author | paulson |
Thu, 17 Jun 2004 17:18:30 +0200 | |
changeset 14963 | d584e32f7d46 |
parent 14803 | f7557773cc87 |
child 15120 | f0359f75682e |
permissions | -rw-r--r-- |
14706 | 1 |
(* Title: HOL/Algebra/Coset.thy |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
2 |
ID: $Id$ |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
3 |
Author: Florian Kammueller, with new proofs by L C Paulson |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
4 |
*) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
5 |
|
14747 | 6 |
header{*Cosets and Quotient Groups*} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
7 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
8 |
theory Coset = Group + Exponent: |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
9 |
|
14651 | 10 |
constdefs (structure G) |
14963 | 11 |
r_coset :: "[_, 'a set, 'a] \<Rightarrow> 'a set" (infixl "#>\<index>" 60) |
12 |
"H #> a \<equiv> \<Union>h\<in>H. {h \<otimes> a}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
13 |
|
14963 | 14 |
l_coset :: "[_, 'a, 'a set] \<Rightarrow> 'a set" (infixl "<#\<index>" 60) |
15 |
"a <# H \<equiv> \<Union>h\<in>H. {a \<otimes> h}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
16 |
|
14963 | 17 |
RCOSETS :: "[_, 'a set] \<Rightarrow> ('a set)set" ("rcosets\<index> _" [81] 80) |
18 |
"rcosets H \<equiv> \<Union>a\<in>carrier G. {H #> a}" |
|
19 |
||
20 |
set_mult :: "[_, 'a set ,'a set] \<Rightarrow> 'a set" (infixl "<#>\<index>" 60) |
|
21 |
"H <#> K \<equiv> \<Union>h\<in>H. \<Union>k\<in>K. {h \<otimes> k}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
22 |
|
14963 | 23 |
SET_INV :: "[_,'a set] \<Rightarrow> 'a set" ("set'_inv\<index> _" [81] 80) |
24 |
"set_inv H \<equiv> \<Union>h\<in>H. {inv h}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
25 |
|
14963 | 26 |
|
27 |
locale normal = subgroup + group + |
|
28 |
assumes coset_eq: "(\<forall>x \<in> carrier G. H #> x = x <# H)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
29 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
30 |
|
14963 | 31 |
syntax |
32 |
"@normal" :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool" (infixl "\<lhd>" 60) |
|
33 |
||
34 |
translations |
|
35 |
"H \<lhd> G" == "normal H G" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
36 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
37 |
|
14803 | 38 |
subsection {*Basic Properties of Cosets*} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
39 |
|
14747 | 40 |
lemma (in group) coset_mult_assoc: |
41 |
"[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |] |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
42 |
==> (M #> g) #> h = M #> (g \<otimes> h)" |
14747 | 43 |
by (force simp add: r_coset_def m_assoc) |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
44 |
|
14747 | 45 |
lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier G ==> M #> \<one> = M" |
46 |
by (force simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
47 |
|
14747 | 48 |
lemma (in group) coset_mult_inv1: |
14666 | 49 |
"[| M #> (x \<otimes> (inv y)) = M; x \<in> carrier G ; y \<in> carrier G; |
14747 | 50 |
M \<subseteq> carrier G |] ==> M #> x = M #> y" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
51 |
apply (erule subst [of concl: "%z. M #> x = z #> y"]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
52 |
apply (simp add: coset_mult_assoc m_assoc) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
53 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
54 |
|
14747 | 55 |
lemma (in group) coset_mult_inv2: |
56 |
"[| M #> x = M #> y; x \<in> carrier G; y \<in> carrier G; M \<subseteq> carrier G |] |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
57 |
==> M #> (x \<otimes> (inv y)) = M " |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
58 |
apply (simp add: coset_mult_assoc [symmetric]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
59 |
apply (simp add: coset_mult_assoc) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
60 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
61 |
|
14747 | 62 |
lemma (in group) coset_join1: |
63 |
"[| H #> x = H; x \<in> carrier G; subgroup H G |] ==> x \<in> H" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
64 |
apply (erule subst) |
14963 | 65 |
apply (simp add: r_coset_def) |
66 |
apply (blast intro: l_one subgroup.one_closed sym) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
67 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
68 |
|
14747 | 69 |
lemma (in group) solve_equation: |
14963 | 70 |
"\<lbrakk>subgroup H G; x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<otimes> x" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
71 |
apply (rule bexI [of _ "y \<otimes> (inv x)"]) |
14666 | 72 |
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
73 |
subgroup.subset [THEN subsetD]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
74 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
75 |
|
14963 | 76 |
lemma (in group) repr_independence: |
77 |
"\<lbrakk>y \<in> H #> x; x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> H #> x = H #> y" |
|
78 |
by (auto simp add: r_coset_def m_assoc [symmetric] |
|
79 |
subgroup.subset [THEN subsetD] |
|
80 |
subgroup.m_closed solve_equation) |
|
81 |
||
14747 | 82 |
lemma (in group) coset_join2: |
14963 | 83 |
"\<lbrakk>x \<in> carrier G; subgroup H G; x\<in>H\<rbrakk> \<Longrightarrow> H #> x = H" |
84 |
--{*Alternative proof is to put @{term "x=\<one>"} in @{text repr_independence}.*} |
|
85 |
by (force simp add: subgroup.m_closed r_coset_def solve_equation) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
86 |
|
14747 | 87 |
lemma (in group) r_coset_subset_G: |
88 |
"[| H \<subseteq> carrier G; x \<in> carrier G |] ==> H #> x \<subseteq> carrier G" |
|
89 |
by (auto simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
90 |
|
14747 | 91 |
lemma (in group) rcosI: |
92 |
"[| h \<in> H; H \<subseteq> carrier G; x \<in> carrier G|] ==> h \<otimes> x \<in> H #> x" |
|
93 |
by (auto simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
94 |
|
14963 | 95 |
lemma (in group) rcosetsI: |
96 |
"\<lbrakk>H \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H" |
|
97 |
by (auto simp add: RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
98 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
99 |
text{*Really needed?*} |
14747 | 100 |
lemma (in group) transpose_inv: |
14666 | 101 |
"[| x \<otimes> y = z; x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
102 |
==> (inv x) \<otimes> z = y" |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
103 |
by (force simp add: m_assoc [symmetric]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
104 |
|
14747 | 105 |
lemma (in group) rcos_self: "[| x \<in> carrier G; subgroup H G |] ==> x \<in> H #> x" |
14963 | 106 |
apply (simp add: r_coset_def) |
107 |
apply (blast intro: sym l_one subgroup.subset [THEN subsetD] |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
108 |
subgroup.one_closed) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
109 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
110 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
111 |
|
14666 | 112 |
subsection {* Normal subgroups *} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
113 |
|
14963 | 114 |
lemma normal_imp_subgroup: "H \<lhd> G \<Longrightarrow> subgroup H G" |
115 |
by (simp add: normal_def subgroup_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
116 |
|
14963 | 117 |
lemma (in group) normalI: |
118 |
"subgroup H G \<Longrightarrow> (\<forall>x \<in> carrier G. H #> x = x <# H) \<Longrightarrow> H \<lhd> G"; |
|
119 |
by (simp add: normal_def normal_axioms_def prems) |
|
120 |
||
121 |
lemma (in normal) inv_op_closed1: |
|
122 |
"\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> (inv x) \<otimes> h \<otimes> x \<in> H" |
|
123 |
apply (insert coset_eq) |
|
124 |
apply (auto simp add: l_coset_def r_coset_def) |
|
14666 | 125 |
apply (drule bspec, assumption) |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
126 |
apply (drule equalityD1 [THEN subsetD], blast, clarify) |
14963 | 127 |
apply (simp add: m_assoc) |
128 |
apply (simp add: m_assoc [symmetric]) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
129 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
130 |
|
14963 | 131 |
lemma (in normal) inv_op_closed2: |
132 |
"\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> (inv x) \<in> H" |
|
133 |
apply (subgoal_tac "inv (inv x) \<otimes> h \<otimes> (inv x) \<in> H") |
|
134 |
apply (simp add: ); |
|
135 |
apply (blast intro: inv_op_closed1) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
136 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
137 |
|
14747 | 138 |
text{*Alternative characterization of normal subgroups*} |
139 |
lemma (in group) normal_inv_iff: |
|
140 |
"(N \<lhd> G) = |
|
141 |
(subgroup N G & (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))" |
|
142 |
(is "_ = ?rhs") |
|
143 |
proof |
|
144 |
assume N: "N \<lhd> G" |
|
145 |
show ?rhs |
|
14963 | 146 |
by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup) |
14747 | 147 |
next |
148 |
assume ?rhs |
|
149 |
hence sg: "subgroup N G" |
|
14963 | 150 |
and closed: "\<And>x. x\<in>carrier G \<Longrightarrow> \<forall>h\<in>N. x \<otimes> h \<otimes> inv x \<in> N" by auto |
14747 | 151 |
hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset) |
152 |
show "N \<lhd> G" |
|
14963 | 153 |
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify) |
14747 | 154 |
fix x |
155 |
assume x: "x \<in> carrier G" |
|
14963 | 156 |
show "(\<Union>\<^bsub>h\<in>N\<^esub> {h \<otimes> x}) = (\<Union>\<^bsub>h\<in>N\<^esub> {x \<otimes> h})" |
14747 | 157 |
proof |
14963 | 158 |
show "(\<Union>\<^bsub>h\<in>N\<^esub> {h \<otimes> x}) \<subseteq> (\<Union>\<^bsub>h\<in>N\<^esub> {x \<otimes> h})" |
14747 | 159 |
proof clarify |
160 |
fix n |
|
161 |
assume n: "n \<in> N" |
|
14963 | 162 |
show "n \<otimes> x \<in> (\<Union>\<^bsub>h\<in>N\<^esub> {x \<otimes> h})" |
14747 | 163 |
proof |
14963 | 164 |
from closed [of "inv x"] |
165 |
show "inv x \<otimes> n \<otimes> x \<in> N" by (simp add: x n) |
|
166 |
show "n \<otimes> x \<in> {x \<otimes> (inv x \<otimes> n \<otimes> x)}" |
|
14747 | 167 |
by (simp add: x n m_assoc [symmetric] sb [THEN subsetD]) |
168 |
qed |
|
169 |
qed |
|
170 |
next |
|
14963 | 171 |
show "(\<Union>\<^bsub>h\<in>N\<^esub> {x \<otimes> h}) \<subseteq> (\<Union>\<^bsub>h\<in>N\<^esub> {h \<otimes> x})" |
14747 | 172 |
proof clarify |
173 |
fix n |
|
174 |
assume n: "n \<in> N" |
|
14963 | 175 |
show "x \<otimes> n \<in> (\<Union>\<^bsub>h\<in>N\<^esub> {h \<otimes> x})" |
14747 | 176 |
proof |
14963 | 177 |
show "x \<otimes> n \<otimes> inv x \<in> N" by (simp add: x n closed) |
178 |
show "x \<otimes> n \<in> {x \<otimes> n \<otimes> inv x \<otimes> x}" |
|
14747 | 179 |
by (simp add: x n m_assoc sb [THEN subsetD]) |
180 |
qed |
|
181 |
qed |
|
182 |
qed |
|
183 |
qed |
|
184 |
qed |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
185 |
|
14963 | 186 |
|
14803 | 187 |
subsection{*More Properties of Cosets*} |
188 |
||
14747 | 189 |
lemma (in group) lcos_m_assoc: |
190 |
"[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |] |
|
191 |
==> g <# (h <# M) = (g \<otimes> h) <# M" |
|
192 |
by (force simp add: l_coset_def m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
193 |
|
14747 | 194 |
lemma (in group) lcos_mult_one: "M \<subseteq> carrier G ==> \<one> <# M = M" |
195 |
by (force simp add: l_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
196 |
|
14747 | 197 |
lemma (in group) l_coset_subset_G: |
198 |
"[| H \<subseteq> carrier G; x \<in> carrier G |] ==> x <# H \<subseteq> carrier G" |
|
199 |
by (auto simp add: l_coset_def subsetD) |
|
200 |
||
201 |
lemma (in group) l_coset_swap: |
|
14963 | 202 |
"\<lbrakk>y \<in> x <# H; x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> x \<in> y <# H" |
203 |
proof (simp add: l_coset_def) |
|
204 |
assume "\<exists>h\<in>H. y = x \<otimes> h" |
|
14666 | 205 |
and x: "x \<in> carrier G" |
14530 | 206 |
and sb: "subgroup H G" |
207 |
then obtain h' where h': "h' \<in> H & x \<otimes> h' = y" by blast |
|
14963 | 208 |
show "\<exists>h\<in>H. x = y \<otimes> h" |
14530 | 209 |
proof |
14963 | 210 |
show "x = y \<otimes> inv h'" using h' x sb |
14530 | 211 |
by (auto simp add: m_assoc subgroup.subset [THEN subsetD]) |
212 |
show "inv h' \<in> H" using h' sb |
|
213 |
by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed) |
|
214 |
qed |
|
215 |
qed |
|
216 |
||
14747 | 217 |
lemma (in group) l_coset_carrier: |
14530 | 218 |
"[| y \<in> x <# H; x \<in> carrier G; subgroup H G |] ==> y \<in> carrier G" |
14747 | 219 |
by (auto simp add: l_coset_def m_assoc |
14530 | 220 |
subgroup.subset [THEN subsetD] subgroup.m_closed) |
221 |
||
14747 | 222 |
lemma (in group) l_repr_imp_subset: |
14666 | 223 |
assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G" |
14530 | 224 |
shows "y <# H \<subseteq> x <# H" |
225 |
proof - |
|
226 |
from y |
|
14747 | 227 |
obtain h' where "h' \<in> H" "x \<otimes> h' = y" by (auto simp add: l_coset_def) |
14530 | 228 |
thus ?thesis using x sb |
14747 | 229 |
by (auto simp add: l_coset_def m_assoc |
14530 | 230 |
subgroup.subset [THEN subsetD] subgroup.m_closed) |
231 |
qed |
|
232 |
||
14747 | 233 |
lemma (in group) l_repr_independence: |
14666 | 234 |
assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G" |
14530 | 235 |
shows "x <# H = y <# H" |
14666 | 236 |
proof |
14530 | 237 |
show "x <# H \<subseteq> y <# H" |
14666 | 238 |
by (rule l_repr_imp_subset, |
14530 | 239 |
(blast intro: l_coset_swap l_coset_carrier y x sb)+) |
14666 | 240 |
show "y <# H \<subseteq> x <# H" by (rule l_repr_imp_subset [OF y x sb]) |
14530 | 241 |
qed |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
242 |
|
14747 | 243 |
lemma (in group) setmult_subset_G: |
14963 | 244 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G\<rbrakk> \<Longrightarrow> H <#> K \<subseteq> carrier G" |
245 |
by (auto simp add: set_mult_def subsetD) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
246 |
|
14963 | 247 |
lemma (in group) subgroup_mult_id: "subgroup H G \<Longrightarrow> H <#> H = H" |
248 |
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
249 |
apply (rule_tac x = x in bexI) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
250 |
apply (rule bexI [of _ "\<one>"]) |
14666 | 251 |
apply (auto simp add: subgroup.m_closed subgroup.one_closed |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
252 |
r_one subgroup.subset [THEN subsetD]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
253 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
254 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
255 |
|
14747 | 256 |
subsubsection {* Set of inverses of an @{text r_coset}. *} |
14666 | 257 |
|
14963 | 258 |
lemma (in normal) rcos_inv: |
259 |
assumes x: "x \<in> carrier G" |
|
260 |
shows "set_inv (H #> x) = H #> (inv x)" |
|
261 |
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe) |
|
262 |
fix h |
|
263 |
assume "h \<in> H" |
|
264 |
show "inv x \<otimes> inv h \<in> (\<Union>\<^bsub>j\<in>H\<^esub> {j \<otimes> inv x})" |
|
265 |
proof |
|
266 |
show "inv x \<otimes> inv h \<otimes> x \<in> H" |
|
267 |
by (simp add: inv_op_closed1 prems) |
|
268 |
show "inv x \<otimes> inv h \<in> {inv x \<otimes> inv h \<otimes> x \<otimes> inv x}" |
|
269 |
by (simp add: prems m_assoc) |
|
270 |
qed |
|
271 |
next |
|
272 |
fix h |
|
273 |
assume "h \<in> H" |
|
274 |
show "h \<otimes> inv x \<in> (\<Union>\<^bsub>j\<in>H\<^esub> {inv x \<otimes> inv j})" |
|
275 |
proof |
|
276 |
show "x \<otimes> inv h \<otimes> inv x \<in> H" |
|
277 |
by (simp add: inv_op_closed2 prems) |
|
278 |
show "h \<otimes> inv x \<in> {inv x \<otimes> inv (x \<otimes> inv h \<otimes> inv x)}" |
|
279 |
by (simp add: prems m_assoc [symmetric] inv_mult_group) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
280 |
qed |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
281 |
qed |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
282 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
283 |
|
14803 | 284 |
subsubsection {*Theorems for @{text "<#>"} with @{text "#>"} or @{text "<#"}.*} |
14666 | 285 |
|
14747 | 286 |
lemma (in group) setmult_rcos_assoc: |
14963 | 287 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> |
288 |
\<Longrightarrow> H <#> (K #> x) = (H <#> K) #> x" |
|
289 |
by (force simp add: r_coset_def set_mult_def m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
290 |
|
14747 | 291 |
lemma (in group) rcos_assoc_lcos: |
14963 | 292 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> |
293 |
\<Longrightarrow> (H #> x) <#> K = H <#> (x <# K)" |
|
294 |
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
295 |
|
14963 | 296 |
lemma (in normal) rcos_mult_step1: |
297 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
298 |
\<Longrightarrow> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y" |
|
299 |
by (simp add: setmult_rcos_assoc subset |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
300 |
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
301 |
|
14963 | 302 |
lemma (in normal) rcos_mult_step2: |
303 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
304 |
\<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y" |
|
305 |
by (insert coset_eq, simp add: normal_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
306 |
|
14963 | 307 |
lemma (in normal) rcos_mult_step3: |
308 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
309 |
\<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<otimes> y)" |
|
310 |
by (simp add: setmult_rcos_assoc coset_mult_assoc |
|
311 |
subgroup_mult_id subset prems) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
312 |
|
14963 | 313 |
lemma (in normal) rcos_sum: |
314 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
315 |
\<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<otimes> y)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
316 |
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
317 |
|
14963 | 318 |
lemma (in normal) rcosets_mult_eq: "M \<in> rcosets H \<Longrightarrow> H <#> M = M" |
14666 | 319 |
-- {* generalizes @{text subgroup_mult_id} *} |
14963 | 320 |
by (auto simp add: RCOSETS_def subset |
321 |
setmult_rcos_assoc subgroup_mult_id prems) |
|
322 |
||
323 |
||
324 |
subsubsection{*An Equivalence Relation*} |
|
325 |
||
326 |
constdefs (structure G) |
|
327 |
r_congruent :: "[('a,'b)monoid_scheme, 'a set] \<Rightarrow> ('a*'a)set" |
|
328 |
("rcong\<index> _") |
|
329 |
"rcong H \<equiv> {(x,y). x \<in> carrier G & y \<in> carrier G & inv x \<otimes> y \<in> H}" |
|
330 |
||
331 |
||
332 |
lemma (in subgroup) equiv_rcong: |
|
333 |
includes group G |
|
334 |
shows "equiv (carrier G) (rcong H)" |
|
335 |
proof (intro equiv.intro) |
|
336 |
show "refl (carrier G) (rcong H)" |
|
337 |
by (auto simp add: r_congruent_def refl_def) |
|
338 |
next |
|
339 |
show "sym (rcong H)" |
|
340 |
proof (simp add: r_congruent_def sym_def, clarify) |
|
341 |
fix x y |
|
342 |
assume [simp]: "x \<in> carrier G" "y \<in> carrier G" |
|
343 |
and "inv x \<otimes> y \<in> H" |
|
344 |
hence "inv (inv x \<otimes> y) \<in> H" by (simp add: m_inv_closed) |
|
345 |
thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group) |
|
346 |
qed |
|
347 |
next |
|
348 |
show "trans (rcong H)" |
|
349 |
proof (simp add: r_congruent_def trans_def, clarify) |
|
350 |
fix x y z |
|
351 |
assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
352 |
and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H" |
|
353 |
hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp |
|
354 |
hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H" by (simp add: m_assoc del: r_inv) |
|
355 |
thus "inv x \<otimes> z \<in> H" by simp |
|
356 |
qed |
|
357 |
qed |
|
358 |
||
359 |
text{*Equivalence classes of @{text rcong} correspond to left cosets. |
|
360 |
Was there a mistake in the definitions? I'd have expected them to |
|
361 |
correspond to right cosets.*} |
|
362 |
||
363 |
(* CB: This is correct, but subtle. |
|
364 |
We call H #> a the right coset of a relative to H. According to |
|
365 |
Jacobson, this is what the majority of group theory literature does. |
|
366 |
He then defines the notion of congruence relation ~ over monoids as |
|
367 |
equivalence relation with a ~ a' & b ~ b' \<Longrightarrow> a*b ~ a'*b'. |
|
368 |
Our notion of right congruence induced by K: rcong K appears only in |
|
369 |
the context where K is a normal subgroup. Jacobson doesn't name it. |
|
370 |
But in this context left and right cosets are identical. |
|
371 |
*) |
|
372 |
||
373 |
lemma (in subgroup) l_coset_eq_rcong: |
|
374 |
includes group G |
|
375 |
assumes a: "a \<in> carrier G" |
|
376 |
shows "a <# H = rcong H `` {a}" |
|
377 |
by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a ) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
378 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
379 |
|
14803 | 380 |
subsubsection{*Two distinct right cosets are disjoint*} |
381 |
||
382 |
lemma (in group) rcos_equation: |
|
14963 | 383 |
includes subgroup H G |
384 |
shows |
|
385 |
"\<lbrakk>ha \<otimes> a = h \<otimes> b; a \<in> carrier G; b \<in> carrier G; |
|
386 |
h \<in> H; ha \<in> H; hb \<in> H\<rbrakk> |
|
387 |
\<Longrightarrow> hb \<otimes> a \<in> (\<Union>h\<in>H. {h \<otimes> b})" |
|
388 |
apply (rule UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"]) |
|
389 |
apply (simp add: ); |
|
390 |
apply (simp add: m_assoc transpose_inv) |
|
14803 | 391 |
done |
392 |
||
393 |
lemma (in group) rcos_disjoint: |
|
14963 | 394 |
includes subgroup H G |
395 |
shows "\<lbrakk>a \<in> rcosets H; b \<in> rcosets H; a\<noteq>b\<rbrakk> \<Longrightarrow> a \<inter> b = {}" |
|
396 |
apply (simp add: RCOSETS_def r_coset_def) |
|
397 |
apply (blast intro: rcos_equation prems sym) |
|
14803 | 398 |
done |
399 |
||
400 |
||
401 |
subsection {*Order of a Group and Lagrange's Theorem*} |
|
402 |
||
403 |
constdefs |
|
14963 | 404 |
order :: "('a, 'b) monoid_scheme \<Rightarrow> nat" |
405 |
"order S \<equiv> card (carrier S)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
406 |
|
14963 | 407 |
lemma (in group) rcos_self: |
408 |
includes subgroup |
|
409 |
shows "x \<in> carrier G \<Longrightarrow> x \<in> H #> x" |
|
410 |
apply (simp add: r_coset_def) |
|
411 |
apply (rule_tac x="\<one>" in bexI) |
|
412 |
apply (auto simp add: ); |
|
413 |
done |
|
414 |
||
415 |
lemma (in group) rcosets_part_G: |
|
416 |
includes subgroup |
|
417 |
shows "\<Union>(rcosets H) = carrier G" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
418 |
apply (rule equalityI) |
14963 | 419 |
apply (force simp add: RCOSETS_def r_coset_def) |
420 |
apply (auto simp add: RCOSETS_def intro: rcos_self prems) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
421 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
422 |
|
14747 | 423 |
lemma (in group) cosets_finite: |
14963 | 424 |
"\<lbrakk>c \<in> rcosets H; H \<subseteq> carrier G; finite (carrier G)\<rbrakk> \<Longrightarrow> finite c" |
425 |
apply (auto simp add: RCOSETS_def) |
|
426 |
apply (simp add: r_coset_subset_G [THEN finite_subset]) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
427 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
428 |
|
14747 | 429 |
text{*The next two lemmas support the proof of @{text card_cosets_equal}.*} |
430 |
lemma (in group) inj_on_f: |
|
14963 | 431 |
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
432 |
apply (rule inj_onI) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
433 |
apply (subgoal_tac "x \<in> carrier G & y \<in> carrier G") |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
434 |
prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
435 |
apply (simp add: subsetD) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
436 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
437 |
|
14747 | 438 |
lemma (in group) inj_on_g: |
14963 | 439 |
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
440 |
by (force simp add: inj_on_def subsetD) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
441 |
|
14747 | 442 |
lemma (in group) card_cosets_equal: |
14963 | 443 |
"\<lbrakk>c \<in> rcosets H; H \<subseteq> carrier G; finite(carrier G)\<rbrakk> |
444 |
\<Longrightarrow> card c = card H" |
|
445 |
apply (auto simp add: RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
446 |
apply (rule card_bij_eq) |
14666 | 447 |
apply (rule inj_on_f, assumption+) |
14747 | 448 |
apply (force simp add: m_assoc subsetD r_coset_def) |
14666 | 449 |
apply (rule inj_on_g, assumption+) |
14747 | 450 |
apply (force simp add: m_assoc subsetD r_coset_def) |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
451 |
txt{*The sets @{term "H #> a"} and @{term "H"} are finite.*} |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
452 |
apply (simp add: r_coset_subset_G [THEN finite_subset]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
453 |
apply (blast intro: finite_subset) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
454 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
455 |
|
14963 | 456 |
lemma (in group) rcosets_subset_PowG: |
457 |
"subgroup H G \<Longrightarrow> rcosets H \<subseteq> Pow(carrier G)" |
|
458 |
apply (simp add: RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
459 |
apply (blast dest: r_coset_subset_G subgroup.subset) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
460 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
461 |
|
14803 | 462 |
|
463 |
theorem (in group) lagrange: |
|
14963 | 464 |
"\<lbrakk>finite(carrier G); subgroup H G\<rbrakk> |
465 |
\<Longrightarrow> card(rcosets H) * card(H) = order(G)" |
|
466 |
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric]) |
|
14803 | 467 |
apply (subst mult_commute) |
468 |
apply (rule card_partition) |
|
14963 | 469 |
apply (simp add: rcosets_subset_PowG [THEN finite_subset]) |
470 |
apply (simp add: rcosets_part_G) |
|
14803 | 471 |
apply (simp add: card_cosets_equal subgroup.subset) |
472 |
apply (simp add: rcos_disjoint) |
|
473 |
done |
|
474 |
||
475 |
||
14747 | 476 |
subsection {*Quotient Groups: Factorization of a Group*} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
477 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
478 |
constdefs |
14963 | 479 |
FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid" |
14803 | 480 |
(infixl "Mod" 65) |
14747 | 481 |
--{*Actually defined for groups rather than monoids*} |
14963 | 482 |
"FactGroup G H \<equiv> |
483 |
\<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>" |
|
14747 | 484 |
|
14963 | 485 |
lemma (in normal) setmult_closed: |
486 |
"\<lbrakk>K1 \<in> rcosets H; K2 \<in> rcosets H\<rbrakk> \<Longrightarrow> K1 <#> K2 \<in> rcosets H" |
|
487 |
by (auto simp add: rcos_sum RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
488 |
|
14963 | 489 |
lemma (in normal) setinv_closed: |
490 |
"K \<in> rcosets H \<Longrightarrow> set_inv K \<in> rcosets H" |
|
491 |
by (auto simp add: rcos_inv RCOSETS_def) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
492 |
|
14963 | 493 |
lemma (in normal) rcosets_assoc: |
494 |
"\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk> |
|
495 |
\<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)" |
|
496 |
by (auto simp add: RCOSETS_def rcos_sum m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
497 |
|
14963 | 498 |
lemma (in subgroup) subgroup_in_rcosets: |
499 |
includes group G |
|
500 |
shows "H \<in> rcosets H" |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
501 |
proof - |
14963 | 502 |
have "H #> \<one> = H" |
503 |
by (rule coset_join2, auto) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
504 |
then show ?thesis |
14963 | 505 |
by (auto simp add: RCOSETS_def) |
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
506 |
qed |
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
507 |
|
14963 | 508 |
lemma (in normal) rcosets_inv_mult_group_eq: |
509 |
"M \<in> rcosets H \<Longrightarrow> set_inv M <#> M = H" |
|
510 |
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset prems) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
511 |
|
14963 | 512 |
theorem (in normal) factorgroup_is_group: |
513 |
"group (G Mod H)" |
|
14666 | 514 |
apply (simp add: FactGroup_def) |
13936 | 515 |
apply (rule groupI) |
14747 | 516 |
apply (simp add: setmult_closed) |
14963 | 517 |
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group]) |
518 |
apply (simp add: restrictI setmult_closed rcosets_assoc) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
519 |
apply (simp add: normal_imp_subgroup |
14963 | 520 |
subgroup_in_rcosets rcosets_mult_eq) |
521 |
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
522 |
done |
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
523 |
|
14803 | 524 |
lemma mult_FactGroup [simp]: "X \<otimes>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'" |
525 |
by (simp add: FactGroup_def) |
|
526 |
||
14963 | 527 |
lemma (in normal) inv_FactGroup: |
528 |
"X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X" |
|
14747 | 529 |
apply (rule group.inv_equality [OF factorgroup_is_group]) |
14963 | 530 |
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq) |
14747 | 531 |
done |
532 |
||
533 |
text{*The coset map is a homomorphism from @{term G} to the quotient group |
|
14963 | 534 |
@{term "G Mod H"}*} |
535 |
lemma (in normal) r_coset_hom_Mod: |
|
536 |
"(\<lambda>a. H #> a) \<in> hom G (G Mod H)" |
|
537 |
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum) |
|
14747 | 538 |
|
14963 | 539 |
|
540 |
subsection{*The First Isomorphism Theorem*} |
|
14803 | 541 |
|
14963 | 542 |
text{*The quotient by the kernel of a homomorphism is isomorphic to the |
543 |
range of that homomorphism.*} |
|
14803 | 544 |
|
545 |
constdefs |
|
14963 | 546 |
kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow> |
547 |
('a \<Rightarrow> 'b) \<Rightarrow> 'a set" |
|
14803 | 548 |
--{*the kernel of a homomorphism*} |
14963 | 549 |
"kernel G H h \<equiv> {x. x \<in> carrier G & h x = \<one>\<^bsub>H\<^esub>}"; |
14803 | 550 |
|
551 |
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G" |
|
14963 | 552 |
apply (rule subgroup.intro) |
14803 | 553 |
apply (auto simp add: kernel_def group.intro prems) |
554 |
done |
|
555 |
||
556 |
text{*The kernel of a homomorphism is a normal subgroup*} |
|
14963 | 557 |
lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G" |
14803 | 558 |
apply (simp add: group.normal_inv_iff subgroup_kernel group.intro prems) |
559 |
apply (simp add: kernel_def) |
|
560 |
done |
|
561 |
||
562 |
lemma (in group_hom) FactGroup_nonempty: |
|
563 |
assumes X: "X \<in> carrier (G Mod kernel G H h)" |
|
564 |
shows "X \<noteq> {}" |
|
565 |
proof - |
|
566 |
from X |
|
567 |
obtain g where "g \<in> carrier G" |
|
568 |
and "X = kernel G H h #> g" |
|
14963 | 569 |
by (auto simp add: FactGroup_def RCOSETS_def) |
14803 | 570 |
thus ?thesis |
14963 | 571 |
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one) |
14803 | 572 |
qed |
573 |
||
574 |
||
575 |
lemma (in group_hom) FactGroup_contents_mem: |
|
576 |
assumes X: "X \<in> carrier (G Mod (kernel G H h))" |
|
577 |
shows "contents (h`X) \<in> carrier H" |
|
578 |
proof - |
|
579 |
from X |
|
580 |
obtain g where g: "g \<in> carrier G" |
|
581 |
and "X = kernel G H h #> g" |
|
14963 | 582 |
by (auto simp add: FactGroup_def RCOSETS_def) |
583 |
hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def image_def g) |
|
14803 | 584 |
thus ?thesis by (auto simp add: g) |
585 |
qed |
|
586 |
||
587 |
lemma (in group_hom) FactGroup_hom: |
|
14963 | 588 |
"(\<lambda>X. contents (h`X)) \<in> hom (G Mod (kernel G H h)) H" |
589 |
apply (simp add: hom_def FactGroup_contents_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed) |
|
14803 | 590 |
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI) |
591 |
fix X and X' |
|
592 |
assume X: "X \<in> carrier (G Mod kernel G H h)" |
|
593 |
and X': "X' \<in> carrier (G Mod kernel G H h)" |
|
594 |
then |
|
595 |
obtain g and g' |
|
596 |
where "g \<in> carrier G" and "g' \<in> carrier G" |
|
597 |
and "X = kernel G H h #> g" and "X' = kernel G H h #> g'" |
|
14963 | 598 |
by (auto simp add: FactGroup_def RCOSETS_def) |
14803 | 599 |
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" |
600 |
and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G" |
|
601 |
by (force simp add: kernel_def r_coset_def image_def)+ |
|
602 |
hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X' |
|
603 |
by (auto dest!: FactGroup_nonempty |
|
604 |
simp add: set_mult_def image_eq_UN |
|
605 |
subsetD [OF Xsub] subsetD [OF X'sub]) |
|
606 |
thus "contents (h ` (X <#> X')) = contents (h ` X) \<otimes>\<^bsub>H\<^esub> contents (h ` X')" |
|
607 |
by (simp add: all image_eq_UN FactGroup_nonempty X X') |
|
608 |
qed |
|
609 |
||
14963 | 610 |
|
14803 | 611 |
text{*Lemma for the following injectivity result*} |
612 |
lemma (in group_hom) FactGroup_subset: |
|
14963 | 613 |
"\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk> |
614 |
\<Longrightarrow> kernel G H h #> g \<subseteq> kernel G H h #> g'" |
|
14803 | 615 |
apply (clarsimp simp add: kernel_def r_coset_def image_def); |
616 |
apply (rename_tac y) |
|
617 |
apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI) |
|
618 |
apply (simp add: G.m_assoc); |
|
619 |
done |
|
620 |
||
621 |
lemma (in group_hom) FactGroup_inj_on: |
|
622 |
"inj_on (\<lambda>X. contents (h ` X)) (carrier (G Mod kernel G H h))" |
|
623 |
proof (simp add: inj_on_def, clarify) |
|
624 |
fix X and X' |
|
625 |
assume X: "X \<in> carrier (G Mod kernel G H h)" |
|
626 |
and X': "X' \<in> carrier (G Mod kernel G H h)" |
|
627 |
then |
|
628 |
obtain g and g' |
|
629 |
where gX: "g \<in> carrier G" "g' \<in> carrier G" |
|
630 |
"X = kernel G H h #> g" "X' = kernel G H h #> g'" |
|
14963 | 631 |
by (auto simp add: FactGroup_def RCOSETS_def) |
14803 | 632 |
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" |
633 |
by (force simp add: kernel_def r_coset_def image_def)+ |
|
634 |
assume "contents (h ` X) = contents (h ` X')" |
|
635 |
hence h: "h g = h g'" |
|
636 |
by (simp add: image_eq_UN all FactGroup_nonempty X X') |
|
637 |
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX) |
|
638 |
qed |
|
639 |
||
640 |
text{*If the homomorphism @{term h} is onto @{term H}, then so is the |
|
641 |
homomorphism from the quotient group*} |
|
642 |
lemma (in group_hom) FactGroup_onto: |
|
643 |
assumes h: "h ` carrier G = carrier H" |
|
644 |
shows "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) = carrier H" |
|
645 |
proof |
|
646 |
show "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) \<subseteq> carrier H" |
|
647 |
by (auto simp add: FactGroup_contents_mem) |
|
648 |
show "carrier H \<subseteq> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)" |
|
649 |
proof |
|
650 |
fix y |
|
651 |
assume y: "y \<in> carrier H" |
|
652 |
with h obtain g where g: "g \<in> carrier G" "h g = y" |
|
653 |
by (blast elim: equalityE); |
|
654 |
hence "(\<Union>\<^bsub>x\<in>kernel G H h #> g\<^esub> {h x}) = {y}" |
|
655 |
by (auto simp add: y kernel_def r_coset_def) |
|
656 |
with g show "y \<in> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)" |
|
14963 | 657 |
by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN) |
14803 | 658 |
qed |
659 |
qed |
|
660 |
||
661 |
||
662 |
text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the |
|
663 |
quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.*} |
|
664 |
theorem (in group_hom) FactGroup_iso: |
|
665 |
"h ` carrier G = carrier H |
|
14963 | 666 |
\<Longrightarrow> (\<lambda>X. contents (h`X)) \<in> (G Mod (kernel G H h)) \<cong> H" |
14803 | 667 |
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def |
668 |
FactGroup_onto) |
|
669 |
||
14963 | 670 |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
671 |
end |