TFL/post.ML
author paulson
Fri Oct 17 11:03:48 2003 +0200 (2003-10-17)
changeset 14240 d3843feb9de7
parent 13501 79242cccaddc
child 15150 c7af682b9ee5
permissions -rw-r--r--
improved tracing
wenzelm@10769
     1
(*  Title:      TFL/post.ML
wenzelm@10769
     2
    ID:         $Id$
wenzelm@10769
     3
    Author:     Konrad Slind, Cambridge University Computer Laboratory
wenzelm@10769
     4
    Copyright   1997  University of Cambridge
wenzelm@10769
     5
wenzelm@10769
     6
Second part of main module (postprocessing of TFL definitions).
wenzelm@10769
     7
*)
wenzelm@10769
     8
wenzelm@10769
     9
signature TFL =
wenzelm@10769
    10
sig
wenzelm@10769
    11
  val trace: bool ref
wenzelm@10769
    12
  val quiet_mode: bool ref
wenzelm@10769
    13
  val message: string -> unit
wenzelm@10769
    14
  val tgoalw: theory -> thm list -> thm list -> thm list
wenzelm@10769
    15
  val tgoal: theory -> thm list -> thm list
wenzelm@11632
    16
  val define_i: bool -> theory -> claset -> simpset -> thm list -> thm list -> xstring ->
wenzelm@10769
    17
    term -> term list -> theory * {rules: (thm * int) list, induct: thm, tcs: term list}
wenzelm@11632
    18
  val define: bool -> theory -> claset -> simpset -> thm list -> thm list -> xstring ->
wenzelm@10769
    19
    string -> string list -> theory * {rules: (thm * int) list, induct: thm, tcs: term list}
wenzelm@10769
    20
  val defer_i: theory -> thm list -> xstring -> term list -> theory * thm
wenzelm@10769
    21
  val defer: theory -> thm list -> xstring -> string list -> theory * thm
wenzelm@10769
    22
end;
wenzelm@10769
    23
wenzelm@10769
    24
structure Tfl: TFL =
wenzelm@10769
    25
struct
wenzelm@10769
    26
wenzelm@10769
    27
structure S = USyntax
wenzelm@10769
    28
wenzelm@10769
    29
wenzelm@10769
    30
(* messages *)
wenzelm@10769
    31
wenzelm@10769
    32
val trace = Prim.trace
wenzelm@10769
    33
wenzelm@10769
    34
val quiet_mode = ref false;
wenzelm@10769
    35
fun message s = if ! quiet_mode then () else writeln s;
wenzelm@10769
    36
wenzelm@10769
    37
wenzelm@10769
    38
(* misc *)
wenzelm@10769
    39
wenzelm@12341
    40
val read_term = Thm.term_of oo (HOLogic.read_cterm o Theory.sign_of);
wenzelm@10769
    41
wenzelm@10769
    42
wenzelm@10769
    43
(*---------------------------------------------------------------------------
wenzelm@10769
    44
 * Extract termination goals so that they can be put it into a goalstack, or
wenzelm@10769
    45
 * have a tactic directly applied to them.
wenzelm@10769
    46
 *--------------------------------------------------------------------------*)
wenzelm@10769
    47
fun termination_goals rules =
wenzelm@10769
    48
    map (#1 o Type.freeze_thaw o HOLogic.dest_Trueprop)
wenzelm@10769
    49
      (foldr (fn (th,A) => union_term (prems_of th, A)) (rules, []));
wenzelm@10769
    50
wenzelm@10769
    51
(*---------------------------------------------------------------------------
wenzelm@10769
    52
 * Finds the termination conditions in (highly massaged) definition and
wenzelm@10769
    53
 * puts them into a goalstack.
wenzelm@10769
    54
 *--------------------------------------------------------------------------*)
wenzelm@10769
    55
fun tgoalw thy defs rules =
wenzelm@10769
    56
  case termination_goals rules of
wenzelm@10769
    57
      [] => error "tgoalw: no termination conditions to prove"
wenzelm@10769
    58
    | L  => goalw_cterm defs
wenzelm@10769
    59
              (Thm.cterm_of (Theory.sign_of thy)
wenzelm@10769
    60
                        (HOLogic.mk_Trueprop(USyntax.list_mk_conj L)));
wenzelm@10769
    61
wenzelm@10769
    62
fun tgoal thy = tgoalw thy [];
wenzelm@10769
    63
wenzelm@10769
    64
(*---------------------------------------------------------------------------
wenzelm@10769
    65
 * Three postprocessors are applied to the definition.  It
wenzelm@10769
    66
 * attempts to prove wellfoundedness of the given relation, simplifies the
wenzelm@10769
    67
 * non-proved termination conditions, and finally attempts to prove the
wenzelm@10769
    68
 * simplified termination conditions.
wenzelm@10769
    69
 *--------------------------------------------------------------------------*)
wenzelm@11632
    70
fun std_postprocessor strict cs ss wfs =
wenzelm@11632
    71
  Prim.postprocess strict
wenzelm@10769
    72
   {wf_tac     = REPEAT (ares_tac wfs 1),
wenzelm@10769
    73
    terminator = asm_simp_tac ss 1
nipkow@13501
    74
                 THEN TRY (silent_arith_tac 1 ORELSE
nipkow@12488
    75
                           fast_tac (cs addSDs [not0_implies_Suc] addss ss) 1),
wenzelm@10769
    76
    simplifier = Rules.simpl_conv ss []};
wenzelm@10769
    77
wenzelm@10769
    78
wenzelm@10769
    79
wenzelm@10769
    80
val concl = #2 o Rules.dest_thm;
wenzelm@10769
    81
wenzelm@10769
    82
(*---------------------------------------------------------------------------
wenzelm@10769
    83
 * Postprocess a definition made by "define". This is a separate stage of
wenzelm@10769
    84
 * processing from the definition stage.
wenzelm@10769
    85
 *---------------------------------------------------------------------------*)
wenzelm@10769
    86
local
wenzelm@10769
    87
structure R = Rules
wenzelm@10769
    88
structure U = Utils
wenzelm@10769
    89
wenzelm@10769
    90
(* The rest of these local definitions are for the tricky nested case *)
wenzelm@10769
    91
val solved = not o can S.dest_eq o #2 o S.strip_forall o concl
wenzelm@10769
    92
wenzelm@10769
    93
fun id_thm th =
wenzelm@10769
    94
   let val {lhs,rhs} = S.dest_eq (#2 (S.strip_forall (#2 (R.dest_thm th))));
wenzelm@10769
    95
   in lhs aconv rhs end
wenzelm@10769
    96
   handle U.ERR _ => false;
wenzelm@10769
    97
   
wenzelm@10769
    98
wenzelm@10769
    99
fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]);
wenzelm@10769
   100
val P_imp_P_iff_True = prover "P --> (P= True)" RS mp;
wenzelm@10769
   101
val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
wenzelm@10769
   102
fun mk_meta_eq r = case concl_of r of
wenzelm@10769
   103
     Const("==",_)$_$_ => r
wenzelm@10769
   104
  |   _ $(Const("op =",_)$_$_) => r RS eq_reflection
wenzelm@10769
   105
  |   _ => r RS P_imp_P_eq_True
wenzelm@10769
   106
wenzelm@10769
   107
(*Is this the best way to invoke the simplifier??*)
wenzelm@10769
   108
fun rewrite L = rewrite_rule (map mk_meta_eq (filter(not o id_thm) L))
wenzelm@10769
   109
wenzelm@10769
   110
fun join_assums th =
wenzelm@10769
   111
  let val {sign,...} = rep_thm th
wenzelm@10769
   112
      val tych = cterm_of sign
wenzelm@10769
   113
      val {lhs,rhs} = S.dest_eq(#2 (S.strip_forall (concl th)))
wenzelm@10769
   114
      val cntxtl = (#1 o S.strip_imp) lhs  (* cntxtl should = cntxtr *)
wenzelm@10769
   115
      val cntxtr = (#1 o S.strip_imp) rhs  (* but union is solider *)
wenzelm@10769
   116
      val cntxt = gen_union (op aconv) (cntxtl, cntxtr)
wenzelm@10769
   117
  in
wenzelm@10769
   118
    R.GEN_ALL
wenzelm@10769
   119
      (R.DISCH_ALL
wenzelm@10769
   120
         (rewrite (map (R.ASSUME o tych) cntxt) (R.SPEC_ALL th)))
wenzelm@10769
   121
  end
wenzelm@10769
   122
  val gen_all = S.gen_all
wenzelm@10769
   123
in
wenzelm@11632
   124
fun proof_stage strict cs ss wfs theory {f, R, rules, full_pats_TCs, TCs} =
wenzelm@10769
   125
  let
wenzelm@10769
   126
    val _ = message "Proving induction theorem ..."
wenzelm@10769
   127
    val ind = Prim.mk_induction theory {fconst=f, R=R, SV=[], pat_TCs_list=full_pats_TCs}
wenzelm@10769
   128
    val _ = message "Postprocessing ...";
wenzelm@10769
   129
    val {rules, induction, nested_tcs} =
wenzelm@11632
   130
      std_postprocessor strict cs ss wfs theory {rules=rules, induction=ind, TCs=TCs}
wenzelm@10769
   131
  in
wenzelm@10769
   132
  case nested_tcs
wenzelm@10769
   133
  of [] => {induction=induction, rules=rules,tcs=[]}
wenzelm@10769
   134
  | L  => let val dummy = message "Simplifying nested TCs ..."
wenzelm@10769
   135
              val (solved,simplified,stubborn) =
wenzelm@10769
   136
               U.itlist (fn th => fn (So,Si,St) =>
wenzelm@10769
   137
                     if (id_thm th) then (So, Si, th::St) else
wenzelm@10769
   138
                     if (solved th) then (th::So, Si, St)
wenzelm@10769
   139
                     else (So, th::Si, St)) nested_tcs ([],[],[])
wenzelm@10769
   140
              val simplified' = map join_assums simplified
paulson@14240
   141
              val dummy = (Prim.trace_thms "solved =" solved;
paulson@14240
   142
                           Prim.trace_thms "simplified' =" simplified')
wenzelm@10769
   143
              val rewr = full_simplify (ss addsimps (solved @ simplified'));
paulson@14240
   144
              val dummy = Prim.trace_thms "Simplifying the induction rule..."
paulson@14240
   145
                                          [induction]
wenzelm@10769
   146
              val induction' = rewr induction
paulson@14240
   147
              val dummy = Prim.trace_thms "Simplifying the recursion rules..."
paulson@14240
   148
                                          [rules]
paulson@14240
   149
              val rules'     = rewr rules
paulson@14240
   150
              val _ = message "... Postprocessing finished";
wenzelm@10769
   151
          in
wenzelm@10769
   152
          {induction = induction',
wenzelm@10769
   153
               rules = rules',
wenzelm@10769
   154
                 tcs = map (gen_all o S.rhs o #2 o S.strip_forall o concl)
wenzelm@10769
   155
                           (simplified@stubborn)}
wenzelm@10769
   156
          end
wenzelm@10769
   157
  end;
wenzelm@10769
   158
wenzelm@10769
   159
wenzelm@10769
   160
(*lcp: curry the predicate of the induction rule*)
wenzelm@11038
   161
fun curry_rule rl =
wenzelm@11038
   162
  SplitRule.split_rule_var (Term.head_of (HOLogic.dest_Trueprop (concl_of rl)), rl);
wenzelm@10769
   163
wenzelm@10769
   164
(*lcp: put a theorem into Isabelle form, using meta-level connectives*)
wenzelm@10769
   165
val meta_outer =
wenzelm@11038
   166
  curry_rule o standard o
wenzelm@11038
   167
  rule_by_tactic (REPEAT (FIRSTGOAL (resolve_tac [allI, impI, conjI] ORELSE' etac conjE)));
wenzelm@10769
   168
wenzelm@10769
   169
(*Strip off the outer !P*)
wenzelm@10769
   170
val spec'= read_instantiate [("x","P::?'b=>bool")] spec;
wenzelm@10769
   171
paulson@14240
   172
fun tracing true _ = ()
paulson@14240
   173
  | tracing false msg = writeln msg;
paulson@14240
   174
wenzelm@11632
   175
fun simplify_defn strict thy cs ss congs wfs id pats def0 =
wenzelm@10769
   176
   let val def = freezeT def0 RS meta_eq_to_obj_eq
paulson@14240
   177
       val {theory,rules,rows,TCs,full_pats_TCs} =
paulson@14240
   178
           Prim.post_definition congs (thy, (def,pats))
wenzelm@10769
   179
       val {lhs=f,rhs} = S.dest_eq (concl def)
wenzelm@10769
   180
       val (_,[R,_]) = S.strip_comb rhs
paulson@14240
   181
       val dummy = Prim.trace_thms "congs =" congs
paulson@14240
   182
       (*the next step has caused simplifier looping in some cases*)
wenzelm@10769
   183
       val {induction, rules, tcs} =
wenzelm@11632
   184
             proof_stage strict cs ss wfs theory
wenzelm@10769
   185
               {f = f, R = R, rules = rules,
wenzelm@10769
   186
                full_pats_TCs = full_pats_TCs,
wenzelm@10769
   187
                TCs = TCs}
paulson@14240
   188
       val rules' = map (standard o ObjectLogic.rulify_no_asm)
paulson@14240
   189
                        (R.CONJUNCTS rules)
paulson@14240
   190
         in  {induct = meta_outer (ObjectLogic.rulify_no_asm (induction RS spec')),
wenzelm@10769
   191
        rules = ListPair.zip(rules', rows),
wenzelm@10769
   192
        tcs = (termination_goals rules') @ tcs}
wenzelm@10769
   193
   end
wenzelm@10769
   194
  handle U.ERR {mesg,func,module} =>
wenzelm@10769
   195
               error (mesg ^
wenzelm@10769
   196
                      "\n    (In TFL function " ^ module ^ "." ^ func ^ ")");
wenzelm@10769
   197
wenzelm@10769
   198
(*---------------------------------------------------------------------------
wenzelm@10769
   199
 * Defining a function with an associated termination relation.
wenzelm@10769
   200
 *---------------------------------------------------------------------------*)
wenzelm@11632
   201
fun define_i strict thy cs ss congs wfs fid R eqs =
wenzelm@10769
   202
  let val {functional,pats} = Prim.mk_functional thy eqs
wenzelm@10769
   203
      val (thy, def) = Prim.wfrec_definition0 thy (Sign.base_name fid) R functional
wenzelm@11632
   204
  in (thy, simplify_defn strict thy cs ss congs wfs fid pats def) end;
wenzelm@10769
   205
wenzelm@11632
   206
fun define strict thy cs ss congs wfs fid R seqs =
wenzelm@11632
   207
  define_i strict thy cs ss congs wfs fid (read_term thy R) (map (read_term thy) seqs)
wenzelm@10769
   208
    handle U.ERR {mesg,...} => error mesg;
wenzelm@10769
   209
wenzelm@10769
   210
wenzelm@10769
   211
(*---------------------------------------------------------------------------
wenzelm@10769
   212
 *
wenzelm@10769
   213
 *     Definitions with synthesized termination relation
wenzelm@10769
   214
 *
wenzelm@10769
   215
 *---------------------------------------------------------------------------*)
wenzelm@10769
   216
wenzelm@10769
   217
fun func_of_cond_eqn tm =
wenzelm@10769
   218
  #1 (S.strip_comb (#lhs (S.dest_eq (#2 (S.strip_forall (#2 (S.strip_imp tm)))))));
wenzelm@10769
   219
wenzelm@10769
   220
fun defer_i thy congs fid eqs =
wenzelm@10769
   221
 let val {rules,R,theory,full_pats_TCs,SV,...} =
wenzelm@10769
   222
             Prim.lazyR_def thy (Sign.base_name fid) congs eqs
wenzelm@10769
   223
     val f = func_of_cond_eqn (concl (R.CONJUNCT1 rules handle U.ERR _ => rules));
wenzelm@10769
   224
     val dummy = message "Proving induction theorem ...";
wenzelm@10769
   225
     val induction = Prim.mk_induction theory
wenzelm@10769
   226
                        {fconst=f, R=R, SV=SV, pat_TCs_list=full_pats_TCs}
wenzelm@10769
   227
 in (theory,
wenzelm@10769
   228
     (*return the conjoined induction rule and recursion equations,
wenzelm@10769
   229
       with assumptions remaining to discharge*)
wenzelm@10769
   230
     standard (induction RS (rules RS conjI)))
wenzelm@10769
   231
 end
wenzelm@10769
   232
wenzelm@10769
   233
fun defer thy congs fid seqs =
wenzelm@10769
   234
  defer_i thy congs fid (map (read_term thy) seqs)
wenzelm@10769
   235
    handle U.ERR {mesg,...} => error mesg;
wenzelm@10769
   236
end;
wenzelm@10769
   237
wenzelm@10769
   238
end;