author  paulson 
Thu, 15 Sep 2005 11:15:52 +0200  
changeset 17404  d16c3a62c396 
parent 17279  7cd0099ae9bc 
child 17412  e26cb20ef0cc 
permissions  rwrr 
15347  1 
(* Author: Jia Meng, Cambridge University Computer Laboratory 
2 
ID: $Id$ 

3 
Copyright 2004 University of Cambridge 

4 

5 
Transformation of axiom rules (elim/intro/etc) into CNF forms. 

6 
*) 

7 

15997  8 
signature RES_AXIOMS = 
9 
sig 

10 
exception ELIMR2FOL of string 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

11 
val tagging_enabled : bool 
15997  12 
val elimRule_tac : thm > Tactical.tactic 
16012  13 
val elimR2Fol : thm > term 
15997  14 
val transform_elim : thm > thm 
16039
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

15 
val clausify_axiom_pairs : (string*thm) > (ResClause.clause*thm) list 
15997  16 
val cnf_axiom : (string * thm) > thm list 
17 
val meta_cnf_axiom : thm > thm list 

16012  18 
val rm_Eps : (term * term) list > thm list > term list 
15997  19 
val claset_rules_of_thy : theory > (string * thm) list 
20 
val simpset_rules_of_thy : theory > (string * thm) list 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

21 
val clausify_rules_pairs : (string*thm) list > thm list > (ResClause.clause*thm) list list * thm list 
16563  22 
val clause_setup : (theory > theory) list 
23 
val meson_method_setup : (theory > theory) list 

15997  24 
end; 
15347  25 

15997  26 
structure ResAxioms : RES_AXIOMS = 
27 

28 
struct 

15347  29 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

30 
val tagging_enabled = false (*compile_time option*) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

31 

15997  32 
(**** Transformation of Elimination Rules into FirstOrder Formulas****) 
15347  33 

15390  34 
(* a tactic used to prove an elimrule. *) 
16009  35 
fun elimRule_tac th = 
36 
((rtac impI 1) ORELSE (rtac notI 1)) THEN (etac th 1) THEN 

16588  37 
REPEAT(fast_tac HOL_cs 1); 
15347  38 

39 
exception ELIMR2FOL of string; 

40 

15390  41 
(* functions used to construct a formula *) 
42 

15347  43 
fun make_disjs [x] = x 
15956  44 
 make_disjs (x :: xs) = HOLogic.mk_disj(x, make_disjs xs) 
15347  45 

46 
fun make_conjs [x] = x 

15956  47 
 make_conjs (x :: xs) = HOLogic.mk_conj(x, make_conjs xs) 
48 

49 
fun add_EX tm [] = tm 

50 
 add_EX tm ((x,xtp)::xs) = add_EX (HOLogic.exists_const xtp $ Abs(x,xtp,tm)) xs; 

15347  51 

52 

53 

15956  54 
fun is_neg (Const("Trueprop",_) $ (Const("Not",_) $ Free(p,_))) (Const("Trueprop",_) $ Free(q,_)) = (p = q) 
15371  55 
 is_neg _ _ = false; 
56 

15347  57 

58 
exception STRIP_CONCL; 

59 

60 

15371  61 
fun strip_concl' prems bvs (Const ("==>",_) $ P $ Q) = 
15956  62 
let val P' = HOLogic.dest_Trueprop P 
63 
val prems' = P'::prems 

64 
in 

15371  65 
strip_concl' prems' bvs Q 
15956  66 
end 
15371  67 
 strip_concl' prems bvs P = 
15956  68 
let val P' = HOLogic.Not $ (HOLogic.dest_Trueprop P) 
69 
in 

15371  70 
add_EX (make_conjs (P'::prems)) bvs 
15956  71 
end; 
15371  72 

73 

74 
fun strip_concl prems bvs concl (Const ("all", _) $ Abs (x,xtp,body)) = strip_concl prems ((x,xtp)::bvs) concl body 

75 
 strip_concl prems bvs concl (Const ("==>",_) $ P $ Q) = 

76 
if (is_neg P concl) then (strip_concl' prems bvs Q) 

77 
else 

15956  78 
(let val P' = HOLogic.dest_Trueprop P 
15371  79 
val prems' = P'::prems 
80 
in 

81 
strip_concl prems' bvs concl Q 

82 
end) 

83 
 strip_concl prems bvs concl _ = add_EX (make_conjs prems) bvs; 

15347  84 

85 

86 

15371  87 
fun trans_elim (main,others,concl) = 
88 
let val others' = map (strip_concl [] [] concl) others 

15347  89 
val disjs = make_disjs others' 
90 
in 

15956  91 
HOLogic.mk_imp (HOLogic.dest_Trueprop main, disjs) 
15347  92 
end; 
93 

94 

15390  95 
(* aux function of elim2Fol, take away predicate variable. *) 
15371  96 
fun elimR2Fol_aux prems concl = 
15347  97 
let val nprems = length prems 
98 
val main = hd prems 

99 
in 

15956  100 
if (nprems = 1) then HOLogic.Not $ (HOLogic.dest_Trueprop main) 
15371  101 
else trans_elim (main, tl prems, concl) 
15347  102 
end; 
103 

15956  104 

16012  105 
(* convert an elim rule into an equivalent formula, of type term. *) 
15347  106 
fun elimR2Fol elimR = 
107 
let val elimR' = Drule.freeze_all elimR 

108 
val (prems,concl) = (prems_of elimR', concl_of elimR') 

109 
in 

110 
case concl of Const("Trueprop",_) $ Free(_,Type("bool",[])) 

15956  111 
=> HOLogic.mk_Trueprop (elimR2Fol_aux prems concl) 
112 
 Free(x,Type("prop",[])) => HOLogic.mk_Trueprop(elimR2Fol_aux prems concl) 

15347  113 
 _ => raise ELIMR2FOL("Not an elimination rule!") 
114 
end; 

115 

116 

15390  117 
(* check if a rule is an elim rule *) 
16009  118 
fun is_elimR th = 
119 
case (concl_of th) of (Const ("Trueprop", _) $ Var (idx,_)) => true 

15347  120 
 Var(indx,Type("prop",[])) => true 
121 
 _ => false; 

122 

15997  123 
(* convert an elimrule into an equivalent theorem that does not have the 
124 
predicate variable. Leave other theorems unchanged.*) 

16009  125 
fun transform_elim th = 
126 
if is_elimR th then 

127 
let val tm = elimR2Fol th 

128 
val ctm = cterm_of (sign_of_thm th) tm 

15997  129 
in 
16009  130 
prove_goalw_cterm [] ctm (fn prems => [elimRule_tac th]) 
15997  131 
end 
16563  132 
else th; 
15997  133 

134 

135 
(**** Transformation of Clasets and Simpsets into FirstOrder Axioms ****) 

136 

15390  137 
(* repeated resolution *) 
15347  138 
fun repeat_RS thm1 thm2 = 
139 
let val thm1' = thm1 RS thm2 handle THM _ => thm1 

140 
in 

141 
if eq_thm(thm1,thm1') then thm1' else (repeat_RS thm1' thm2) 

142 
end; 

143 

144 

16009  145 
(*Convert a theorem into NNF and also skolemize it. Original version, using 
146 
Hilbert's epsilon in the resulting clauses.*) 

147 
fun skolem_axiom th = 

16588  148 
let val th' = (skolemize o make_nnf o ObjectLogic.atomize_thm o Drule.freeze_all) th 
149 
in repeat_RS th' someI_ex 

150 
end; 

15347  151 

152 

16009  153 
fun cnf_rule th = make_clauses [skolem_axiom (transform_elim th)]; 
15347  154 

16563  155 
(*Transfer a theorem into theory Reconstruction.thy if it is not already 
15359
8bad1f42fec0
new CLAUSIFY attribute for proof reconstruction with lemmas
paulson
parents:
15347
diff
changeset

156 
inside that theory  because it's needed for Skolemization *) 
8bad1f42fec0
new CLAUSIFY attribute for proof reconstruction with lemmas
paulson
parents:
15347
diff
changeset

157 

16563  158 
(*This will refer to the final version of theory Reconstruction.*) 
159 
val recon_thy_ref = Theory.self_ref (the_context ()); 

15359
8bad1f42fec0
new CLAUSIFY attribute for proof reconstruction with lemmas
paulson
parents:
15347
diff
changeset

160 

16563  161 
(*If called while Reconstruction is being created, it will transfer to the 
162 
current version. If called afterward, it will transfer to the final version.*) 

16009  163 
fun transfer_to_Reconstruction th = 
16563  164 
transfer (Theory.deref recon_thy_ref) th handle THM _ => th; 
15347  165 

15955
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

166 
fun is_taut th = 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

167 
case (prop_of th) of 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

168 
(Const ("Trueprop", _) $ Const ("True", _)) => true 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

169 
 _ => false; 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

170 

87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

171 
(* remove tautologous clauses *) 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

172 
val rm_redundant_cls = List.filter (not o is_taut); 
15347  173 

174 
(* transform an Isabelle thm into CNF *) 

16009  175 
fun cnf_axiom_aux th = 
16173  176 
map zero_var_indexes 
16009  177 
(rm_redundant_cls (cnf_rule (transfer_to_Reconstruction th))); 
15997  178 

179 

16009  180 
(**** SKOLEMIZATION BY INFERENCE (lcp) ****) 
181 

182 
(*Traverse a term, accumulating Skolem function definitions.*) 

183 
fun declare_skofuns s t thy = 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

184 
let fun dec_sko (Const ("Ex",_) $ (xtp as Abs(_,T,p))) (n, (thy, axs)) = 
16009  185 
(*Existential: declare a Skolem function, then insert into body and continue*) 
186 
let val cname = s ^ "_" ^ Int.toString n 

16012  187 
val args = term_frees xtp (*get the formal parameter list*) 
16009  188 
val Ts = map type_of args 
189 
val cT = Ts > T 

16125  190 
val c = Const (Sign.full_name (Theory.sign_of thy) cname, cT) 
16009  191 
val rhs = list_abs_free (map dest_Free args, HOLogic.choice_const T $ xtp) 
16012  192 
(*Forms a lambdaabstraction over the formal parameters*) 
16009  193 
val def = equals cT $ c $ rhs 
194 
val thy' = Theory.add_consts_i [(cname, cT, NoSyn)] thy 

16012  195 
(*Theory is augmented with the constant, then its def*) 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

196 
val cdef = cname ^ "_def" 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

197 
val thy'' = Theory.add_defs_i false [(cdef, def)] thy' 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

198 
in dec_sko (subst_bound (list_comb(c,args), p)) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

199 
(n+1, (thy'', get_axiom thy'' cdef :: axs)) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

200 
end 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

201 
 dec_sko (Const ("All",_) $ (xtp as Abs(a,T,p))) (n, thx) = 
16012  202 
(*Universal quant: insert a free variable into body and continue*) 
16009  203 
let val fname = variant (add_term_names (p,[])) a 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

204 
in dec_sko (subst_bound (Free(fname,T), p)) (n, thx) end 
16009  205 
 dec_sko (Const ("op &", _) $ p $ q) nthy = 
206 
dec_sko q (dec_sko p nthy) 

207 
 dec_sko (Const ("op ", _) $ p $ q) nthy = 

208 
dec_sko q (dec_sko p nthy) 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

209 
 dec_sko (Const ("HOL.tag", _) $ p) nthy = 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

210 
dec_sko p nthy 
16009  211 
 dec_sko (Const ("Trueprop", _) $ p) nthy = 
212 
dec_sko p nthy 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

213 
 dec_sko t nthx = nthx (*Do nothing otherwise*) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

214 
in #2 (dec_sko t (1, (thy,[]))) end; 
16009  215 

216 
(*cterms are used throughout for efficiency*) 

217 
val cTrueprop = Thm.cterm_of (Theory.sign_of HOL.thy) HOLogic.Trueprop; 

218 

219 
(*cterm version of mk_cTrueprop*) 

220 
fun c_mkTrueprop A = Thm.capply cTrueprop A; 

221 

222 
(*Given an abstraction over n variables, replace the bound variables by free 

223 
ones. Return the body, along with the list of free variables.*) 

224 
fun c_variant_abs_multi (ct0, vars) = 

225 
let val (cv,ct) = Thm.dest_abs NONE ct0 

226 
in c_variant_abs_multi (ct, cv::vars) end 

227 
handle CTERM _ => (ct0, rev vars); 

228 

229 
(*Given the definition of a Skolem function, return a theorem to replace 

230 
an existential formula by a use of that function.*) 

16588  231 
fun skolem_of_def def = 
16009  232 
let val (c,rhs) = Drule.dest_equals (cprop_of (Drule.freeze_all def)) 
233 
val (ch, frees) = c_variant_abs_multi (rhs, []) 

234 
val (chil,cabs) = Thm.dest_comb ch 

16588  235 
val {sign,t, ...} = rep_cterm chil 
16009  236 
val (Const ("Hilbert_Choice.Eps", Type("fun",[_,T]))) = t 
237 
val cex = Thm.cterm_of sign (HOLogic.exists_const T) 

238 
val ex_tm = c_mkTrueprop (Thm.capply cex cabs) 

239 
and conc = c_mkTrueprop (Drule.beta_conv cabs (Drule.list_comb(c,frees))); 

240 
in prove_goalw_cterm [def] (Drule.mk_implies (ex_tm, conc)) 

241 
(fn [prem] => [ rtac (prem RS someI_ex) 1 ]) 

242 
end; 

243 

244 

245 
(*Converts an Isabelle theorem (intro, elim or simp format) into nnf.*) 

246 
fun to_nnf thy th = 

16588  247 
th > Thm.transfer thy 
248 
> transform_elim > Drule.freeze_all 

249 
> ObjectLogic.atomize_thm > make_nnf; 

16009  250 

251 
(*The cache prevents repeated clausification of a theorem, 

16800  252 
and also repeated declaration of Skolem functions*) (* FIXME better use Termtab!? *) 
15955
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

253 
val clause_cache = ref (Symtab.empty : (thm * thm list) Symtab.table) 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

254 

16009  255 
(*Declare Skolem functions for a theorem, supplied in nnf and with its name*) 
256 
fun skolem thy (name,th) = 

16588  257 
let val cname = (case name of "" => gensym "sko"  s => Sign.base_name s) 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

258 
val (thy',axs) = declare_skofuns cname (#prop (rep_thm th)) thy 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

259 
in (map skolem_of_def axs, thy') end; 
16009  260 

261 
(*Populate the clause cache using the supplied theorems*) 

262 
fun skolemlist [] thy = thy 

263 
 skolemlist ((name,th)::nths) thy = 

17261  264 
(case Symtab.curried_lookup (!clause_cache) name of 
16009  265 
NONE => 
16588  266 
let val (nnfth,ok) = (to_nnf thy th, true) 
267 
handle THM _ => (asm_rl, false) 

268 
in 

269 
if ok then 

270 
let val (skoths,thy') = skolem thy (name, nnfth) 

271 
val cls = Meson.make_cnf skoths nnfth 

17261  272 
in change clause_cache (Symtab.curried_update (name, (th, cls))); 
16588  273 
skolemlist nths thy' 
274 
end 

275 
else skolemlist nths thy 

276 
end 

16009  277 
 SOME _ => skolemlist nths thy) (*FIXME: check for duplicate names?*) 
278 

279 
(*Exported function to convert Isabelle theorems into axiom clauses*) 

15956  280 
fun cnf_axiom (name,th) = 
281 
case name of 

15955
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

282 
"" => cnf_axiom_aux th (*no name, so can't cache*) 
17261  283 
 s => case Symtab.curried_lookup (!clause_cache) s of 
15955
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

284 
NONE => 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

285 
let val cls = cnf_axiom_aux th 
17261  286 
in change clause_cache (Symtab.curried_update (s, (th, cls))); cls end 
15955
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

287 
 SOME(th',cls) => 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

288 
if eq_thm(th,th') then cls 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

289 
else (*New theorem stored under the same name? Possible??*) 
87cf2ce8ede8
memoization of ResAxioms.cnf_axiom rather than of Reconstruction.clausify_rule
paulson
parents:
15872
diff
changeset

290 
let val cls = cnf_axiom_aux th 
17261  291 
in change clause_cache (Symtab.curried_update (s, (th, cls))); cls end; 
15347  292 

15956  293 
fun pairname th = (Thm.name_of_thm th, th); 
294 

295 
fun meta_cnf_axiom th = 

296 
map Meson.make_meta_clause (cnf_axiom (pairname th)); 

15499  297 

15347  298 

299 
(* changed: with one extra case added *) 

15956  300 
fun univ_vars_of_aux (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,body)) vars = 
301 
univ_vars_of_aux body vars 

302 
 univ_vars_of_aux (Const ("Ex",_) $ Abs(_,_,body)) vars = 

303 
univ_vars_of_aux body vars (* EX x. body *) 

15347  304 
 univ_vars_of_aux (P $ Q) vars = 
15956  305 
univ_vars_of_aux Q (univ_vars_of_aux P vars) 
15347  306 
 univ_vars_of_aux (t as Var(_,_)) vars = 
15956  307 
if (t mem vars) then vars else (t::vars) 
15347  308 
 univ_vars_of_aux _ vars = vars; 
309 

310 
fun univ_vars_of t = univ_vars_of_aux t []; 

311 

312 

313 
fun get_new_skolem epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,tp,_))) = 

314 
let val all_vars = univ_vars_of t 

315 
val sk_term = ResSkolemFunction.gen_skolem all_vars tp 

316 
in 

317 
(sk_term,(t,sk_term)::epss) 

318 
end; 

319 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

320 
(*FIXME: use alist lookup!!*) 
15531  321 
fun sk_lookup [] t = NONE 
322 
 sk_lookup ((tm,sk_tm)::tms) t = if (t = tm) then SOME (sk_tm) else (sk_lookup tms t); 

15347  323 

15390  324 
(* get the proper skolem term to replace epsilon term *) 
15347  325 
fun get_skolem epss t = 
15956  326 
case (sk_lookup epss t) of NONE => get_new_skolem epss t 
327 
 SOME sk => (sk,epss); 

15347  328 

16009  329 
fun rm_Eps_cls_aux epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,_))) = 
330 
get_skolem epss t 

15347  331 
 rm_Eps_cls_aux epss (P $ Q) = 
16009  332 
let val (P',epss') = rm_Eps_cls_aux epss P 
333 
val (Q',epss'') = rm_Eps_cls_aux epss' Q 

334 
in (P' $ Q',epss'') end 

15347  335 
 rm_Eps_cls_aux epss t = (t,epss); 
336 

16009  337 
fun rm_Eps_cls epss th = rm_Eps_cls_aux epss (prop_of th); 
15347  338 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

339 
(* replace the epsilon terms in a formula by skolem terms. *) 
15347  340 
fun rm_Eps _ [] = [] 
16009  341 
 rm_Eps epss (th::thms) = 
342 
let val (th',epss') = rm_Eps_cls epss th 

343 
in th' :: (rm_Eps epss' thms) end; 

15347  344 

345 

346 

15872  347 
(**** Extract and Clausify theorems from a theory's claset and simpset ****) 
15347  348 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

349 
(*Preserve the name of "th" after the transformation "f"*) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

350 
fun preserve_name f th = Thm.name_thm (Thm.name_of_thm th, f th); 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

351 

d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

352 
(*Tags identify the major premise or conclusion, as hints to resolution provers. 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

353 
However, they don't appear to help in recent tests, and they complicate the code.*) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

354 
val tagI = thm "tagI"; 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

355 
val tagD = thm "tagD"; 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

356 

d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

357 
val tag_intro = preserve_name (fn th => th RS tagI); 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

358 
val tag_elim = preserve_name (fn th => tagD RS th); 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

359 

15347  360 
fun claset_rules_of_thy thy = 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

361 
let val cs = rep_cs (claset_of thy) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

362 
val intros = (#safeIs cs) @ (#hazIs cs) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

363 
val elims = (#safeEs cs) @ (#hazEs cs) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

364 
in 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

365 
if tagging_enabled 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

366 
then map pairname (map tag_intro intros @ map tag_elim elims) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

367 
else map pairname (intros @ elims) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

368 
end; 
15347  369 

370 
fun simpset_rules_of_thy thy = 

16800  371 
let val rules = #rules (fst (rep_ss (simpset_of thy))) 
372 
in map (fn r => (#name r, #thm r)) (Net.entries rules) end; 

15347  373 

374 

15872  375 
(**** Translate a set of classical/simplifier rules into CNF (still as type "thm") ****) 
15347  376 

377 
(* classical rules *) 

15872  378 
fun cnf_rules [] err_list = ([],err_list) 
16009  379 
 cnf_rules ((name,th) :: thms) err_list = 
15872  380 
let val (ts,es) = cnf_rules thms err_list 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

381 
in (cnf_axiom (name,th) :: ts,es) handle _ => (ts, (th::es)) end; 
15347  382 

383 

15872  384 
(**** Convert all theorems of a claset/simpset into clauses (ResClause.clause) ****) 
15347  385 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

386 
fun addclause (c,th) l = 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

387 
if ResClause.isTaut c then l else (c,th) :: l; 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

388 

16156
2f6fc19aba1e
Fixed array containing clasimpset rules. Added flags to turn on and off reconstruction and full spass
quigley
parents:
16125
diff
changeset

389 
(* outputs a list of (clause,thm) pairs *) 
16039
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

390 
fun clausify_axiom_pairs (thm_name,thm) = 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

391 
let val isa_clauses = cnf_axiom (thm_name,thm) 
16039
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

392 
val isa_clauses' = rm_Eps [] isa_clauses 
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

393 
val clauses_n = length isa_clauses 
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

394 
fun make_axiom_clauses _ [] []= [] 
16897  395 
 make_axiom_clauses i (cls::clss) (cls'::clss') = 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

396 
addclause (ResClause.make_axiom_clause cls (thm_name,i), cls') 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

397 
(make_axiom_clauses (i+1) clss clss') 
15347  398 
in 
16039
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

399 
make_axiom_clauses 0 isa_clauses' isa_clauses 
17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

400 
end 
15347  401 

16039
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

402 
fun clausify_rules_pairs [] err_list = ([],err_list) 
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

403 
 clausify_rules_pairs ((name,thm)::thms) err_list = 
16897  404 
let val (ts,es) = clausify_rules_pairs thms err_list 
405 
in 

406 
((clausify_axiom_pairs (name,thm))::ts, es) 

17404
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

407 
handle THM (msg,_,_) => 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

408 
(debug ("Cannot clausify " ^ name ^ ": " ^ msg); 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

409 
(ts, (thm::es))) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

410 
 ResClause.CLAUSE (msg,t) => 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

411 
(debug ("Cannot clausify " ^ name ^ ": " ^ msg ^ 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

412 
": " ^ TermLib.string_of_term t); 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

413 
(ts, (thm::es))) 
d16c3a62c396
the experimental tagging system, and the usual tidying
paulson
parents:
17279
diff
changeset

414 

16897  415 
end; 
16039
dfe264950511
Moved some of the clausify functions from ATP/res_clasimpset.ML to res_axioms.ML.
quigley
parents:
16012
diff
changeset

416 

15347  417 

16009  418 
(*Setup function: takes a theory and installs ALL simprules and claset rules 
419 
into the clause cache*) 

420 
fun clause_cache_setup thy = 

421 
let val simps = simpset_rules_of_thy thy 

422 
and clas = claset_rules_of_thy thy 

423 
in skolemlist clas (skolemlist simps thy) end; 

424 

16563  425 
val clause_setup = [clause_cache_setup]; 
426 

427 

428 
(*** meson proof methods ***) 

429 

430 
fun cnf_rules_of_ths ths = List.concat (#1 (cnf_rules (map pairname ths) [])); 

431 

432 
fun meson_meth ths ctxt = 

433 
Method.SIMPLE_METHOD' HEADGOAL 

434 
(CHANGED_PROP o Meson.meson_claset_tac (cnf_rules_of_ths ths) (local_claset_of ctxt)); 

435 

436 
val meson_method_setup = 

437 
[Method.add_methods 

438 
[("meson", Method.thms_ctxt_args meson_meth, 

439 
"The MESON resolution proof procedure")]]; 

15347  440 

441 
end; 