson@14324
    54
subsection{*First Half -- Lemmas First*}
paulson@14324
    55
paulson@14324
    56
lemma lemma_nth_realpow_seq:
paulson@14324
    57
     "isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u  
paulson@14324
    58
           ==> u + inverse(real (Suc k)) ~: {x. x ^ n <= a & 0 < x}"
paulson@14477
    59
apply (safe, drule isLubD2, blast)
paulson@14365
    60
apply (simp add: linorder_not_less [symmetric])
paulson@14324
    61
done
paulson@14324
    62
paulson@14324
    63
lemma lemma_nth_realpow_isLub_gt_zero:
paulson@14324
    64
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14324
    65
         0 < a; 0 < n |] ==> 0 < u"
paulson@14477
    66
apply (drule lemma_nth_realpow_non_empty, auto)
paulson@14477
    67
apply (drule_tac y = s in isLub_isUb [THEN isUbD])
paulson@14324
    68
apply (auto intro: order_less_le_trans)
paulson@14324
    69
done
paulson@14324
    70
paulson@14324
    71
lemma lemma_nth_realpow_isLub_ge:
paulson@14324
    72
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14324
    73
         0 < a; 0 < n |] ==> ALL k. a <= (u + inverse(real (Suc k))) ^ n"
paulson@14477
    74
apply safe
paulson@14477
    75
apply (frule lemma_nth_realpow_seq, safe)
paulson@14365
    76
apply (auto elim: order_less_asym simp add: linorder_not_less [symmetric])
paulson@14365
    77
apply (simp add: linorder_not_less)
paulson@14324
    78
apply (rule order_less_trans [of _ 0])
paulson@14325
    79
apply (auto intro: lemma_nth_realpow_isLub_gt_zero)
paulson@14324
    80
done
paulson@14324
    81
paulson@14324
    82
text{*First result we want*}
paulson@14324
    83
lemma realpow_nth_ge:
paulson@14324
    84
     "[| (0::real) < a; 0 < n;  
paulson@14324
    85
     isLub (UNIV::real set)  
paulson@14324
    86
     {x. x ^ n <= a & 0 < x} u |] ==> a <= u ^ n"
paulson@14477
    87
apply (frule lemma_nth_realpow_isLub_ge, safe)
paulson@14324
    88
apply (rule LIMSEQ_inverse_real_of_nat_add [THEN LIMSEQ_pow, THEN LIMSEQ_le_const])
paulson@14334
    89
apply (auto simp add: real_of_nat_def)
paulson@14324
    90
done
paulson@14324
    91
paulson@14324
    92
subsection{*Second Half*}
paulson@14324
    93
paulson@14324
    94
lemma less_isLub_not_isUb:
paulson@14324
    95
     "[| isLub (UNIV::real set) S u; x < u |]  
paulson@14324
    96
           ==> ~ isUb (UNIV::real set) S x"
paulson@14477
    97
apply safe
paulson@14477
    98
apply (drule isLub_le_isUb, assumption)
paulson@14477
    99
apply (drule order_less_le_trans, auto)
paulson@14324
   100
done
paulson@14324
   101
paulson@14324
   102
lemma not_isUb_less_ex:
paulson@14324
   103
     "~ isUb (UNIV::real set) S u ==> \<exists>x \<in> S. u < x"
paulson@14477
   104
apply (rule ccontr, erule swap)
paulson@14324
   105
apply (rule setleI [THEN isUbI])
paulson@14365
   106
apply (auto simp add: linorder_not_less [symmetric])
paulson@14324
   107
done
paulson@14324
   108
paulson@14325
   109
lemma real_mult_less_self: "0 < r ==> r * (1 + -inverse(real (Suc n))) < r"
paulson@14334
   110
apply (simp (no_asm) add: right_distrib)
paulson@14334
   111
apply (rule add_less_cancel_left [of "-r", THEN iffD1])
paulson@14334
   112
apply (auto intro: mult_pos
paulson@14334
   113
            simp add: add_assoc [symmetric] neg_less_0_iff_less)
paulson@14325
   114
done
paulson@14325
   115
paulson@14325
   116
lemma real_mult_add_one_minus_ge_zero:
paulson@14325
   117
     "0 < r ==>  0 <= r*(1 + -inverse(real (Suc n)))"
nipkow@14355
   118
apply (simp add: zero_le_mult_iff real_of_nat_inverse_le_iff)
paulson@14325
   119
done
paulson@14325
   120
paulson@14324
   121
lemma lemma_nth_realpow_isLub_le:
paulson@14324
   122
     "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u;  
paulson@14325
   123
       0 < a; 0 < n |] ==> ALL k. (u*(1 + -inverse(real (Suc k)))) ^ n <= a"
paulson@14477
   124
apply safe
paulson@14324
   125
apply (frule less_isLub_not_isUb [THEN not_isUb_less_ex])
paulson@14477
   126
apply (rule_tac n = k in real_mult_less_self)
paulson@14477
   127
apply (blast intro: lemma_nth_realpow_isLub_gt_zero, safe)
paulson@14477
   128
apply (drule_tac n = k in
paulson@14477
   129
        lemma_nth_realpow_isLub_gt_zero [THEN real_mult_add_one_minus_ge_zero], assumption+)
paulson@14348
   130
apply (blast intro: order_trans order_less_imp_le power_mono) 
paulson@14324
   131
done
paulson@14324
   132
paulson@14324
   133
text{*Second result we want*}
paulson@14324
   134
lemma realpow_nth_le:
paulson@14324
   135
     "[| (0::real) < a; 0 < n;  
paulson@14324
   136
     isLub (UNIV::real set)  
paulson@14324
   137
     {x. x ^ n <= a & 0 < x} u |] ==> u ^ n <= a"
paulson@14477
   138
apply (frule lemma_nth_realpow_isLub_le, safe)
paulson@14348
   139
apply (rule LIMSEQ_inverse_real_of_nat_add_minus_mult
paulson@14348
   140
                [THEN LIMSEQ_pow, THEN LIMSEQ_le_const2])
paulson@14334
   141
apply (auto simp add: real_of_nat_def)
paulson@14324
   142
done
paulson@14324
   143
paulson@14348
   144
text{*The theorem at last!*}
paulson@14324
   145
lemma realpow_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. r ^ n = a"
paulson@14477
   146
apply (frule nth_realpow_isLub_ex, auto)
paulson@14477
   147
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym)
paulson@14324
   148
done
paulson@14324
   149
paulson@14324
   150
(* positive only *)
paulson@14324
   151
lemma realpow_pos_nth: "[| (0::real) < a; 0 < n |] ==> \<exists>r. 0 < r & r ^ n = a"
paulson@14477
   152
apply (frule nth_realpow_isLub_ex, auto)
paulson@14477
   153
apply (auto intro: realpow_nth_le realpow_nth_ge order_antisym lemma_nth_realpow_isLub_gt_zero)
paulson@14324
   154
done
paulson@14324
   155
paulson@14324
   156
lemma realpow_pos_nth2: "(0::real) < a  ==> \<exists>r. 0 < r & r ^ Suc n = a"
paulson@14477
   157
by (blast intro: realpow_pos_nth)
paulson@14324
   158
paulson@14324
   159
(* uniqueness of nth positive root *)
paulson@14324
   160
lemma realpow_pos_nth_unique:
paulson@14324
   161
     "[| (0::real) < a; 0 < n |] ==> EX! r. 0 < r & r ^ n = a"
paulson@14324
   162
apply (auto intro!: realpow_pos_nth)
paulson@14477
   163
apply (cut_tac x = r and y = y in linorder_less_linear, auto)
paulson@14477
   164
apply (drule_tac x = r in realpow_less)
paulson@14477
   165
apply (drule_tac [4] x = y in realpow_less, auto)
paulson@14324
   166
done
paulson@14324
   167
paulson@14324
   168
ML
paulson@14324
   169
{*
paulson@14324
   170
val nth_realpow_isLub_ex = thm"nth_realpow_isLub_ex";
paulson@14324
   171
val realpow_nth_ge = thm"realpow_nth_ge";
paulson@14324
   172
val less_isLub_not_isUb = thm"less_isLub_not_isUb";
paulson@14324
   173
val not_isUb_less_ex = thm"not_isUb_less_ex";
paulson@14324
   174
val realpow_nth_le = thm"realpow_nth_le";
paulson@14324
   175
val realpow_nth = thm"realpow_nth";
paulson@14324
   176
val realpow_pos_nth = thm"realpow_pos_nth";
paulson@14324
   177
val realpow_pos_nth2 = thm"realpow_pos_nth2";
paulson@14324
   178
val realpow_pos_nth_unique = thm"realpow_pos_nth_unique";
paulson@14324
   179
*}
paulson@14324
   180
paulson@14324
   181
end