author  lcp 
Wed, 06 Oct 1993 09:58:53 +0100  
changeset 30  d49df4181f0d 
parent 15  6c6d2f6e3185 
child 120  09287f26bfb8 
permissions  rwrr 
0  1 
(* Title: ZF/nat.ML 
2 
ID: $Id$ 

3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 

4 
Copyright 1992 University of Cambridge 

5 

6 
For nat.thy. Natural numbers in ZermeloFraenkel Set Theory 

7 
*) 

8 

9 
open Nat; 

10 

11 
goal Nat.thy "bnd_mono(Inf, %X. {0} Un {succ(i). i:X})"; 

12 
by (rtac bnd_monoI 1); 

13 
by (REPEAT (ares_tac [subset_refl, RepFun_mono, Un_mono] 2)); 

14 
by (cut_facts_tac [infinity] 1); 

15 
by (fast_tac ZF_cs 1); 

16 
val nat_bnd_mono = result(); 

17 

18 
(* nat = {0} Un {succ(x). x:nat} *) 

19 
val nat_unfold = nat_bnd_mono RS (nat_def RS def_lfp_Tarski); 

20 

21 
(** Type checking of 0 and successor **) 

22 

23 
goal Nat.thy "0 : nat"; 

24 
by (rtac (nat_unfold RS ssubst) 1); 

25 
by (rtac (singletonI RS UnI1) 1); 

26 
val nat_0I = result(); 

27 

28 
val prems = goal Nat.thy "n : nat ==> succ(n) : nat"; 

29 
by (rtac (nat_unfold RS ssubst) 1); 

30 
by (rtac (RepFunI RS UnI2) 1); 

31 
by (resolve_tac prems 1); 

32 
val nat_succI = result(); 

33 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

34 
goal Nat.thy "1 : nat"; 
0  35 
by (rtac (nat_0I RS nat_succI) 1); 
36 
val nat_1I = result(); 

37 

38 
goal Nat.thy "bool <= nat"; 

39 
by (REPEAT (ares_tac [subsetI,nat_0I,nat_1I] 1 ORELSE etac boolE 1)); 

40 
val bool_subset_nat = result(); 

41 

42 
val bool_into_nat = bool_subset_nat RS subsetD; 

43 

44 

45 
(** Injectivity properties and induction **) 

46 

47 
(*Mathematical induction*) 

48 
val major::prems = goal Nat.thy 

49 
"[ n: nat; P(0); !!x. [ x: nat; P(x) ] ==> P(succ(x)) ] ==> P(n)"; 

50 
by (rtac ([nat_def, nat_bnd_mono, major] MRS def_induct) 1); 

51 
by (fast_tac (ZF_cs addIs prems) 1); 

52 
val nat_induct = result(); 

53 

54 
(*Perform induction on n, then prove the n:nat subgoal using prems. *) 

55 
fun nat_ind_tac a prems i = 

56 
EVERY [res_inst_tac [("n",a)] nat_induct i, 

57 
rename_last_tac a ["1"] (i+2), 

58 
ares_tac prems i]; 

59 

60 
val major::prems = goal Nat.thy 

61 
"[ n: nat; n=0 ==> P; !!x. [ x: nat; n=succ(x) ] ==> P ] ==> P"; 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

62 
by (rtac (major RS (nat_unfold RS equalityD1 RS subsetD) RS UnE) 1); 
0  63 
by (DEPTH_SOLVE (eresolve_tac [singletonE,RepFunE] 1 
64 
ORELSE ares_tac prems 1)); 

65 
val natE = result(); 

66 

67 
val prems = goal Nat.thy "n: nat ==> Ord(n)"; 

68 
by (nat_ind_tac "n" prems 1); 

69 
by (REPEAT (ares_tac [Ord_0, Ord_succ] 1)); 

70 
val naturals_are_ordinals = result(); 

71 

30  72 
(* i: nat ==> 0 le i *) 
73 
val nat_0_le = naturals_are_ordinals RS Ord_0_le; 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

74 

0  75 
goal Nat.thy "!!n. n: nat ==> n=0  0:n"; 
76 
by (etac nat_induct 1); 

77 
by (fast_tac ZF_cs 1); 

30  78 
by (fast_tac (ZF_cs addIs [nat_0_le]) 1); 
0  79 
val natE0 = result(); 
80 

81 
goal Nat.thy "Ord(nat)"; 

82 
by (rtac OrdI 1); 

83 
by (etac (naturals_are_ordinals RS Ord_is_Transset) 2); 

84 
by (rewtac Transset_def); 

85 
by (rtac ballI 1); 

86 
by (etac nat_induct 1); 

87 
by (REPEAT (ares_tac [empty_subsetI,succ_subsetI] 1)); 

88 
val Ord_nat = result(); 

89 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

90 
(* succ(i): nat ==> i: nat *) 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

91 
val succ_natD = [succI1, asm_rl, Ord_nat] MRS Ord_trans; 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

92 

6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

93 
(* [ succ(i): k; k: nat ] ==> i: k *) 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

94 
val succ_in_naturalD = [succI1, asm_rl, naturals_are_ordinals] MRS Ord_trans; 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

95 

30  96 
goal Nat.thy "!!m n. [ m<n; n: nat ] ==> m: nat"; 
97 
by (etac ltE 1); 

98 
by (etac (Ord_nat RSN (3,Ord_trans)) 1); 

99 
by (assume_tac 1); 

100 
val lt_nat_in_nat = result(); 

101 

102 

0  103 
(** Variations on mathematical induction **) 
104 

105 
(*complete induction*) 

106 
val complete_induct = Ord_nat RSN (2, Ord_induct); 

107 

108 
val prems = goal Nat.thy 

109 
"[ m: nat; n: nat; \ 

30  110 
\ !!x. [ x: nat; m le x; P(x) ] ==> P(succ(x)) \ 
111 
\ ] ==> m le n > P(m) > P(n)"; 

0  112 
by (nat_ind_tac "n" prems 1); 
113 
by (ALLGOALS 

6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset

114 
(asm_simp_tac 
30  115 
(ZF_ss addsimps (prems@distrib_rews@[le0_iff, le_succ_iff])))); 
0  116 
val nat_induct_from_lemma = result(); 
117 

118 
(*Induction starting from m rather than 0*) 

119 
val prems = goal Nat.thy 

30  120 
"[ m le n; m: nat; n: nat; \ 
0  121 
\ P(m); \ 
30  122 
\ !!x. [ x: nat; m le x; P(x) ] ==> P(succ(x)) \ 
0  123 
\ ] ==> P(n)"; 
124 
by (rtac (nat_induct_from_lemma RS mp RS mp) 1); 

125 
by (REPEAT (ares_tac prems 1)); 

126 
val nat_induct_from = result(); 

127 

128 
(*Induction suitable for subtraction and lessthan*) 

129 
val prems = goal Nat.thy 

130 
"[ m: nat; n: nat; \ 

30  131 
\ !!x. x: nat ==> P(x,0); \ 
132 
\ !!y. y: nat ==> P(0,succ(y)); \ 

0  133 
\ !!x y. [ x: nat; y: nat; P(x,y) ] ==> P(succ(x),succ(y)) \ 
134 
\ ] ==> P(m,n)"; 

135 
by (res_inst_tac [("x","m")] bspec 1); 

136 
by (resolve_tac prems 2); 

137 
by (nat_ind_tac "n" prems 1); 

138 
by (rtac ballI 2); 

139 
by (nat_ind_tac "x" [] 2); 

140 
by (REPEAT (ares_tac (prems@[ballI]) 1 ORELSE etac bspec 1)); 

141 
val diff_induct = result(); 

142 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

143 
(** Induction principle analogous to trancl_induct **) 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

144 

6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

145 
goal Nat.thy 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

146 
"!!m. m: nat ==> P(m,succ(m)) > (ALL x: nat. P(m,x) > P(m,succ(x))) > \ 
30  147 
\ (ALL n:nat. m<n > P(m,n))"; 
15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

148 
by (etac nat_induct 1); 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

149 
by (ALLGOALS 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

150 
(EVERY' [rtac (impI RS impI), rtac (nat_induct RS ballI), assume_tac, 
30  151 
fast_tac lt_cs, fast_tac lt_cs])); 
152 
val succ_lt_induct_lemma = result(); 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

153 

6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

154 
val prems = goal Nat.thy 
30  155 
"[ m<n; n: nat; \ 
156 
\ P(m,succ(m)); \ 

157 
\ !!x. [ x: nat; P(m,x) ] ==> P(m,succ(x)) \ 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

158 
\ ] ==> P(m,n)"; 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

159 
by (res_inst_tac [("P4","P")] 
30  160 
(succ_lt_induct_lemma RS mp RS mp RS bspec RS mp) 1); 
161 
by (REPEAT (ares_tac (prems @ [ballI, impI, lt_nat_in_nat]) 1)); 

162 
val succ_lt_induct = result(); 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

163 

0  164 
(** nat_case **) 
165 

6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset

166 
goalw Nat.thy [nat_case_def] "nat_case(a,b,0) = a"; 
0  167 
by (fast_tac (ZF_cs addIs [the_equality]) 1); 
168 
val nat_case_0 = result(); 

169 

6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset

170 
goalw Nat.thy [nat_case_def] "nat_case(a,b,succ(m)) = b(m)"; 
0  171 
by (fast_tac (ZF_cs addIs [the_equality]) 1); 
172 
val nat_case_succ = result(); 

173 

174 
val major::prems = goal Nat.thy 

175 
"[ n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m)) \ 

6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset

176 
\ ] ==> nat_case(a,b,n) : C(n)"; 
0  177 
by (rtac (major RS nat_induct) 1); 
30  178 
by (ALLGOALS 
179 
(asm_simp_tac (ZF_ss addsimps (prems @ [nat_case_0, nat_case_succ])))); 

0  180 
val nat_case_type = result(); 
181 

182 

30  183 
(** nat_rec  used to define eclose and transrec, then obsolete; 
184 
rec, from arith.ML, has fewer typing conditions **) 

0  185 

186 
val nat_rec_trans = wf_Memrel RS (nat_rec_def RS def_wfrec RS trans); 

187 

188 
goal Nat.thy "nat_rec(0,a,b) = a"; 

189 
by (rtac nat_rec_trans 1); 

190 
by (rtac nat_case_0 1); 

191 
val nat_rec_0 = result(); 

192 

193 
val [prem] = goal Nat.thy 

194 
"m: nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"; 

195 
by (rtac nat_rec_trans 1); 

15
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

196 
by (simp_tac (ZF_ss addsimps [prem, nat_case_succ, nat_succI, Memrel_iff, 
6c6d2f6e3185
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

197 
vimage_singleton_iff]) 1); 
0  198 
val nat_rec_succ = result(); 
199 

200 
(** The union of two natural numbers is a natural number  their maximum **) 

201 

30  202 
goal Nat.thy "!!i j. [ i: nat; j: nat ] ==> i Un j: nat"; 
203 
by (rtac (Un_least_lt RS ltD) 1); 

204 
by (REPEAT (ares_tac [ltI, Ord_nat] 1)); 

205 
val Un_nat_type = result(); 

0  206 

30  207 
goal Nat.thy "!!i j. [ i: nat; j: nat ] ==> i Int j: nat"; 
208 
by (rtac (Int_greatest_lt RS ltD) 1); 

209 
by (REPEAT (ares_tac [ltI, Ord_nat] 1)); 

210 
val Int_nat_type = result(); 