src/HOL/Induct/Com.thy
author huffman
Fri Aug 12 14:45:50 2011 -0700 (2011-08-12)
changeset 44174 d1d79f0e1ea6
parent 41818 6d4c3ee8219d
child 44965 9e17d632a9ed
permissions -rw-r--r--
make more HOL theories work with separate set type
wenzelm@36862
     1
(*  Title:      HOL/Induct/Com.thy
paulson@3120
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3120
     3
    Copyright   1997  University of Cambridge
paulson@3120
     4
paulson@3120
     5
Example of Mutual Induction via Iteratived Inductive Definitions: Commands
paulson@3120
     6
*)
paulson@3120
     7
paulson@14527
     8
header{*Mutual Induction via Iteratived Inductive Definitions*}
paulson@14527
     9
haftmann@16417
    10
theory Com imports Main begin
paulson@3120
    11
paulson@13075
    12
typedecl loc
wenzelm@41818
    13
type_synonym state = "loc => nat"
paulson@3120
    14
paulson@3120
    15
datatype
paulson@3120
    16
  exp = N nat
paulson@3120
    17
      | X loc
wenzelm@24824
    18
      | Op "nat => nat => nat" exp exp
nipkow@10759
    19
      | valOf com exp          ("VALOF _ RESULTIS _"  60)
nipkow@10759
    20
and
nipkow@10759
    21
  com = SKIP
wenzelm@24824
    22
      | Assign loc exp         (infixl ":=" 60)
wenzelm@24824
    23
      | Semi com com           ("_;;_"  [60, 60] 60)
wenzelm@24824
    24
      | Cond exp com com       ("IF _ THEN _ ELSE _"  60)
nipkow@10759
    25
      | While exp com          ("WHILE _ DO _"  60)
paulson@3120
    26
paulson@14527
    27
paulson@14527
    28
subsection {* Commands *}
paulson@14527
    29
paulson@13075
    30
text{* Execution of commands *}
oheimb@4264
    31
wenzelm@19736
    32
abbreviation (input)
berghofe@23746
    33
  generic_rel  ("_/ -|[_]-> _" [50,0,50] 50)  where
wenzelm@19736
    34
  "esig -|[eval]-> ns == (esig,ns) \<in> eval"
paulson@3120
    35
paulson@13075
    36
text{*Command execution.  Natural numbers represent Booleans: 0=True, 1=False*}
paulson@3120
    37
berghofe@23746
    38
inductive_set
berghofe@23746
    39
  exec :: "((exp*state) * (nat*state)) set => ((com*state)*state)set"
berghofe@23746
    40
  and exec_rel :: "com * state => ((exp*state) * (nat*state)) set => state => bool"
berghofe@23746
    41
    ("_/ -[_]-> _" [50,0,50] 50)
berghofe@23746
    42
  for eval :: "((exp*state) * (nat*state)) set"
berghofe@23746
    43
  where
berghofe@23746
    44
    "csig -[eval]-> s == (csig,s) \<in> exec eval"
paulson@3120
    45
berghofe@23746
    46
  | Skip:    "(SKIP,s) -[eval]-> s"
berghofe@23746
    47
berghofe@23746
    48
  | Assign:  "(e,s) -|[eval]-> (v,s') ==> (x := e, s) -[eval]-> s'(x:=v)"
berghofe@23746
    49
berghofe@23746
    50
  | Semi:    "[| (c0,s) -[eval]-> s2; (c1,s2) -[eval]-> s1 |]
paulson@13075
    51
             ==> (c0 ;; c1, s) -[eval]-> s1"
paulson@13075
    52
berghofe@23746
    53
  | IfTrue: "[| (e,s) -|[eval]-> (0,s');  (c0,s') -[eval]-> s1 |]
paulson@3120
    54
             ==> (IF e THEN c0 ELSE c1, s) -[eval]-> s1"
paulson@3120
    55
berghofe@23746
    56
  | IfFalse: "[| (e,s) -|[eval]->  (Suc 0, s');  (c1,s') -[eval]-> s1 |]
paulson@13075
    57
              ==> (IF e THEN c0 ELSE c1, s) -[eval]-> s1"
paulson@13075
    58
berghofe@23746
    59
  | WhileFalse: "(e,s) -|[eval]-> (Suc 0, s1)
paulson@13075
    60
                 ==> (WHILE e DO c, s) -[eval]-> s1"
paulson@13075
    61
berghofe@23746
    62
  | WhileTrue:  "[| (e,s) -|[eval]-> (0,s1);
wenzelm@18260
    63
                    (c,s1) -[eval]-> s2;  (WHILE e DO c, s2) -[eval]-> s3 |]
paulson@13075
    64
                 ==> (WHILE e DO c, s) -[eval]-> s3"
paulson@13075
    65
paulson@13075
    66
declare exec.intros [intro]
paulson@13075
    67
paulson@13075
    68
paulson@13075
    69
inductive_cases
wenzelm@18260
    70
        [elim!]: "(SKIP,s) -[eval]-> t"
paulson@13075
    71
    and [elim!]: "(x:=a,s) -[eval]-> t"
wenzelm@18260
    72
    and [elim!]: "(c1;;c2, s) -[eval]-> t"
wenzelm@18260
    73
    and [elim!]: "(IF e THEN c1 ELSE c2, s) -[eval]-> t"
wenzelm@18260
    74
    and exec_WHILE_case: "(WHILE b DO c,s) -[eval]-> t"
paulson@13075
    75
paulson@13075
    76
paulson@13075
    77
text{*Justifies using "exec" in the inductive definition of "eval"*}
paulson@13075
    78
lemma exec_mono: "A<=B ==> exec(A) <= exec(B)"
berghofe@23746
    79
apply (rule subsetI)
berghofe@23746
    80
apply (simp add: split_paired_all)
berghofe@23746
    81
apply (erule exec.induct)
berghofe@23746
    82
apply blast+
paulson@13075
    83
done
paulson@13075
    84
berghofe@23746
    85
lemma [pred_set_conv]:
berghofe@23746
    86
  "((\<lambda>x x' y y'. ((x, x'), (y, y')) \<in> R) <= (\<lambda>x x' y y'. ((x, x'), (y, y')) \<in> S)) = (R <= S)"
huffman@44174
    87
  unfolding subset_eq
huffman@44174
    88
  by (auto simp add: le_fun_def le_bool_def)
berghofe@23746
    89
berghofe@23746
    90
lemma [pred_set_conv]:
berghofe@23746
    91
  "((\<lambda>x x' y. ((x, x'), y) \<in> R) <= (\<lambda>x x' y. ((x, x'), y) \<in> S)) = (R <= S)"
huffman@44174
    92
  unfolding subset_eq
huffman@44174
    93
  by (auto simp add: le_fun_def le_bool_def)
berghofe@23746
    94
paulson@13075
    95
text{*Command execution is functional (deterministic) provided evaluation is*}
paulson@13075
    96
theorem single_valued_exec: "single_valued ev ==> single_valued(exec ev)"
paulson@13075
    97
apply (simp add: single_valued_def)
wenzelm@18260
    98
apply (intro allI)
paulson@13075
    99
apply (rule impI)
paulson@13075
   100
apply (erule exec.induct)
paulson@13075
   101
apply (blast elim: exec_WHILE_case)+
paulson@13075
   102
done
paulson@13075
   103
paulson@13075
   104
paulson@14527
   105
subsection {* Expressions *}
paulson@13075
   106
paulson@13075
   107
text{* Evaluation of arithmetic expressions *}
wenzelm@18260
   108
berghofe@23746
   109
inductive_set
berghofe@23746
   110
  eval    :: "((exp*state) * (nat*state)) set"
berghofe@23746
   111
  and eval_rel :: "[exp*state,nat*state] => bool"  (infixl "-|->" 50)
berghofe@23746
   112
  where
berghofe@23746
   113
    "esig -|-> ns == (esig, ns) \<in> eval"
paulson@13075
   114
berghofe@23746
   115
  | N [intro!]: "(N(n),s) -|-> (n,s)"
paulson@13075
   116
berghofe@23746
   117
  | X [intro!]: "(X(x),s) -|-> (s(x),s)"
berghofe@23746
   118
berghofe@23746
   119
  | Op [intro]: "[| (e0,s) -|-> (n0,s0);  (e1,s0)  -|-> (n1,s1) |]
paulson@13075
   120
                 ==> (Op f e0 e1, s) -|-> (f n0 n1, s1)"
paulson@13075
   121
berghofe@23746
   122
  | valOf [intro]: "[| (c,s) -[eval]-> s0;  (e,s0)  -|-> (n,s1) |]
paulson@13075
   123
                    ==> (VALOF c RESULTIS e, s) -|-> (n, s1)"
paulson@13075
   124
paulson@13075
   125
  monos exec_mono
paulson@13075
   126
paulson@13075
   127
paulson@13075
   128
inductive_cases
wenzelm@18260
   129
        [elim!]: "(N(n),sigma) -|-> (n',s')"
paulson@13075
   130
    and [elim!]: "(X(x),sigma) -|-> (n,s')"
wenzelm@18260
   131
    and [elim!]: "(Op f a1 a2,sigma)  -|-> (n,s')"
wenzelm@18260
   132
    and [elim!]: "(VALOF c RESULTIS e, s) -|-> (n, s1)"
paulson@13075
   133
paulson@13075
   134
paulson@13075
   135
lemma var_assign_eval [intro!]: "(X x, s(x:=n)) -|-> (n, s(x:=n))"
paulson@13075
   136
by (rule fun_upd_same [THEN subst], fast)
paulson@13075
   137
paulson@13075
   138
berghofe@23746
   139
text{* Make the induction rule look nicer -- though @{text eta_contract} makes the new
paulson@13075
   140
    version look worse than it is...*}
paulson@13075
   141
paulson@13075
   142
lemma split_lemma:
paulson@13075
   143
     "{((e,s),(n,s')). P e s n s'} = Collect (split (%v. split (split P v)))"
paulson@13075
   144
by auto
paulson@13075
   145
paulson@13075
   146
text{*New induction rule.  Note the form of the VALOF induction hypothesis*}
wenzelm@18260
   147
lemma eval_induct
wenzelm@18260
   148
  [case_names N X Op valOf, consumes 1, induct set: eval]:
wenzelm@18260
   149
  "[| (e,s) -|-> (n,s');
wenzelm@18260
   150
      !!n s. P (N n) s n s;
wenzelm@18260
   151
      !!s x. P (X x) s (s x) s;
wenzelm@18260
   152
      !!e0 e1 f n0 n1 s s0 s1.
wenzelm@18260
   153
         [| (e0,s) -|-> (n0,s0); P e0 s n0 s0;
wenzelm@18260
   154
            (e1,s0) -|-> (n1,s1); P e1 s0 n1 s1
wenzelm@18260
   155
         |] ==> P (Op f e0 e1) s (f n0 n1) s1;
wenzelm@18260
   156
      !!c e n s s0 s1.
wenzelm@18260
   157
         [| (c,s) -[eval Int {((e,s),(n,s')). P e s n s'}]-> s0;
wenzelm@18260
   158
            (c,s) -[eval]-> s0;
wenzelm@18260
   159
            (e,s0) -|-> (n,s1); P e s0 n s1 |]
wenzelm@18260
   160
         ==> P (VALOF c RESULTIS e) s n s1
paulson@13075
   161
   |] ==> P e s n s'"
wenzelm@18260
   162
apply (induct set: eval)
wenzelm@18260
   163
apply blast
wenzelm@18260
   164
apply blast
wenzelm@18260
   165
apply blast
paulson@13075
   166
apply (frule Int_lower1 [THEN exec_mono, THEN subsetD])
paulson@13075
   167
apply (auto simp add: split_lemma)
paulson@13075
   168
done
paulson@13075
   169
paulson@3120
   170
berghofe@23746
   171
text{*Lemma for @{text Function_eval}.  The major premise is that @{text "(c,s)"} executes to @{text "s1"}
paulson@13075
   172
  using eval restricted to its functional part.  Note that the execution
berghofe@23746
   173
  @{text "(c,s) -[eval]-> s2"} can use unrestricted @{text eval}!  The reason is that
berghofe@23746
   174
  the execution @{text "(c,s) -[eval Int {...}]-> s1"} assures us that execution is
berghofe@23746
   175
  functional on the argument @{text "(c,s)"}.
paulson@13075
   176
*}
paulson@13075
   177
lemma com_Unique:
wenzelm@18260
   178
 "(c,s) -[eval Int {((e,s),(n,t)). \<forall>nt'. (e,s) -|-> nt' --> (n,t)=nt'}]-> s1
paulson@13075
   179
  ==> \<forall>s2. (c,s) -[eval]-> s2 --> s2=s1"
wenzelm@18260
   180
apply (induct set: exec)
wenzelm@18260
   181
      apply simp_all
paulson@13075
   182
      apply blast
paulson@13075
   183
     apply force
paulson@13075
   184
    apply blast
paulson@13075
   185
   apply blast
paulson@13075
   186
  apply blast
paulson@13075
   187
 apply (blast elim: exec_WHILE_case)
paulson@13075
   188
apply (erule_tac V = "(?c,s2) -[?ev]-> s3" in thin_rl)
paulson@13075
   189
apply clarify
wenzelm@18260
   190
apply (erule exec_WHILE_case, blast+)
paulson@13075
   191
done
paulson@13075
   192
paulson@13075
   193
paulson@13075
   194
text{*Expression evaluation is functional, or deterministic*}
paulson@13075
   195
theorem single_valued_eval: "single_valued eval"
paulson@13075
   196
apply (unfold single_valued_def)
wenzelm@18260
   197
apply (intro allI, rule impI)
paulson@13075
   198
apply (simp (no_asm_simp) only: split_tupled_all)
paulson@13075
   199
apply (erule eval_induct)
paulson@13075
   200
apply (drule_tac [4] com_Unique)
paulson@13075
   201
apply (simp_all (no_asm_use))
paulson@13075
   202
apply blast+
paulson@13075
   203
done
paulson@13075
   204
wenzelm@18260
   205
lemma eval_N_E [dest!]: "(N n, s) -|-> (v, s') ==> (v = n & s' = s)"
wenzelm@18260
   206
  by (induct e == "N n" s v s' set: eval) simp_all
paulson@13075
   207
paulson@13075
   208
text{*This theorem says that "WHILE TRUE DO c" cannot terminate*}
wenzelm@18260
   209
lemma while_true_E:
wenzelm@18260
   210
    "(c', s) -[eval]-> t ==> c' = WHILE (N 0) DO c ==> False"
wenzelm@18260
   211
  by (induct set: exec) auto
paulson@13075
   212
paulson@13075
   213
wenzelm@18260
   214
subsection{* Equivalence of IF e THEN c;;(WHILE e DO c) ELSE SKIP  and
paulson@13075
   215
       WHILE e DO c *}
paulson@13075
   216
wenzelm@18260
   217
lemma while_if1:
wenzelm@18260
   218
     "(c',s) -[eval]-> t
wenzelm@18260
   219
      ==> c' = WHILE e DO c ==>
paulson@13075
   220
          (IF e THEN c;;c' ELSE SKIP, s) -[eval]-> t"
wenzelm@18260
   221
  by (induct set: exec) auto
paulson@13075
   222
wenzelm@18260
   223
lemma while_if2:
paulson@13075
   224
     "(c',s) -[eval]-> t
wenzelm@18260
   225
      ==> c' = IF e THEN c;;(WHILE e DO c) ELSE SKIP ==>
paulson@13075
   226
          (WHILE e DO c, s) -[eval]-> t"
wenzelm@18260
   227
  by (induct set: exec) auto
paulson@13075
   228
paulson@13075
   229
paulson@13075
   230
theorem while_if:
wenzelm@18260
   231
     "((IF e THEN c;;(WHILE e DO c) ELSE SKIP, s) -[eval]-> t)  =
paulson@13075
   232
      ((WHILE e DO c, s) -[eval]-> t)"
paulson@13075
   233
by (blast intro: while_if1 while_if2)
paulson@13075
   234
paulson@13075
   235
paulson@13075
   236
paulson@13075
   237
subsection{* Equivalence of  (IF e THEN c1 ELSE c2);;c
paulson@13075
   238
                         and  IF e THEN (c1;;c) ELSE (c2;;c)   *}
paulson@13075
   239
wenzelm@18260
   240
lemma if_semi1:
paulson@13075
   241
     "(c',s) -[eval]-> t
wenzelm@18260
   242
      ==> c' = (IF e THEN c1 ELSE c2);;c ==>
paulson@13075
   243
          (IF e THEN (c1;;c) ELSE (c2;;c), s) -[eval]-> t"
wenzelm@18260
   244
  by (induct set: exec) auto
paulson@13075
   245
wenzelm@18260
   246
lemma if_semi2:
paulson@13075
   247
     "(c',s) -[eval]-> t
wenzelm@18260
   248
      ==> c' = IF e THEN (c1;;c) ELSE (c2;;c) ==>
paulson@13075
   249
          ((IF e THEN c1 ELSE c2);;c, s) -[eval]-> t"
wenzelm@18260
   250
  by (induct set: exec) auto
paulson@13075
   251
wenzelm@18260
   252
theorem if_semi: "(((IF e THEN c1 ELSE c2);;c, s) -[eval]-> t)  =
paulson@13075
   253
                  ((IF e THEN (c1;;c) ELSE (c2;;c), s) -[eval]-> t)"
wenzelm@18260
   254
  by (blast intro: if_semi1 if_semi2)
paulson@13075
   255
paulson@13075
   256
paulson@13075
   257
paulson@13075
   258
subsection{* Equivalence of  VALOF c1 RESULTIS (VALOF c2 RESULTIS e)
paulson@13075
   259
                  and  VALOF c1;;c2 RESULTIS e
paulson@13075
   260
 *}
paulson@13075
   261
wenzelm@18260
   262
lemma valof_valof1:
wenzelm@18260
   263
     "(e',s) -|-> (v,s')
wenzelm@18260
   264
      ==> e' = VALOF c1 RESULTIS (VALOF c2 RESULTIS e) ==>
paulson@13075
   265
          (VALOF c1;;c2 RESULTIS e, s) -|-> (v,s')"
wenzelm@18260
   266
  by (induct set: eval) auto
paulson@13075
   267
wenzelm@18260
   268
lemma valof_valof2:
paulson@13075
   269
     "(e',s) -|-> (v,s')
wenzelm@18260
   270
      ==> e' = VALOF c1;;c2 RESULTIS e ==>
paulson@13075
   271
          (VALOF c1 RESULTIS (VALOF c2 RESULTIS e), s) -|-> (v,s')"
wenzelm@18260
   272
  by (induct set: eval) auto
paulson@13075
   273
paulson@13075
   274
theorem valof_valof:
wenzelm@18260
   275
     "((VALOF c1 RESULTIS (VALOF c2 RESULTIS e), s) -|-> (v,s'))  =
paulson@13075
   276
      ((VALOF c1;;c2 RESULTIS e, s) -|-> (v,s'))"
wenzelm@18260
   277
  by (blast intro: valof_valof1 valof_valof2)
paulson@13075
   278
paulson@13075
   279
paulson@13075
   280
subsection{* Equivalence of  VALOF SKIP RESULTIS e  and  e *}
paulson@13075
   281
wenzelm@18260
   282
lemma valof_skip1:
paulson@13075
   283
     "(e',s) -|-> (v,s')
wenzelm@18260
   284
      ==> e' = VALOF SKIP RESULTIS e ==>
paulson@13075
   285
          (e, s) -|-> (v,s')"
wenzelm@18260
   286
  by (induct set: eval) auto
paulson@13075
   287
paulson@13075
   288
lemma valof_skip2:
wenzelm@18260
   289
    "(e,s) -|-> (v,s') ==> (VALOF SKIP RESULTIS e, s) -|-> (v,s')"
wenzelm@18260
   290
  by blast
paulson@13075
   291
paulson@13075
   292
theorem valof_skip:
wenzelm@18260
   293
    "((VALOF SKIP RESULTIS e, s) -|-> (v,s'))  =  ((e, s) -|-> (v,s'))"
wenzelm@18260
   294
  by (blast intro: valof_skip1 valof_skip2)
paulson@13075
   295
paulson@13075
   296
paulson@13075
   297
subsection{* Equivalence of  VALOF x:=e RESULTIS x  and  e *}
paulson@13075
   298
wenzelm@18260
   299
lemma valof_assign1:
paulson@13075
   300
     "(e',s) -|-> (v,s'')
wenzelm@18260
   301
      ==> e' = VALOF x:=e RESULTIS X x ==>
paulson@13075
   302
          (\<exists>s'. (e, s) -|-> (v,s') & (s'' = s'(x:=v)))"
wenzelm@18260
   303
  by (induct set: eval) (simp_all del: fun_upd_apply, clarify, auto)
paulson@13075
   304
paulson@13075
   305
lemma valof_assign2:
wenzelm@18260
   306
    "(e,s) -|-> (v,s') ==> (VALOF x:=e RESULTIS X x, s) -|-> (v,s'(x:=v))"
wenzelm@18260
   307
  by blast
paulson@13075
   308
paulson@3120
   309
end