author  paulson 
Mon, 19 Aug 1996 13:06:30 +0200  
changeset 1922  ce495557ac33 
parent 1892  23765bc3e8e2 
child 1948  78e5bfcbc1e9 
permissions  rwrr 
1465  1 
(* Title: HOL/simpdata.ML 
923  2 
ID: $Id$ 
1465  3 
Author: Tobias Nipkow 
923  4 
Copyright 1991 University of Cambridge 
5 

6 
Instantiation of the generic simplifier 

7 
*) 

8 

9 
open Simplifier; 

10 

1922  11 
(*** Integration of simplifier with classical reasoner ***) 
12 

13 
(*Add a simpset to a classical set!*) 

14 
infix 4 addss; 

15 
fun cs addss ss = cs addbefore asm_full_simp_tac ss 1; 

16 

17 
fun Addss ss = (claset := !claset addbefore asm_full_simp_tac ss 1); 

18 

19 
(*Maybe swap the safe_tac and simp_tac lines?**) 

20 
fun auto_tac (cs,ss) = 

21 
TRY (safe_tac cs) THEN 

22 
ALLGOALS (asm_full_simp_tac ss) THEN 

23 
REPEAT (FIRSTGOAL (best_tac (cs addss ss))); 

24 

25 
fun Auto_tac() = auto_tac (!claset, !simpset); 

26 

27 
fun auto() = by (Auto_tac()); 

28 

29 

923  30 
local 
31 

1922  32 
fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]); 
923  33 

1922  34 
val P_imp_P_iff_True = prover "P > (P = True)" RS mp; 
35 
val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection; 

923  36 

1922  37 
val not_P_imp_P_iff_F = prover "~P > (P = False)" RS mp; 
38 
val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection; 

923  39 

1922  40 
fun atomize pairs = 
41 
let fun atoms th = 

42 
(case concl_of th of 

43 
Const("Trueprop",_) $ p => 

44 
(case head_of p of 

45 
Const(a,_) => 

46 
(case assoc(pairs,a) of 

47 
Some(rls) => flat (map atoms ([th] RL rls)) 

48 
 None => [th]) 

49 
 _ => [th]) 

50 
 _ => [th]) 

51 
in atoms end; 

923  52 

1922  53 
fun mk_meta_eq r = case concl_of r of 
54 
Const("==",_)$_$_ => r 

55 
 _$(Const("op =",_)$_$_) => r RS eq_reflection 

56 
 _$(Const("not",_)$_) => r RS not_P_imp_P_eq_False 

57 
 _ => r RS P_imp_P_eq_True; 

58 
(* last 2 lines requires all formulae to be of the from Trueprop(.) *) 

923  59 

1922  60 
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th; 
923  61 

1922  62 
val simp_thms = map prover 
63 
[ "(x=x) = True", 

64 
"(~True) = False", "(~False) = True", "(~ ~ P) = P", 

65 
"(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))", 

66 
"(True=P) = P", "(P=True) = P", 

67 
"(True > P) = P", "(False > P) = True", 

68 
"(P > True) = True", "(P > P) = True", 

69 
"(P > False) = (~P)", "(P > ~P) = (~P)", 

70 
"(P & True) = P", "(True & P) = P", 

71 
"(P & False) = False", "(False & P) = False", "(P & P) = P", 

72 
"(P  True) = True", "(True  P) = True", 

73 
"(P  False) = P", "(False  P) = P", "(P  P) = P", 

74 
"(!x.P) = P", "(? x.P) = P", "? x. x=t", 

75 
"(? x. x=t & P(x)) = P(t)", "(! x. x=t > P(x)) = P(t)" ]; 

923  76 

77 
in 

78 

79 
val meta_eq_to_obj_eq = prove_goal HOL.thy "x==y ==> x=y" 

80 
(fn [prem] => [rewtac prem, rtac refl 1]); 

81 

82 
val eq_sym_conv = prover "(x=y) = (y=x)"; 

83 

84 
val conj_assoc = prover "((P&Q)&R) = (P&(Q&R))"; 

85 

1922  86 
val disj_assoc = prover "((PQ)R) = (P(QR))"; 
87 

88 
val imp_disj = prover "(PQ > R) = ((P>R)&(Q>R))"; 

89 

90 

965  91 
val if_True = prove_goalw HOL.thy [if_def] "(if True then x else y) = x" 
923  92 
(fn _=>[fast_tac (HOL_cs addIs [select_equality]) 1]); 
93 

965  94 
val if_False = prove_goalw HOL.thy [if_def] "(if False then x else y) = y" 
923  95 
(fn _=>[fast_tac (HOL_cs addIs [select_equality]) 1]); 
96 

965  97 
val if_P = prove_goal HOL.thy "P ==> (if P then x else y) = x" 
923  98 
(fn [prem] => [ stac (prem RS eqTrueI) 1, rtac if_True 1 ]); 
99 

965  100 
val if_not_P = prove_goal HOL.thy "~P ==> (if P then x else y) = y" 
923  101 
(fn [prem] => [ stac (prem RS not_P_imp_P_iff_F) 1, rtac if_False 1 ]); 
102 

103 
val expand_if = prove_goal HOL.thy 

965  104 
"P(if Q then x else y) = ((Q > P(x)) & (~Q > P(y)))" 
923  105 
(fn _=> [ (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1), 
1465  106 
rtac (if_P RS ssubst) 2, 
107 
rtac (if_not_P RS ssubst) 1, 

108 
REPEAT(fast_tac HOL_cs 1) ]); 

923  109 

965  110 
val if_bool_eq = prove_goal HOL.thy 
111 
"(if P then Q else R) = ((P>Q) & (~P>R))" 

112 
(fn _ => [rtac expand_if 1]); 

923  113 

988  114 
(*Add congruence rules for = (instead of ==) *) 
115 
infix 4 addcongs; 

923  116 
fun ss addcongs congs = ss addeqcongs (congs RL [eq_reflection]); 
117 

1264  118 
fun Addcongs congs = (simpset := !simpset addcongs congs); 
119 

923  120 
val mksimps_pairs = 
121 
[("op >", [mp]), ("op &", [conjunct1,conjunct2]), 

122 
("All", [spec]), ("True", []), ("False", []), 

965  123 
("If", [if_bool_eq RS iffD1])]; 
923  124 

125 
fun mksimps pairs = map mk_meta_eq o atomize pairs o gen_all; 

126 

1922  127 
val imp_cong = impI RSN 
128 
(2, prove_goal HOL.thy "(P=P')> (P'> (Q=Q'))> ((P>Q) = (P'>Q'))" 

129 
(fn _=> [fast_tac HOL_cs 1]) RS mp RS mp); 

130 

131 
val o_apply = prove_goalw HOL.thy [o_def] "(f o g)(x) = f(g(x))" 

132 
(fn _ => [rtac refl 1]); 

133 

923  134 
val HOL_ss = empty_ss 
135 
setmksimps (mksimps mksimps_pairs) 

136 
setsolver (fn prems => resolve_tac (TrueI::refl::prems) ORELSE' atac 

137 
ORELSE' etac FalseE) 

138 
setsubgoaler asm_simp_tac 

1922  139 
addsimps ([if_True, if_False, o_apply, imp_disj, conj_assoc, disj_assoc] 
140 
@ simp_thms) 

923  141 
addcongs [imp_cong]; 
142 

1922  143 

144 
(*In general it seems wrong to add distributive laws by default: they 

145 
might cause exponential blowup. This one has been added for a while 

146 
and cannot be removed without affecting existing proofs. Moreover, 

147 
rewriting by "(PQ > R) = ((P>R)&(Q>R))" might be justified on the 

148 
grounds that it allows simplification of R in the two cases.*) 

149 

150 

941  151 
local val mktac = mk_case_split_tac (meta_eq_to_obj_eq RS iffD2) 
152 
in 

153 
fun split_tac splits = mktac (map mk_meta_eq splits) 

154 
end; 

155 

1722  156 
local val mktac = mk_case_split_inside_tac (meta_eq_to_obj_eq RS iffD2) 
157 
in 

158 
fun split_inside_tac splits = mktac (map mk_meta_eq splits) 

159 
end; 

160 

923  161 

162 
(* eliminiation of existential quantifiers in assumptions *) 

163 

164 
val ex_all_equiv = 

165 
let val lemma1 = prove_goal HOL.thy 

166 
"(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)" 

167 
(fn prems => [resolve_tac prems 1, etac exI 1]); 

168 
val lemma2 = prove_goalw HOL.thy [Ex_def] 

169 
"(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)" 

170 
(fn prems => [REPEAT(resolve_tac prems 1)]) 

171 
in equal_intr lemma1 lemma2 end; 

172 

173 
(* '&' congruence rule: not included by default! 

174 
May slow rewrite proofs down by as much as 50% *) 

175 

176 
val conj_cong = impI RSN 

177 
(2, prove_goal HOL.thy "(P=P')> (P'> (Q=Q'))> ((P&Q) = (P'&Q'))" 

1465  178 
(fn _=> [fast_tac HOL_cs 1]) RS mp RS mp); 
923  179 

1548  180 
val rev_conj_cong = impI RSN 
181 
(2, prove_goal HOL.thy "(Q=Q')> (Q'> (P=P'))> ((P&Q) = (P'&Q'))" 

182 
(fn _=> [fast_tac HOL_cs 1]) RS mp RS mp); 

183 

923  184 
(** 'if' congruence rules: neither included by default! *) 
185 

186 
(*Simplifies x assuming c and y assuming ~c*) 

187 
val if_cong = prove_goal HOL.thy 

965  188 
"[ b=c; c ==> x=u; ~c ==> y=v ] ==>\ 
189 
\ (if b then x else y) = (if c then u else v)" 

923  190 
(fn rew::prems => 
191 
[stac rew 1, stac expand_if 1, stac expand_if 1, 

192 
fast_tac (HOL_cs addDs prems) 1]); 

193 

194 
(*Prevents simplification of x and y: much faster*) 

195 
val if_weak_cong = prove_goal HOL.thy 

965  196 
"b=c ==> (if b then x else y) = (if c then x else y)" 
923  197 
(fn [prem] => [rtac (prem RS arg_cong) 1]); 
198 

199 
(*Prevents simplification of t: much faster*) 

200 
val let_weak_cong = prove_goal HOL.thy 

201 
"a = b ==> (let x=a in t(x)) = (let x=b in t(x))" 

202 
(fn [prem] => [rtac (prem RS arg_cong) 1]); 

203 

204 
end; 

205 

206 
fun prove nm thm = qed_goal nm HOL.thy thm (fn _ => [fast_tac HOL_cs 1]); 

207 

208 
prove "conj_commute" "(P&Q) = (Q&P)"; 

209 
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))"; 

210 
val conj_comms = [conj_commute, conj_left_commute]; 

211 

1922  212 
prove "disj_commute" "(PQ) = (QP)"; 
213 
prove "disj_left_commute" "(P(QR)) = (Q(PR))"; 

214 
val disj_comms = [disj_commute, disj_left_commute]; 

215 

923  216 
prove "conj_disj_distribL" "(P&(QR)) = (P&Q  P&R)"; 
217 
prove "conj_disj_distribR" "((PQ)&R) = (P&R  Q&R)"; 

1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset

218 

1892  219 
prove "disj_conj_distribL" "(P(Q&R)) = ((PQ) & (PR))"; 
220 
prove "disj_conj_distribR" "((P&Q)R) = ((PR) & (QR))"; 

221 

222 
prove "imp_conj_distrib" "(P > (Q&R)) = ((P>Q) & (P>R))"; 

1922  223 
prove "imp_conj" "((P&Q)>R) = (P > (Q > R))"; 
1892  224 

1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset

225 
prove "de_Morgan_disj" "(~(P  Q)) = (~P & ~Q)"; 
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset

226 
prove "de_Morgan_conj" "(~(P & Q)) = (~P  ~Q)"; 
1922  227 
prove "not_iff" "(P~=Q) = (P = (~Q))"; 
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset

228 

1660  229 
prove "not_all" "(~ (! x.P(x))) = (? x.~P(x))"; 
1922  230 
prove "imp_all" "((! x. P x) > Q) = (? x. P x > Q)"; 
1660  231 
prove "not_ex" "(~ (? x.P(x))) = (! x.~P(x))"; 
1922  232 
prove "imp_ex" "((? x. P x) > Q) = (! x. P x > Q)"; 
1660  233 

1655  234 
prove "ex_disj_distrib" "(? x. P(x)  Q(x)) = ((? x. P(x))  (? x. Q(x)))"; 
235 
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))"; 

236 

1758  237 

1655  238 
qed_goal "if_cancel" HOL.thy "(if c then x else x) = x" 
239 
(fn _ => [simp_tac (HOL_ss setloop (split_tac [expand_if])) 1]); 

240 

241 
qed_goal "if_distrib" HOL.thy 

242 
"f(if c then x else y) = (if c then f x else f y)" 

243 
(fn _ => [simp_tac (HOL_ss setloop (split_tac [expand_if])) 1]); 

244 

1874  245 
qed_goalw "o_assoc" HOL.thy [o_def] "f o (g o h) = (f o g o h)" 
1655  246 
(fn _=>[rtac ext 1, rtac refl 1]); 