author | huffman |
Tue, 22 May 2007 07:29:49 +0200 | |
changeset 23069 | cdfff0241c12 |
parent 23066 | 26a9157b620a |
child 23082 | ffef77eed382 |
permissions | -rw-r--r-- |
12196 | 1 |
(* Title : Transcendental.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998,1999 University of Cambridge |
|
13958
c1c67582c9b5
New material on integration, etc. Moving Hyperreal/ex
paulson
parents:
12196
diff
changeset
|
4 |
1999,2001 University of Edinburgh |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
12196 | 6 |
*) |
7 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
8 |
header{*Power Series, Transcendental Functions etc.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
9 |
|
15131 | 10 |
theory Transcendental |
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
11 |
imports NthRoot Fact Series EvenOdd Deriv |
15131 | 12 |
begin |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
13 |
|
23043 | 14 |
subsection{*Properties of Power Series*} |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
15 |
|
15229 | 16 |
lemma lemma_realpow_diff [rule_format (no_asm)]: |
17 |
"p \<le> n --> y ^ (Suc n - p) = ((y::real) ^ (n - p)) * y" |
|
15251 | 18 |
apply (induct "n", auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
19 |
apply (subgoal_tac "p = Suc n") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
20 |
apply (simp (no_asm_simp), auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
21 |
apply (drule sym) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
22 |
apply (simp add: Suc_diff_le mult_commute realpow_Suc [symmetric] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
23 |
del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
24 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
25 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
26 |
lemma lemma_realpow_diff_sumr: |
15539 | 27 |
"(\<Sum>p=0..<Suc n. (x ^ p) * y ^ ((Suc n) - p)) = |
28 |
y * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))::real)" |
|
19279 | 29 |
by (auto simp add: setsum_right_distrib lemma_realpow_diff mult_ac |
16641
fce796ad9c2b
Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents:
15561
diff
changeset
|
30 |
simp del: setsum_op_ivl_Suc cong: strong_setsum_cong) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
31 |
|
15229 | 32 |
lemma lemma_realpow_diff_sumr2: |
33 |
"x ^ (Suc n) - y ^ (Suc n) = |
|
15539 | 34 |
(x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^(n - p))::real)" |
15251 | 35 |
apply (induct "n", simp) |
15561 | 36 |
apply (auto simp del: setsum_op_ivl_Suc) |
37 |
apply (subst setsum_op_ivl_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
38 |
apply (drule sym) |
15561 | 39 |
apply (auto simp add: lemma_realpow_diff_sumr right_distrib diff_minus mult_ac simp del: setsum_op_ivl_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
40 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
41 |
|
15229 | 42 |
lemma lemma_realpow_rev_sumr: |
15539 | 43 |
"(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) = |
44 |
(\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p)::real)" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
45 |
apply (case_tac "x = y") |
15561 | 46 |
apply (auto simp add: mult_commute power_add [symmetric] simp del: setsum_op_ivl_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
47 |
apply (rule_tac c1 = "x - y" in real_mult_left_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
48 |
apply (rule_tac [2] minus_minus [THEN subst], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
49 |
apply (subst minus_mult_left) |
15561 | 50 |
apply (simp add: lemma_realpow_diff_sumr2 [symmetric] del: setsum_op_ivl_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
51 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
52 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
53 |
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
54 |
x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
55 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
56 |
lemma powser_insidea: |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
57 |
fixes x z :: real |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
58 |
assumes 1: "summable (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
59 |
assumes 2: "\<bar>z\<bar> < \<bar>x\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
60 |
shows "summable (\<lambda>n. \<bar>f n\<bar> * z ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
61 |
proof - |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
62 |
from 2 have x_neq_0: "x \<noteq> 0" by clarsimp |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
63 |
from 1 have "(\<lambda>n. f n * x ^ n) ----> 0" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
64 |
by (rule summable_LIMSEQ_zero) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
65 |
hence "convergent (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
66 |
by (rule convergentI) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
67 |
hence "Cauchy (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
68 |
by (simp add: Cauchy_convergent_iff) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
69 |
hence "Bseq (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
70 |
by (rule Cauchy_Bseq) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
71 |
then obtain K where 3: "0 < K" and 4: "\<forall>n. \<bar>f n * x ^ n\<bar> \<le> K" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
72 |
by (simp add: Bseq_def, safe) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
73 |
have "\<exists>N. \<forall>n\<ge>N. norm (\<bar>f n\<bar> * z ^ n) \<le> K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
74 |
proof (intro exI allI impI) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
75 |
fix n::nat assume "0 \<le> n" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
76 |
have "norm (\<bar>f n\<bar> * z ^ n) * \<bar>x ^ n\<bar> = \<bar>f n * x ^ n\<bar> * \<bar>z ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
77 |
by (simp add: abs_mult) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
78 |
also have "\<dots> \<le> K * \<bar>z ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
79 |
by (simp only: mult_right_mono 4 abs_ge_zero) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
80 |
also have "\<dots> = K * \<bar>z ^ n\<bar> * (inverse \<bar>x ^ n\<bar> * \<bar>x ^ n\<bar>)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
81 |
by (simp add: x_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
82 |
also have "\<dots> = K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar> * \<bar>x ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
83 |
by (simp only: mult_assoc) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
84 |
finally show "norm (\<bar>f n\<bar> * z ^ n) \<le> K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
85 |
by (simp add: mult_le_cancel_right x_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
86 |
qed |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
87 |
moreover have "summable (\<lambda>n. K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
88 |
proof - |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
89 |
from 2 have "norm \<bar>z * inverse x\<bar> < 1" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
90 |
by (simp add: abs_mult divide_inverse [symmetric]) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
91 |
hence "summable (\<lambda>n. \<bar>z * inverse x\<bar> ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
92 |
by (rule summable_geometric) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
93 |
hence "summable (\<lambda>n. K * \<bar>z * inverse x\<bar> ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
94 |
by (rule summable_mult) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
95 |
thus "summable (\<lambda>n. K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
96 |
by (simp add: abs_mult power_mult_distrib power_abs |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
97 |
power_inverse mult_assoc) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
98 |
qed |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
99 |
ultimately show "summable (\<lambda>n. \<bar>f n\<bar> * z ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
100 |
by (rule summable_comparison_test) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
101 |
qed |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
102 |
|
15229 | 103 |
lemma powser_inside: |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
104 |
fixes f :: "nat \<Rightarrow> real" shows |
15229 | 105 |
"[| summable (%n. f(n) * (x ^ n)); \<bar>z\<bar> < \<bar>x\<bar> |] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
106 |
==> summable (%n. f(n) * (z ^ n))" |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
107 |
apply (drule_tac z = "\<bar>z\<bar>" in powser_insidea, simp) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
108 |
apply (rule summable_rabs_cancel) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
109 |
apply (simp add: abs_mult power_abs [symmetric]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
110 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
111 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
112 |
|
23043 | 113 |
subsection{*Term-by-Term Differentiability of Power Series*} |
114 |
||
115 |
definition |
|
116 |
diffs :: "(nat => real) => nat => real" where |
|
117 |
"diffs c = (%n. real (Suc n) * c(Suc n))" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
118 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
119 |
text{*Lemma about distributing negation over it*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
120 |
lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
121 |
by (simp add: diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
122 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
123 |
text{*Show that we can shift the terms down one*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
124 |
lemma lemma_diffs: |
15539 | 125 |
"(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) = |
126 |
(\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) + |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
127 |
(real n * c(n) * x ^ (n - Suc 0))" |
15251 | 128 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
129 |
apply (auto simp add: mult_assoc add_assoc [symmetric] diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
130 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
131 |
|
15229 | 132 |
lemma lemma_diffs2: |
15539 | 133 |
"(\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) = |
134 |
(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) - |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
135 |
(real n * c(n) * x ^ (n - Suc 0))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
136 |
by (auto simp add: lemma_diffs) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
137 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
138 |
|
15229 | 139 |
lemma diffs_equiv: |
140 |
"summable (%n. (diffs c)(n) * (x ^ n)) ==> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
141 |
(%n. real n * c(n) * (x ^ (n - Suc 0))) sums |
15546 | 142 |
(\<Sum>n. (diffs c)(n) * (x ^ n))" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
143 |
apply (subgoal_tac " (%n. real n * c (n) * (x ^ (n - Suc 0))) ----> 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
144 |
apply (rule_tac [2] LIMSEQ_imp_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
145 |
apply (drule summable_sums) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
146 |
apply (auto simp add: sums_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
147 |
apply (drule_tac X="(\<lambda>n. \<Sum>n = 0..<n. diffs c n * x ^ n)" in LIMSEQ_diff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
148 |
apply (auto simp add: lemma_diffs2 [symmetric] diffs_def [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
149 |
apply (simp add: diffs_def summable_LIMSEQ_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
150 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
151 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
152 |
lemma lemma_termdiff1: |
15539 | 153 |
"(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) = |
154 |
(\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p)))::real)" |
|
16641
fce796ad9c2b
Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents:
15561
diff
changeset
|
155 |
by (auto simp add: right_distrib diff_minus power_add [symmetric] mult_ac |
fce796ad9c2b
Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents:
15561
diff
changeset
|
156 |
cong: strong_setsum_cong) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
157 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
158 |
lemma less_add_one: "m < n ==> (\<exists>d. n = m + d + Suc 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
159 |
by (simp add: less_iff_Suc_add) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
160 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
161 |
lemma sumdiff: "a + b - (c + d) = a - c + b - (d::real)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
162 |
by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
163 |
|
15229 | 164 |
lemma lemma_termdiff2: |
20860 | 165 |
assumes h: "h \<noteq> 0" shows |
166 |
"((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0) = |
|
167 |
h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p. |
|
168 |
(z + h) ^ q * z ^ (n - 2 - q))" |
|
169 |
apply (rule real_mult_left_cancel [OF h, THEN iffD1]) |
|
170 |
apply (simp add: right_diff_distrib diff_divide_distrib h) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
171 |
apply (simp add: mult_assoc [symmetric]) |
20860 | 172 |
apply (cases "n", simp) |
173 |
apply (simp add: lemma_realpow_diff_sumr2 h |
|
174 |
right_diff_distrib [symmetric] mult_assoc |
|
175 |
del: realpow_Suc setsum_op_ivl_Suc) |
|
176 |
apply (subst lemma_realpow_rev_sumr) |
|
177 |
apply (subst sumr_diff_mult_const) |
|
178 |
apply simp |
|
179 |
apply (simp only: lemma_termdiff1 setsum_right_distrib) |
|
180 |
apply (rule setsum_cong [OF refl]) |
|
15539 | 181 |
apply (simp add: diff_minus [symmetric] less_iff_Suc_add) |
20860 | 182 |
apply (clarify) |
183 |
apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac |
|
184 |
del: setsum_op_ivl_Suc realpow_Suc) |
|
185 |
apply (subst mult_assoc [symmetric], subst power_add [symmetric]) |
|
186 |
apply (simp add: mult_ac) |
|
187 |
done |
|
188 |
||
189 |
lemma real_setsum_nat_ivl_bounded2: |
|
190 |
"\<lbrakk>\<And>p::nat. p < n \<Longrightarrow> f p \<le> K; 0 \<le> K\<rbrakk> |
|
191 |
\<Longrightarrow> setsum f {0..<n-k} \<le> real n * K" |
|
192 |
apply (rule order_trans [OF real_setsum_nat_ivl_bounded mult_right_mono]) |
|
193 |
apply simp_all |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
194 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
195 |
|
15229 | 196 |
lemma lemma_termdiff3: |
20860 | 197 |
assumes 1: "h \<noteq> 0" |
198 |
assumes 2: "\<bar>z\<bar> \<le> K" |
|
199 |
assumes 3: "\<bar>z + h\<bar> \<le> K" |
|
200 |
shows "\<bar>((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0)\<bar> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
201 |
\<le> real n * real (n - Suc 0) * K ^ (n - 2) * \<bar>h\<bar>" |
20860 | 202 |
proof - |
203 |
have "\<bar>((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0)\<bar> = |
|
204 |
\<bar>\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. |
|
205 |
(z + h) ^ q * z ^ (n - 2 - q)\<bar> * \<bar>h\<bar>" |
|
206 |
apply (subst lemma_termdiff2 [OF 1]) |
|
207 |
apply (subst abs_mult) |
|
208 |
apply (rule mult_commute) |
|
209 |
done |
|
210 |
also have "\<dots> \<le> real n * (real (n - Suc 0) * K ^ (n - 2)) * \<bar>h\<bar>" |
|
211 |
proof (rule mult_right_mono [OF _ abs_ge_zero]) |
|
212 |
from abs_ge_zero 2 have K: "0 \<le> K" by (rule order_trans) |
|
213 |
have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> \<bar>(z + h) ^ i * z ^ j\<bar> \<le> K ^ n" |
|
214 |
apply (erule subst) |
|
215 |
apply (simp only: abs_mult power_abs power_add) |
|
216 |
apply (intro mult_mono power_mono 2 3 abs_ge_zero zero_le_power K) |
|
217 |
done |
|
218 |
show "\<bar>\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. |
|
219 |
(z + h) ^ q * z ^ (n - 2 - q)\<bar> |
|
220 |
\<le> real n * (real (n - Suc 0) * K ^ (n - 2))" |
|
221 |
apply (intro |
|
222 |
order_trans [OF setsum_abs] |
|
223 |
real_setsum_nat_ivl_bounded2 |
|
224 |
mult_nonneg_nonneg |
|
225 |
real_of_nat_ge_zero |
|
226 |
zero_le_power K) |
|
227 |
apply (rule le_Kn, simp) |
|
228 |
done |
|
229 |
qed |
|
230 |
also have "\<dots> = real n * real (n - Suc 0) * K ^ (n - 2) * \<bar>h\<bar>" |
|
231 |
by (simp only: mult_assoc) |
|
232 |
finally show ?thesis . |
|
233 |
qed |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
234 |
|
20860 | 235 |
lemma lemma_termdiff4: |
236 |
assumes k: "0 < (k::real)" |
|
237 |
assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; \<bar>h\<bar> < k\<rbrakk> \<Longrightarrow> \<bar>f h\<bar> \<le> K * \<bar>h\<bar>" |
|
238 |
shows "f -- 0 --> 0" |
|
239 |
proof (simp add: LIM_def, safe) |
|
240 |
fix r::real assume r: "0 < r" |
|
241 |
have zero_le_K: "0 \<le> K" |
|
242 |
apply (cut_tac k) |
|
243 |
apply (cut_tac h="k/2" in le, simp, simp) |
|
244 |
apply (subgoal_tac "0 \<le> K*k", simp add: zero_le_mult_iff) |
|
245 |
apply (force intro: order_trans [of _ "\<bar>f (k / 2)\<bar> * 2"]) |
|
246 |
done |
|
247 |
show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)" |
|
248 |
proof (cases) |
|
249 |
assume "K = 0" |
|
250 |
with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < k \<longrightarrow> \<bar>f x\<bar> < r)" |
|
251 |
by simp |
|
252 |
thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)" .. |
|
253 |
next |
|
254 |
assume K_neq_zero: "K \<noteq> 0" |
|
255 |
with zero_le_K have K: "0 < K" by simp |
|
256 |
show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)" |
|
257 |
proof (rule exI, safe) |
|
258 |
from k r K show "0 < min k (r * inverse K / 2)" |
|
259 |
by (simp add: mult_pos_pos positive_imp_inverse_positive) |
|
260 |
next |
|
261 |
fix x::real |
|
262 |
assume x1: "x \<noteq> 0" and x2: "\<bar>x\<bar> < min k (r * inverse K / 2)" |
|
263 |
from x2 have x3: "\<bar>x\<bar> < k" and x4: "\<bar>x\<bar> < r * inverse K / 2" |
|
264 |
by simp_all |
|
265 |
from x1 x3 le have "\<bar>f x\<bar> \<le> K * \<bar>x\<bar>" by simp |
|
266 |
also from x4 K have "K * \<bar>x\<bar> < K * (r * inverse K / 2)" |
|
267 |
by (rule mult_strict_left_mono) |
|
268 |
also have "\<dots> = r / 2" |
|
269 |
using K_neq_zero by simp |
|
270 |
also have "r / 2 < r" |
|
271 |
using r by simp |
|
272 |
finally show "\<bar>f x\<bar> < r" . |
|
273 |
qed |
|
274 |
qed |
|
275 |
qed |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
276 |
|
15229 | 277 |
lemma lemma_termdiff5: |
20860 | 278 |
assumes k: "0 < (k::real)" |
279 |
assumes f: "summable f" |
|
280 |
assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; \<bar>h\<bar> < k\<rbrakk> \<Longrightarrow> \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>" |
|
281 |
shows "(\<lambda>h. suminf (g h)) -- 0 --> 0" |
|
282 |
proof (rule lemma_termdiff4 [OF k]) |
|
283 |
fix h assume "h \<noteq> 0" and "\<bar>h\<bar> < k" |
|
284 |
hence A: "\<forall>n. \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>" |
|
285 |
by (simp add: le) |
|
286 |
hence "\<exists>N. \<forall>n\<ge>N. norm \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>" |
|
287 |
by simp |
|
288 |
moreover from f have B: "summable (\<lambda>n. f n * \<bar>h\<bar>)" |
|
289 |
by (rule summable_mult2) |
|
290 |
ultimately have C: "summable (\<lambda>n. \<bar>g h n\<bar>)" |
|
291 |
by (rule summable_comparison_test) |
|
292 |
hence "\<bar>suminf (g h)\<bar> \<le> (\<Sum>n. \<bar>g h n\<bar>)" |
|
293 |
by (rule summable_rabs) |
|
294 |
also from A C B have "(\<Sum>n. \<bar>g h n\<bar>) \<le> (\<Sum>n. f n * \<bar>h\<bar>)" |
|
295 |
by (rule summable_le) |
|
296 |
also from f have "(\<Sum>n. f n * \<bar>h\<bar>) = suminf f * \<bar>h\<bar>" |
|
297 |
by (rule suminf_mult2 [symmetric]) |
|
298 |
finally show "\<bar>suminf (g h)\<bar> \<le> suminf f * \<bar>h\<bar>" . |
|
299 |
qed |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
300 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
301 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
302 |
text{* FIXME: Long proofs*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
303 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
304 |
lemma termdiffs_aux: |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
305 |
assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
306 |
assumes 2: "\<bar>x\<bar> < \<bar>K\<bar>" |
20860 | 307 |
shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h |
308 |
- real n * x ^ (n - Suc 0))) -- 0 --> 0" |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
309 |
proof - |
20860 | 310 |
from dense [OF 2] |
311 |
obtain r where r1: "\<bar>x\<bar> < r" and r2: "r < \<bar>K\<bar>" by fast |
|
312 |
from abs_ge_zero r1 have r: "0 < r" |
|
313 |
by (rule order_le_less_trans) |
|
314 |
hence r_neq_0: "r \<noteq> 0" by simp |
|
315 |
show ?thesis |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
316 |
proof (rule lemma_termdiff5) |
20860 | 317 |
show "0 < r - \<bar>x\<bar>" using r1 by simp |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
318 |
next |
20860 | 319 |
from r r2 have "\<bar>r\<bar> < \<bar>K\<bar>" |
320 |
by (simp only: abs_of_nonneg order_less_imp_le) |
|
321 |
with 1 have "summable (\<lambda>n. \<bar>diffs (diffs c) n\<bar> * (r ^ n))" |
|
322 |
by (rule powser_insidea) |
|
323 |
hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. \<bar>c n\<bar>)) n * r ^ n)" |
|
324 |
by (simp only: diffs_def abs_mult abs_real_of_nat_cancel) |
|
325 |
hence "summable (\<lambda>n. real n * diffs (\<lambda>n. \<bar>c n\<bar>) n * r ^ (n - Suc 0))" |
|
326 |
by (rule diffs_equiv [THEN sums_summable]) |
|
327 |
also have "(\<lambda>n. real n * diffs (\<lambda>n. \<bar>c n\<bar>) n * r ^ (n - Suc 0)) |
|
328 |
= (\<lambda>n. diffs (%m. real (m - Suc 0) * \<bar>c m\<bar> * inverse r) n * (r ^ n))" |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
329 |
apply (rule ext) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
330 |
apply (simp add: diffs_def) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
331 |
apply (case_tac n, simp_all add: r_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
332 |
done |
20860 | 333 |
finally have "summable |
334 |
(\<lambda>n. real n * (real (n - Suc 0) * \<bar>c n\<bar> * inverse r) * r ^ (n - Suc 0))" |
|
335 |
by (rule diffs_equiv [THEN sums_summable]) |
|
336 |
also have |
|
337 |
"(\<lambda>n. real n * (real (n - Suc 0) * \<bar>c n\<bar> * inverse r) * |
|
338 |
r ^ (n - Suc 0)) = |
|
339 |
(\<lambda>n. \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2))" |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
340 |
apply (rule ext) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
341 |
apply (case_tac "n", simp) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
342 |
apply (case_tac "nat", simp) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
343 |
apply (simp add: r_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
344 |
done |
20860 | 345 |
finally show |
346 |
"summable (\<lambda>n. \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2))" . |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
347 |
next |
20860 | 348 |
fix h::real and n::nat |
349 |
assume h: "h \<noteq> 0" |
|
350 |
assume "\<bar>h\<bar> < r - \<bar>x\<bar>" |
|
351 |
hence "\<bar>x\<bar> + \<bar>h\<bar> < r" by simp |
|
352 |
with abs_triangle_ineq have xh: "\<bar>x + h\<bar> < r" |
|
353 |
by (rule order_le_less_trans) |
|
354 |
show "\<bar>c n * (((x + h) ^ n - x ^ n) / h - real n * x ^ (n - Suc 0))\<bar> |
|
355 |
\<le> \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2) * \<bar>h\<bar>" |
|
356 |
apply (simp only: abs_mult mult_assoc) |
|
357 |
apply (rule mult_left_mono [OF _ abs_ge_zero]) |
|
358 |
apply (simp (no_asm) add: mult_assoc [symmetric]) |
|
359 |
apply (rule lemma_termdiff3) |
|
360 |
apply (rule h) |
|
361 |
apply (rule r1 [THEN order_less_imp_le]) |
|
362 |
apply (rule xh [THEN order_less_imp_le]) |
|
363 |
done |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
364 |
qed |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
365 |
qed |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
366 |
|
20860 | 367 |
lemma termdiffs: |
368 |
assumes 1: "summable (\<lambda>n. c n * K ^ n)" |
|
369 |
assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)" |
|
370 |
assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)" |
|
371 |
assumes 4: "\<bar>x\<bar> < \<bar>K\<bar>" |
|
372 |
shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)" |
|
373 |
proof (simp add: deriv_def, rule LIM_zero_cancel) |
|
374 |
show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h |
|
375 |
- suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0" |
|
376 |
proof (rule LIM_equal2) |
|
377 |
show "0 < \<bar>K\<bar> - \<bar>x\<bar>" by (simp add: less_diff_eq 4) |
|
378 |
next |
|
379 |
fix h :: real |
|
380 |
assume "h \<noteq> 0" |
|
381 |
assume "norm (h - 0) < \<bar>K\<bar> - \<bar>x\<bar>" |
|
382 |
hence "\<bar>x\<bar> + \<bar>h\<bar> < \<bar>K\<bar>" by simp |
|
383 |
hence 5: "\<bar>x + h\<bar> < \<bar>K\<bar>" |
|
384 |
by (rule abs_triangle_ineq [THEN order_le_less_trans]) |
|
385 |
have A: "summable (\<lambda>n. c n * x ^ n)" |
|
386 |
by (rule powser_inside [OF 1 4]) |
|
387 |
have B: "summable (\<lambda>n. c n * (x + h) ^ n)" |
|
388 |
by (rule powser_inside [OF 1 5]) |
|
389 |
have C: "summable (\<lambda>n. diffs c n * x ^ n)" |
|
390 |
by (rule powser_inside [OF 2 4]) |
|
391 |
show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h |
|
392 |
- (\<Sum>n. diffs c n * x ^ n) = |
|
393 |
(\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - real n * x ^ (n - Suc 0)))" |
|
394 |
apply (subst sums_unique [OF diffs_equiv [OF C]]) |
|
395 |
apply (subst suminf_diff [OF B A]) |
|
396 |
apply (subst suminf_divide [symmetric]) |
|
397 |
apply (rule summable_diff [OF B A]) |
|
398 |
apply (subst suminf_diff) |
|
399 |
apply (rule summable_divide) |
|
400 |
apply (rule summable_diff [OF B A]) |
|
401 |
apply (rule sums_summable [OF diffs_equiv [OF C]]) |
|
402 |
apply (rule_tac f="suminf" in arg_cong) |
|
403 |
apply (rule ext) |
|
404 |
apply (simp add: ring_eq_simps) |
|
405 |
done |
|
406 |
next |
|
407 |
show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - |
|
408 |
real n * x ^ (n - Suc 0))) -- 0 --> 0" |
|
409 |
by (rule termdiffs_aux [OF 3 4]) |
|
410 |
qed |
|
411 |
qed |
|
412 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
413 |
|
23043 | 414 |
subsection{*Exponential Function*} |
415 |
||
416 |
definition |
|
417 |
exp :: "real => real" where |
|
418 |
"exp x = (\<Sum>n. inverse(real (fact n)) * (x ^ n))" |
|
419 |
||
420 |
definition |
|
421 |
sin :: "real => real" where |
|
422 |
"sin x = (\<Sum>n. (if even(n) then 0 else |
|
423 |
((- 1) ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n)" |
|
424 |
||
425 |
definition |
|
426 |
cos :: "real => real" where |
|
427 |
"cos x = (\<Sum>n. (if even(n) then ((- 1) ^ (n div 2))/(real (fact n)) |
|
428 |
else 0) * x ^ n)" |
|
429 |
||
430 |
lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)" |
|
431 |
apply (cut_tac 'a = real in zero_less_one [THEN dense], safe) |
|
432 |
apply (cut_tac x = r in reals_Archimedean3, auto) |
|
433 |
apply (drule_tac x = "\<bar>x\<bar>" in spec, safe) |
|
434 |
apply (rule_tac N = n and c = r in ratio_test) |
|
435 |
apply (safe, simp add: abs_mult mult_assoc [symmetric] del: fact_Suc) |
|
436 |
apply (rule mult_right_mono) |
|
437 |
apply (rule_tac b1 = "\<bar>x\<bar>" in mult_commute [THEN ssubst]) |
|
438 |
apply (subst fact_Suc) |
|
439 |
apply (subst real_of_nat_mult) |
|
440 |
apply (auto) |
|
441 |
apply (simp add: mult_assoc [symmetric] positive_imp_inverse_positive) |
|
442 |
apply (rule order_less_imp_le) |
|
443 |
apply (rule_tac z1 = "real (Suc na)" in real_mult_less_iff1 [THEN iffD1]) |
|
444 |
apply (auto simp add: mult_assoc) |
|
445 |
apply (erule order_less_trans) |
|
446 |
apply (auto simp add: mult_less_cancel_left mult_ac) |
|
447 |
done |
|
448 |
||
449 |
lemma summable_sin: |
|
450 |
"summable (%n. |
|
451 |
(if even n then 0 |
|
452 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
|
453 |
x ^ n)" |
|
454 |
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) |
|
455 |
apply (rule_tac [2] summable_exp) |
|
456 |
apply (rule_tac x = 0 in exI) |
|
457 |
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) |
|
458 |
done |
|
459 |
||
460 |
lemma summable_cos: |
|
461 |
"summable (%n. |
|
462 |
(if even n then |
|
463 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) * x ^ n)" |
|
464 |
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) |
|
465 |
apply (rule_tac [2] summable_exp) |
|
466 |
apply (rule_tac x = 0 in exI) |
|
467 |
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) |
|
468 |
done |
|
469 |
||
470 |
lemma lemma_STAR_sin [simp]: |
|
471 |
"(if even n then 0 |
|
472 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0" |
|
473 |
by (induct "n", auto) |
|
474 |
||
475 |
lemma lemma_STAR_cos [simp]: |
|
476 |
"0 < n --> |
|
477 |
(- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" |
|
478 |
by (induct "n", auto) |
|
479 |
||
480 |
lemma lemma_STAR_cos1 [simp]: |
|
481 |
"0 < n --> |
|
482 |
(-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" |
|
483 |
by (induct "n", auto) |
|
484 |
||
485 |
lemma lemma_STAR_cos2 [simp]: |
|
486 |
"(\<Sum>n=1..<n. if even n then (- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n |
|
487 |
else 0) = 0" |
|
488 |
apply (induct "n") |
|
489 |
apply (case_tac [2] "n", auto) |
|
490 |
done |
|
491 |
||
492 |
lemma exp_converges: "(%n. inverse (real (fact n)) * x ^ n) sums exp(x)" |
|
493 |
apply (simp add: exp_def) |
|
494 |
apply (rule summable_exp [THEN summable_sums]) |
|
495 |
done |
|
496 |
||
497 |
lemma sin_converges: |
|
498 |
"(%n. (if even n then 0 |
|
499 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
|
500 |
x ^ n) sums sin(x)" |
|
501 |
apply (simp add: sin_def) |
|
502 |
apply (rule summable_sin [THEN summable_sums]) |
|
503 |
done |
|
504 |
||
505 |
lemma cos_converges: |
|
506 |
"(%n. (if even n then |
|
507 |
(- 1) ^ (n div 2)/(real (fact n)) |
|
508 |
else 0) * x ^ n) sums cos(x)" |
|
509 |
apply (simp add: cos_def) |
|
510 |
apply (rule summable_cos [THEN summable_sums]) |
|
511 |
done |
|
512 |
||
513 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
514 |
subsection{*Formal Derivatives of Exp, Sin, and Cos Series*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
515 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
516 |
lemma exp_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
517 |
"diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))" |
15229 | 518 |
by (simp add: diffs_def mult_assoc [symmetric] del: mult_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
519 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
520 |
lemma sin_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
521 |
"diffs(%n. if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
522 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
523 |
= (%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
524 |
(- 1) ^ (n div 2)/(real (fact n)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
525 |
else 0)" |
15229 | 526 |
by (auto intro!: ext |
527 |
simp add: diffs_def divide_inverse simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
528 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
529 |
lemma sin_fdiffs2: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
530 |
"diffs(%n. if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
531 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) n |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
532 |
= (if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
533 |
(- 1) ^ (n div 2)/(real (fact n)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
534 |
else 0)" |
15229 | 535 |
by (auto intro!: ext |
536 |
simp add: diffs_def divide_inverse simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
537 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
538 |
lemma cos_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
539 |
"diffs(%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
540 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
541 |
= (%n. - (if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
542 |
else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n))))" |
15229 | 543 |
by (auto intro!: ext |
544 |
simp add: diffs_def divide_inverse odd_Suc_mult_two_ex |
|
545 |
simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
546 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
547 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
548 |
lemma cos_fdiffs2: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
549 |
"diffs(%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
550 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) n |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
551 |
= - (if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
552 |
else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n)))" |
15229 | 553 |
by (auto intro!: ext |
554 |
simp add: diffs_def divide_inverse odd_Suc_mult_two_ex |
|
555 |
simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
556 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
557 |
text{*Now at last we can get the derivatives of exp, sin and cos*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
558 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
559 |
lemma lemma_sin_minus: |
15546 | 560 |
"- sin x = (\<Sum>n. - ((if even n then 0 |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
561 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * x ^ n))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
562 |
by (auto intro!: sums_unique sums_minus sin_converges) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
563 |
|
15546 | 564 |
lemma lemma_exp_ext: "exp = (%x. \<Sum>n. inverse (real (fact n)) * x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
565 |
by (auto intro!: ext simp add: exp_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
566 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
567 |
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)" |
15229 | 568 |
apply (simp add: exp_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
569 |
apply (subst lemma_exp_ext) |
15546 | 570 |
apply (subgoal_tac "DERIV (%u. \<Sum>n. inverse (real (fact n)) * u ^ n) x :> (\<Sum>n. diffs (%n. inverse (real (fact n))) n * x ^ n)") |
15229 | 571 |
apply (rule_tac [2] K = "1 + \<bar>x\<bar>" in termdiffs) |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
572 |
apply (auto intro: exp_converges [THEN sums_summable] simp add: exp_fdiffs) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
573 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
574 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
575 |
lemma lemma_sin_ext: |
15546 | 576 |
"sin = (%x. \<Sum>n. |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
577 |
(if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
578 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
15546 | 579 |
x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
580 |
by (auto intro!: ext simp add: sin_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
581 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
582 |
lemma lemma_cos_ext: |
15546 | 583 |
"cos = (%x. \<Sum>n. |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
584 |
(if even n then (- 1) ^ (n div 2)/(real (fact n)) else 0) * |
15546 | 585 |
x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
586 |
by (auto intro!: ext simp add: cos_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
587 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
588 |
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)" |
15229 | 589 |
apply (simp add: cos_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
590 |
apply (subst lemma_sin_ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
591 |
apply (auto simp add: sin_fdiffs2 [symmetric]) |
15229 | 592 |
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
593 |
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
594 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
595 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
596 |
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
597 |
apply (subst lemma_cos_ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
598 |
apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left) |
15229 | 599 |
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
600 |
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
601 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
602 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
603 |
lemma isCont_exp [simp]: "isCont exp x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
604 |
by (rule DERIV_exp [THEN DERIV_isCont]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
605 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
606 |
lemma isCont_sin [simp]: "isCont sin x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
607 |
by (rule DERIV_sin [THEN DERIV_isCont]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
608 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
609 |
lemma isCont_cos [simp]: "isCont cos x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
610 |
by (rule DERIV_cos [THEN DERIV_isCont]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
611 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
612 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
613 |
subsection{*Properties of the Exponential Function*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
614 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
615 |
lemma exp_zero [simp]: "exp 0 = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
616 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
617 |
have "(\<Sum>n = 0..<1. inverse (real (fact n)) * 0 ^ n) = |
15546 | 618 |
(\<Sum>n. inverse (real (fact n)) * 0 ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
619 |
by (rule series_zero [rule_format, THEN sums_unique], |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
620 |
case_tac "m", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
621 |
thus ?thesis by (simp add: exp_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
622 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
623 |
|
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
624 |
lemma exp_ge_add_one_self_aux: "0 \<le> x ==> (1 + x) \<le> exp(x)" |
22998 | 625 |
apply (drule order_le_imp_less_or_eq, auto) |
15229 | 626 |
apply (simp add: exp_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
627 |
apply (rule real_le_trans) |
15229 | 628 |
apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
629 |
apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_power zero_le_mult_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
630 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
631 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
632 |
lemma exp_gt_one [simp]: "0 < x ==> 1 < exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
633 |
apply (rule order_less_le_trans) |
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
634 |
apply (rule_tac [2] exp_ge_add_one_self_aux, auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
635 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
636 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
637 |
lemma DERIV_exp_add_const: "DERIV (%x. exp (x + y)) x :> exp(x + y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
638 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
639 |
have "DERIV (exp \<circ> (\<lambda>x. x + y)) x :> exp (x + y) * (1+0)" |
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23066
diff
changeset
|
640 |
by (fast intro: DERIV_chain DERIV_add DERIV_exp DERIV_ident DERIV_const) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
641 |
thus ?thesis by (simp add: o_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
642 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
643 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
644 |
lemma DERIV_exp_minus [simp]: "DERIV (%x. exp (-x)) x :> - exp(-x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
645 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
646 |
have "DERIV (exp \<circ> uminus) x :> exp (- x) * - 1" |
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23066
diff
changeset
|
647 |
by (fast intro: DERIV_chain DERIV_minus DERIV_exp DERIV_ident) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
648 |
thus ?thesis by (simp add: o_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
649 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
650 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
651 |
lemma DERIV_exp_exp_zero [simp]: "DERIV (%x. exp (x + y) * exp (- x)) x :> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
652 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
653 |
have "DERIV (\<lambda>x. exp (x + y) * exp (- x)) x |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
654 |
:> exp (x + y) * exp (- x) + - exp (- x) * exp (x + y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
655 |
by (fast intro: DERIV_exp_add_const DERIV_exp_minus DERIV_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
656 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
657 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
658 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
659 |
lemma exp_add_mult_minus [simp]: "exp(x + y)*exp(-x) = exp(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
660 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
661 |
have "\<forall>x. DERIV (%x. exp (x + y) * exp (- x)) x :> 0" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
662 |
hence "exp (x + y) * exp (- x) = exp (0 + y) * exp (- 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
663 |
by (rule DERIV_isconst_all) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
664 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
665 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
666 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
667 |
lemma exp_mult_minus [simp]: "exp x * exp(-x) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
668 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
669 |
have "exp (x + 0) * exp (- x) = exp 0" by (rule exp_add_mult_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
670 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
671 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
672 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
673 |
lemma exp_mult_minus2 [simp]: "exp(-x)*exp(x) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
674 |
by (simp add: mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
675 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
676 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
677 |
lemma exp_minus: "exp(-x) = inverse(exp(x))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
678 |
by (auto intro: inverse_unique [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
679 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
680 |
lemma exp_add: "exp(x + y) = exp(x) * exp(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
681 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
682 |
have "exp x * exp y = exp x * (exp (x + y) * exp (- x))" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
683 |
thus ?thesis by (simp (no_asm_simp) add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
684 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
685 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
686 |
text{*Proof: because every exponential can be seen as a square.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
687 |
lemma exp_ge_zero [simp]: "0 \<le> exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
688 |
apply (rule_tac t = x in real_sum_of_halves [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
689 |
apply (subst exp_add, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
690 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
691 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
692 |
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
693 |
apply (cut_tac x = x in exp_mult_minus2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
694 |
apply (auto simp del: exp_mult_minus2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
695 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
696 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
697 |
lemma exp_gt_zero [simp]: "0 < exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
698 |
by (simp add: order_less_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
699 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
700 |
lemma inv_exp_gt_zero [simp]: "0 < inverse(exp x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
701 |
by (auto intro: positive_imp_inverse_positive) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
702 |
|
15081 | 703 |
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x" |
15229 | 704 |
by auto |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
705 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
706 |
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n" |
15251 | 707 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
708 |
apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
709 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
710 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
711 |
lemma exp_diff: "exp(x - y) = exp(x)/(exp y)" |
15229 | 712 |
apply (simp add: diff_minus divide_inverse) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
713 |
apply (simp (no_asm) add: exp_add exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
714 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
715 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
716 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
717 |
lemma exp_less_mono: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
718 |
assumes xy: "x < y" shows "exp x < exp y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
719 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
720 |
have "1 < exp (y + - x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
721 |
by (rule real_less_sum_gt_zero [THEN exp_gt_one]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
722 |
hence "exp x * inverse (exp x) < exp y * inverse (exp x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
723 |
by (auto simp add: exp_add exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
724 |
thus ?thesis |
15539 | 725 |
by (simp add: divide_inverse [symmetric] pos_less_divide_eq |
15228 | 726 |
del: divide_self_if) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
727 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
728 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
729 |
lemma exp_less_cancel: "exp x < exp y ==> x < y" |
15228 | 730 |
apply (simp add: linorder_not_le [symmetric]) |
731 |
apply (auto simp add: order_le_less exp_less_mono) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
732 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
733 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
734 |
lemma exp_less_cancel_iff [iff]: "(exp(x) < exp(y)) = (x < y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
735 |
by (auto intro: exp_less_mono exp_less_cancel) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
736 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
737 |
lemma exp_le_cancel_iff [iff]: "(exp(x) \<le> exp(y)) = (x \<le> y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
738 |
by (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
739 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
740 |
lemma exp_inj_iff [iff]: "(exp x = exp y) = (x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
741 |
by (simp add: order_eq_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
742 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
743 |
lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x) = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
744 |
apply (rule IVT) |
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
745 |
apply (auto intro: isCont_exp simp add: le_diff_eq) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
746 |
apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
747 |
apply simp |
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
748 |
apply (rule exp_ge_add_one_self_aux, simp) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
749 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
750 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
751 |
lemma exp_total: "0 < y ==> \<exists>x. exp x = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
752 |
apply (rule_tac x = 1 and y = y in linorder_cases) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
753 |
apply (drule order_less_imp_le [THEN lemma_exp_total]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
754 |
apply (rule_tac [2] x = 0 in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
755 |
apply (frule_tac [3] real_inverse_gt_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
756 |
apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
757 |
apply (rule_tac x = "-x" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
758 |
apply (simp add: exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
759 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
760 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
761 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
762 |
subsection{*Properties of the Logarithmic Function*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
763 |
|
23043 | 764 |
definition |
765 |
ln :: "real => real" where |
|
766 |
"ln x = (THE u. exp u = x)" |
|
767 |
||
768 |
lemma ln_exp [simp]: "ln (exp x) = x" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
769 |
by (simp add: ln_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
770 |
|
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
771 |
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x" |
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
772 |
by (auto dest: exp_total) |
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
773 |
|
23043 | 774 |
lemma exp_ln_iff [simp]: "(exp (ln x) = x) = (0 < x)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
775 |
apply (auto dest: exp_total) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
776 |
apply (erule subst, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
777 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
778 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
779 |
lemma ln_mult: "[| 0 < x; 0 < y |] ==> ln(x * y) = ln(x) + ln(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
780 |
apply (rule exp_inj_iff [THEN iffD1]) |
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
781 |
apply (simp add: exp_add exp_ln mult_pos_pos) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
782 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
783 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
784 |
lemma ln_inj_iff[simp]: "[| 0 < x; 0 < y |] ==> (ln x = ln y) = (x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
785 |
apply (simp only: exp_ln_iff [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
786 |
apply (erule subst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
787 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
788 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
789 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
790 |
lemma ln_one[simp]: "ln 1 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
791 |
by (rule exp_inj_iff [THEN iffD1], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
792 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
793 |
lemma ln_inverse: "0 < x ==> ln(inverse x) = - ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
794 |
apply (rule_tac a1 = "ln x" in add_left_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
795 |
apply (auto simp add: positive_imp_inverse_positive ln_mult [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
796 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
797 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
798 |
lemma ln_div: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
799 |
"[|0 < x; 0 < y|] ==> ln(x/y) = ln x - ln y" |
15229 | 800 |
apply (simp add: divide_inverse) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
801 |
apply (auto simp add: positive_imp_inverse_positive ln_mult ln_inverse) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
802 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
803 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
804 |
lemma ln_less_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x < ln y) = (x < y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
805 |
apply (simp only: exp_ln_iff [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
806 |
apply (erule subst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
807 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
808 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
809 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
810 |
lemma ln_le_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x \<le> ln y) = (x \<le> y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
811 |
by (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
812 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
813 |
lemma ln_realpow: "0 < x ==> ln(x ^ n) = real n * ln(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
814 |
by (auto dest!: exp_total simp add: exp_real_of_nat_mult [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
815 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
816 |
lemma ln_add_one_self_le_self [simp]: "0 \<le> x ==> ln(1 + x) \<le> x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
817 |
apply (rule ln_exp [THEN subst]) |
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
818 |
apply (rule ln_le_cancel_iff [THEN iffD2]) |
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
819 |
apply (auto simp add: exp_ge_add_one_self_aux) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
820 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
821 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
822 |
lemma ln_less_self [simp]: "0 < x ==> ln x < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
823 |
apply (rule order_less_le_trans) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
824 |
apply (rule_tac [2] ln_add_one_self_le_self) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
825 |
apply (rule ln_less_cancel_iff [THEN iffD2], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
826 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
827 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
828 |
lemma ln_ge_zero [simp]: |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
829 |
assumes x: "1 \<le> x" shows "0 \<le> ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
830 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
831 |
have "0 < x" using x by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
832 |
hence "exp 0 \<le> exp (ln x)" |
22915 | 833 |
by (simp add: x) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
834 |
thus ?thesis by (simp only: exp_le_cancel_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
835 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
836 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
837 |
lemma ln_ge_zero_imp_ge_one: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
838 |
assumes ln: "0 \<le> ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
839 |
and x: "0 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
840 |
shows "1 \<le> x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
841 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
842 |
from ln have "ln 1 \<le> ln x" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
843 |
thus ?thesis by (simp add: x del: ln_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
844 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
845 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
846 |
lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
847 |
by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
848 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
849 |
lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
850 |
by (insert ln_ge_zero_iff [of x], arith) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
851 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
852 |
lemma ln_gt_zero: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
853 |
assumes x: "1 < x" shows "0 < ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
854 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
855 |
have "0 < x" using x by arith |
22915 | 856 |
hence "exp 0 < exp (ln x)" by (simp add: x) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
857 |
thus ?thesis by (simp only: exp_less_cancel_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
858 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
859 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
860 |
lemma ln_gt_zero_imp_gt_one: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
861 |
assumes ln: "0 < ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
862 |
and x: "0 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
863 |
shows "1 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
864 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
865 |
from ln have "ln 1 < ln x" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
866 |
thus ?thesis by (simp add: x del: ln_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
867 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
868 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
869 |
lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
870 |
by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
871 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
872 |
lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
873 |
by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
874 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
875 |
lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0" |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
876 |
by simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
877 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
878 |
lemma exp_ln_eq: "exp u = x ==> ln x = u" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
879 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
880 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
881 |
lemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
882 |
apply (subgoal_tac "isCont ln (exp (ln x))", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
883 |
apply (rule isCont_inverse_function [where f=exp], simp_all) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
884 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
885 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
886 |
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
887 |
by simp (* TODO: put in Deriv.thy *) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
888 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
889 |
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
890 |
apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
891 |
apply (erule lemma_DERIV_subst [OF DERIV_exp exp_ln]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
892 |
apply (simp_all add: abs_if isCont_ln) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
893 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
894 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
895 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
896 |
subsection{*Basic Properties of the Trigonometric Functions*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
897 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
898 |
lemma sin_zero [simp]: "sin 0 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
899 |
by (auto intro!: sums_unique [symmetric] LIMSEQ_const |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
900 |
simp add: sin_def sums_def simp del: power_0_left) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
901 |
|
15539 | 902 |
lemma lemma_series_zero2: |
903 |
"(\<forall>m. n \<le> m --> f m = 0) --> f sums setsum f {0..<n}" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
904 |
by (auto intro: series_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
905 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
906 |
lemma cos_zero [simp]: "cos 0 = 1" |
15229 | 907 |
apply (simp add: cos_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
908 |
apply (rule sums_unique [symmetric]) |
15229 | 909 |
apply (cut_tac n = 1 and f = "(%n. (if even n then (- 1) ^ (n div 2) / (real (fact n)) else 0) * 0 ^ n)" in lemma_series_zero2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
910 |
apply auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
911 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
912 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
913 |
lemma DERIV_sin_sin_mult [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
914 |
"DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
915 |
by (rule DERIV_mult, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
916 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
917 |
lemma DERIV_sin_sin_mult2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
918 |
"DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
919 |
apply (cut_tac x = x in DERIV_sin_sin_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
920 |
apply (auto simp add: mult_assoc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
921 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
922 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
923 |
lemma DERIV_sin_realpow2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
924 |
"DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
925 |
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
926 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
927 |
lemma DERIV_sin_realpow2a [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
928 |
"DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
929 |
by (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
930 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
931 |
lemma DERIV_cos_cos_mult [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
932 |
"DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
933 |
by (rule DERIV_mult, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
934 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
935 |
lemma DERIV_cos_cos_mult2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
936 |
"DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
937 |
apply (cut_tac x = x in DERIV_cos_cos_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
938 |
apply (auto simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
939 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
940 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
941 |
lemma DERIV_cos_realpow2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
942 |
"DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
943 |
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
944 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
945 |
lemma DERIV_cos_realpow2a [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
946 |
"DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
947 |
by (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
948 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
949 |
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
950 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
951 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
952 |
lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
953 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
954 |
apply (rule DERIV_cos_realpow2a, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
955 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
956 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
957 |
(* most useful *) |
15229 | 958 |
lemma DERIV_cos_cos_mult3 [simp]: |
959 |
"DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
960 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
961 |
apply (rule DERIV_cos_cos_mult2, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
962 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
963 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
964 |
lemma DERIV_sin_circle_all: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
965 |
"\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
966 |
(2*cos(x)*sin(x) - 2*cos(x)*sin(x))" |
15229 | 967 |
apply (simp only: diff_minus, safe) |
968 |
apply (rule DERIV_add) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
969 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
970 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
971 |
|
15229 | 972 |
lemma DERIV_sin_circle_all_zero [simp]: |
973 |
"\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
974 |
by (cut_tac DERIV_sin_circle_all, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
975 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
976 |
lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
977 |
apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
978 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
979 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
980 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
981 |
lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
982 |
apply (subst real_add_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
983 |
apply (simp (no_asm) del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
984 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
985 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
986 |
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
987 |
apply (cut_tac x = x in sin_cos_squared_add2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
988 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
989 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
990 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
991 |
lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>" |
15229 | 992 |
apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
993 |
apply (simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
994 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
995 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
996 |
lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
997 |
apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
998 |
apply (simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
999 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1000 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1001 |
lemma real_gt_one_ge_zero_add_less: "[| 1 < x; 0 \<le> y |] ==> 1 < x + (y::real)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1002 |
by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1003 |
|
15081 | 1004 |
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1005 |
apply (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1006 |
apply (drule_tac n = "Suc 0" in power_gt1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1007 |
apply (auto simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1008 |
apply (drule_tac r1 = "cos x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1009 |
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1010 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1011 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1012 |
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1013 |
apply (insert abs_sin_le_one [of x]) |
22998 | 1014 |
apply (simp add: abs_le_iff del: abs_sin_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1015 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1016 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1017 |
lemma sin_le_one [simp]: "sin x \<le> 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1018 |
apply (insert abs_sin_le_one [of x]) |
22998 | 1019 |
apply (simp add: abs_le_iff del: abs_sin_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1020 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1021 |
|
15081 | 1022 |
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1023 |
apply (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1024 |
apply (drule_tac n = "Suc 0" in power_gt1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1025 |
apply (auto simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1026 |
apply (drule_tac r1 = "sin x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1027 |
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1028 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1029 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1030 |
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1031 |
apply (insert abs_cos_le_one [of x]) |
22998 | 1032 |
apply (simp add: abs_le_iff del: abs_cos_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1033 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1034 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1035 |
lemma cos_le_one [simp]: "cos x \<le> 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1036 |
apply (insert abs_cos_le_one [of x]) |
22998 | 1037 |
apply (simp add: abs_le_iff del: abs_cos_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1038 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1039 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1040 |
lemma DERIV_fun_pow: "DERIV g x :> m ==> |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1041 |
DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1042 |
apply (rule lemma_DERIV_subst) |
15229 | 1043 |
apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1044 |
apply (rule DERIV_pow, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1045 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1046 |
|
15229 | 1047 |
lemma DERIV_fun_exp: |
1048 |
"DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1049 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1050 |
apply (rule_tac f = exp in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1051 |
apply (rule DERIV_exp, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1052 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1053 |
|
15229 | 1054 |
lemma DERIV_fun_sin: |
1055 |
"DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1056 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1057 |
apply (rule_tac f = sin in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1058 |
apply (rule DERIV_sin, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1059 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1060 |
|
15229 | 1061 |
lemma DERIV_fun_cos: |
1062 |
"DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1063 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1064 |
apply (rule_tac f = cos in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1065 |
apply (rule DERIV_cos, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1066 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1067 |
|
23069
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
huffman
parents:
23066
diff
changeset
|
1068 |
lemmas DERIV_intros = DERIV_ident DERIV_const DERIV_cos DERIV_cmult |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1069 |
DERIV_sin DERIV_exp DERIV_inverse DERIV_pow |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1070 |
DERIV_add DERIV_diff DERIV_mult DERIV_minus |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1071 |
DERIV_inverse_fun DERIV_quotient DERIV_fun_pow |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1072 |
DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1073 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1074 |
(* lemma *) |
15229 | 1075 |
lemma lemma_DERIV_sin_cos_add: |
1076 |
"\<forall>x. |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1077 |
DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1078 |
(cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1079 |
apply (safe, rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1080 |
apply (best intro!: DERIV_intros intro: DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1081 |
--{*replaces the old @{text DERIV_tac}*} |
15229 | 1082 |
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1083 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1084 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1085 |
lemma sin_cos_add [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1086 |
"(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1087 |
(cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1088 |
apply (cut_tac y = 0 and x = x and y7 = y |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1089 |
in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1090 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1091 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1092 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1093 |
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1094 |
apply (cut_tac x = x and y = y in sin_cos_add) |
22969 | 1095 |
apply (simp del: sin_cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1096 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1097 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1098 |
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1099 |
apply (cut_tac x = x and y = y in sin_cos_add) |
22969 | 1100 |
apply (simp del: sin_cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1101 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1102 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1103 |
lemma lemma_DERIV_sin_cos_minus: |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1104 |
"\<forall>x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1105 |
apply (safe, rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1106 |
apply (best intro!: DERIV_intros intro: DERIV_chain2) |
15229 | 1107 |
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1108 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1109 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1110 |
lemma sin_cos_minus [simp]: |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1111 |
"(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0" |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1112 |
apply (cut_tac y = 0 and x = x |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1113 |
in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all]) |
22969 | 1114 |
apply simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1115 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1116 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1117 |
lemma sin_minus [simp]: "sin (-x) = -sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1118 |
apply (cut_tac x = x in sin_cos_minus) |
22969 | 1119 |
apply (simp del: sin_cos_minus) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1120 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1121 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1122 |
lemma cos_minus [simp]: "cos (-x) = cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1123 |
apply (cut_tac x = x in sin_cos_minus) |
22969 | 1124 |
apply (simp del: sin_cos_minus) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1125 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1126 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1127 |
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y" |
22969 | 1128 |
by (simp add: diff_minus sin_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1129 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1130 |
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1131 |
by (simp add: sin_diff mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1132 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1133 |
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y" |
22969 | 1134 |
by (simp add: diff_minus cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1135 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1136 |
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1137 |
by (simp add: cos_diff mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1138 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1139 |
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1140 |
by (cut_tac x = x and y = x in sin_add, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1141 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1142 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1143 |
lemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1144 |
apply (cut_tac x = x and y = x in cos_add) |
22969 | 1145 |
apply (simp add: power2_eq_square) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1146 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1147 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1148 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1149 |
subsection{*The Constant Pi*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1150 |
|
23043 | 1151 |
definition |
1152 |
pi :: "real" where |
|
23053 | 1153 |
"pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)" |
23043 | 1154 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1155 |
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1156 |
hence define pi.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1157 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1158 |
lemma sin_paired: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1159 |
"(%n. (- 1) ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1160 |
sums sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1161 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1162 |
have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1163 |
(if even k then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1164 |
else (- 1) ^ ((k - Suc 0) div 2) / real (fact k)) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1165 |
x ^ k) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1166 |
sums |
15546 | 1167 |
(\<Sum>n. (if even n then 0 |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1168 |
else (- 1) ^ ((n - Suc 0) div 2) / real (fact n)) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1169 |
x ^ n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1170 |
by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1171 |
thus ?thesis by (simp add: mult_ac sin_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1172 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1173 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1174 |
lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1175 |
apply (subgoal_tac |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1176 |
"(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1177 |
(- 1) ^ k / real (fact (2 * k + 1)) * x ^ (2 * k + 1)) |
15546 | 1178 |
sums (\<Sum>n. (- 1) ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1179 |
prefer 2 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1180 |
apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1181 |
apply (rotate_tac 2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1182 |
apply (drule sin_paired [THEN sums_unique, THEN ssubst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1183 |
apply (auto simp del: fact_Suc realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1184 |
apply (frule sums_unique) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1185 |
apply (auto simp del: fact_Suc realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1186 |
apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1187 |
apply (auto simp del: fact_Suc realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1188 |
apply (erule sums_summable) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1189 |
apply (case_tac "m=0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1190 |
apply (simp (no_asm_simp)) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1191 |
apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x") |
15539 | 1192 |
apply (simp only: mult_less_cancel_left, simp) |
1193 |
apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric]) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1194 |
apply (subgoal_tac "x*x < 2*3", simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1195 |
apply (rule mult_strict_mono) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1196 |
apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1197 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1198 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1199 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1200 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1201 |
apply (subst real_of_nat_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1202 |
apply (subst real_of_nat_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1203 |
apply (subst real_of_nat_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1204 |
apply (subst real_of_nat_mult) |
15539 | 1205 |
apply (simp (no_asm) add: divide_inverse del: fact_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1206 |
apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1207 |
apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1208 |
apply (auto simp add: mult_assoc simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1209 |
apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1210 |
apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1211 |
apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1212 |
apply (erule ssubst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1213 |
apply (auto simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1214 |
apply (subgoal_tac "0 < x ^ (4 * m) ") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1215 |
prefer 2 apply (simp only: zero_less_power) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1216 |
apply (simp (no_asm_simp) add: mult_less_cancel_left) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1217 |
apply (rule mult_strict_mono) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1218 |
apply (simp_all (no_asm_simp)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1219 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1220 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1221 |
lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1222 |
by (auto intro: sin_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1223 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1224 |
lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1225 |
apply (cut_tac x = x in sin_gt_zero1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1226 |
apply (auto simp add: cos_squared_eq cos_double) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1227 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1228 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1229 |
lemma cos_paired: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1230 |
"(%n. (- 1) ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1231 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1232 |
have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1233 |
(if even k then (- 1) ^ (k div 2) / real (fact k) else 0) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1234 |
x ^ k) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1235 |
sums |
15546 | 1236 |
(\<Sum>n. (if even n then (- 1) ^ (n div 2) / real (fact n) else 0) * |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1237 |
x ^ n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1238 |
by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1239 |
thus ?thesis by (simp add: mult_ac cos_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson |