0

1 
(* Title: CTT/ctt.thy


2 
ID: $Id$


3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory


4 
Copyright 1993 University of Cambridge


5 


6 
Constructive Type Theory


7 
*)


8 


9 
CTT = Pure +


10 

283

11 
types


12 
i


13 
t


14 
o

0

15 

283

16 
arities


17 
i,t,o :: logic

0

18 


19 
consts


20 
(*Types*)


21 
F,T :: "t" (*F is empty, T contains one element*)


22 
contr :: "i=>i"


23 
tt :: "i"


24 
(*Natural numbers*)


25 
N :: "t"


26 
succ :: "i=>i"


27 
rec :: "[i, i, [i,i]=>i] => i"


28 
(*Unions*)


29 
inl,inr :: "i=>i"


30 
when :: "[i, i=>i, i=>i]=>i"


31 
(*General Sum and Binary Product*)


32 
Sum :: "[t, i=>t]=>t"


33 
fst,snd :: "i=>i"


34 
split :: "[i, [i,i]=>i] =>i"


35 
(*General Product and Function Space*)


36 
Prod :: "[t, i=>t]=>t"


37 
(*Equality type*)


38 
Eq :: "[t,i,i]=>t"


39 
eq :: "i"


40 
(*Judgements*)


41 
Type :: "t => prop" ("(_ type)" [10] 5)


42 
Eqtype :: "[t,t]=>prop" ("(3_ =/ _)" [10,10] 5)


43 
Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5)


44 
Eqelem :: "[i,i,t]=>prop" ("(3_ =/ _ :/ _)" [10,10,10] 5)


45 
Reduce :: "[i,i]=>prop" ("Reduce[_,_]")


46 
(*Types*)

23

47 
"@PROD" :: "[idt,t,t]=>t" ("(3PROD _:_./ _)" 10)


48 
"@SUM" :: "[idt,t,t]=>t" ("(3SUM _:_./ _)" 10)

0

49 
"+" :: "[t,t]=>t" (infixr 40)


50 
(*Invisible infixes!*)


51 
"@>" :: "[t,t]=>t" ("(_ >/ _)" [31,30] 30)


52 
"@*" :: "[t,t]=>t" ("(_ */ _)" [51,50] 50)


53 
(*Functions*)


54 
lambda :: "(i => i) => i" (binder "lam " 10)


55 
"`" :: "[i,i]=>i" (infixl 60)


56 
(*Natural numbers*)


57 
"0" :: "i" ("0")


58 
(*Pairing*)


59 
pair :: "[i,i]=>i" ("(1<_,/_>)")


60 


61 
translations


62 
"PROD x:A. B" => "Prod(A, %x. B)"

23

63 
"A > B" => "Prod(A, _K(B))"

0

64 
"SUM x:A. B" => "Sum(A, %x. B)"

23

65 
"A * B" => "Sum(A, _K(B))"

0

66 


67 
rules


68 


69 
(*Reduction: a weaker notion than equality; a hack for simplification.


70 
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b"


71 
are textually identical.*)


72 


73 
(*does not verify a:A! Sound because only trans_red uses a Reduce premise


74 
No new theorems can be proved about the standard judgements.*)


75 
refl_red "Reduce[a,a]"


76 
red_if_equal "a = b : A ==> Reduce[a,b]"


77 
trans_red "[ a = b : A; Reduce[b,c] ] ==> a = c : A"


78 


79 
(*Reflexivity*)


80 


81 
refl_type "A type ==> A = A"


82 
refl_elem "a : A ==> a = a : A"


83 


84 
(*Symmetry*)


85 


86 
sym_type "A = B ==> B = A"


87 
sym_elem "a = b : A ==> b = a : A"


88 


89 
(*Transitivity*)


90 


91 
trans_type "[ A = B; B = C ] ==> A = C"


92 
trans_elem "[ a = b : A; b = c : A ] ==> a = c : A"


93 


94 
equal_types "[ a : A; A = B ] ==> a : B"


95 
equal_typesL "[ a = b : A; A = B ] ==> a = b : B"


96 


97 
(*Substitution*)


98 


99 
subst_type "[ a : A; !!z. z:A ==> B(z) type ] ==> B(a) type"


100 
subst_typeL "[ a = c : A; !!z. z:A ==> B(z) = D(z) ] ==> B(a) = D(c)"


101 


102 
subst_elem "[ a : A; !!z. z:A ==> b(z):B(z) ] ==> b(a):B(a)"


103 
subst_elemL


104 
"[ a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) ] ==> b(a)=d(c) : B(a)"


105 


106 


107 
(*The type N  natural numbers*)


108 


109 
NF "N type"


110 
NI0 "0 : N"


111 
NI_succ "a : N ==> succ(a) : N"


112 
NI_succL "a = b : N ==> succ(a) = succ(b) : N"


113 


114 
NE


115 
"[ p: N; a: C(0); !!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] \


116 
\ ==> rec(p, a, %u v.b(u,v)) : C(p)"


117 


118 
NEL


119 
"[ p = q : N; a = c : C(0); \


120 
\ !!u v. [ u: N; v: C(u) ] ==> b(u,v) = d(u,v): C(succ(u)) ] \


121 
\ ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)"


122 


123 
NC0


124 
"[ a: C(0); !!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] \


125 
\ ==> rec(0, a, %u v.b(u,v)) = a : C(0)"


126 


127 
NC_succ


128 
"[ p: N; a: C(0); \


129 
\ !!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] ==> \


130 
\ rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))"


131 


132 
(*The fourth Peano axiom. See page 91 of MartinLof's book*)


133 
zero_ne_succ


134 
"[ a: N; 0 = succ(a) : N ] ==> 0: F"


135 


136 


137 
(*The Product of a family of types*)


138 


139 
ProdF "[ A type; !!x. x:A ==> B(x) type ] ==> PROD x:A.B(x) type"


140 


141 
ProdFL


142 
"[ A = C; !!x. x:A ==> B(x) = D(x) ] ==> \


143 
\ PROD x:A.B(x) = PROD x:C.D(x)"


144 


145 
ProdI


146 
"[ A type; !!x. x:A ==> b(x):B(x)] ==> lam x.b(x) : PROD x:A.B(x)"


147 


148 
ProdIL


149 
"[ A type; !!x. x:A ==> b(x) = c(x) : B(x)] ==> \


150 
\ lam x.b(x) = lam x.c(x) : PROD x:A.B(x)"


151 


152 
ProdE "[ p : PROD x:A.B(x); a : A ] ==> p`a : B(a)"


153 
ProdEL "[ p=q: PROD x:A.B(x); a=b : A ] ==> p`a = q`b : B(a)"


154 


155 
ProdC


156 
"[ a : A; !!x. x:A ==> b(x) : B(x)] ==> \


157 
\ (lam x.b(x)) ` a = b(a) : B(a)"


158 


159 
ProdC2


160 
"p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)"


161 


162 


163 
(*The Sum of a family of types*)


164 


165 
SumF "[ A type; !!x. x:A ==> B(x) type ] ==> SUM x:A.B(x) type"


166 
SumFL


167 
"[ A = C; !!x. x:A ==> B(x) = D(x) ] ==> SUM x:A.B(x) = SUM x:C.D(x)"


168 


169 
SumI "[ a : A; b : B(a) ] ==> <a,b> : SUM x:A.B(x)"


170 
SumIL "[ a=c:A; b=d:B(a) ] ==> <a,b> = <c,d> : SUM x:A.B(x)"


171 


172 
SumE


173 
"[ p: SUM x:A.B(x); !!x y. [ x:A; y:B(x) ] ==> c(x,y): C(<x,y>) ] \


174 
\ ==> split(p, %x y.c(x,y)) : C(p)"


175 


176 
SumEL


177 
"[ p=q : SUM x:A.B(x); \


178 
\ !!x y. [ x:A; y:B(x) ] ==> c(x,y)=d(x,y): C(<x,y>)] \


179 
\ ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)"


180 


181 
SumC


182 
"[ a: A; b: B(a); !!x y. [ x:A; y:B(x) ] ==> c(x,y): C(<x,y>) ] \


183 
\ ==> split(<a,b>, %x y.c(x,y)) = c(a,b) : C(<a,b>)"


184 


185 
fst_def "fst(a) == split(a, %x y.x)"


186 
snd_def "snd(a) == split(a, %x y.y)"


187 


188 


189 
(*The sum of two types*)


190 


191 
PlusF "[ A type; B type ] ==> A+B type"


192 
PlusFL "[ A = C; B = D ] ==> A+B = C+D"


193 


194 
PlusI_inl "[ a : A; B type ] ==> inl(a) : A+B"


195 
PlusI_inlL "[ a = c : A; B type ] ==> inl(a) = inl(c) : A+B"


196 


197 
PlusI_inr "[ A type; b : B ] ==> inr(b) : A+B"


198 
PlusI_inrL "[ A type; b = d : B ] ==> inr(b) = inr(d) : A+B"


199 


200 
PlusE


201 
"[ p: A+B; !!x. x:A ==> c(x): C(inl(x)); \


202 
\ !!y. y:B ==> d(y): C(inr(y)) ] \


203 
\ ==> when(p, %x.c(x), %y.d(y)) : C(p)"


204 


205 
PlusEL


206 
"[ p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); \


207 
\ !!y. y: B ==> d(y) = f(y) : C(inr(y)) ] \


208 
\ ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)"


209 


210 
PlusC_inl


211 
"[ a: A; !!x. x:A ==> c(x): C(inl(x)); \


212 
\ !!y. y:B ==> d(y): C(inr(y)) ] \


213 
\ ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))"


214 


215 
PlusC_inr


216 
"[ b: B; !!x. x:A ==> c(x): C(inl(x)); \


217 
\ !!y. y:B ==> d(y): C(inr(y)) ] \


218 
\ ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))"


219 


220 


221 
(*The type Eq*)


222 


223 
EqF "[ A type; a : A; b : A ] ==> Eq(A,a,b) type"


224 
EqFL "[ A=B; a=c: A; b=d : A ] ==> Eq(A,a,b) = Eq(B,c,d)"


225 
EqI "a = b : A ==> eq : Eq(A,a,b)"


226 
EqE "p : Eq(A,a,b) ==> a = b : A"


227 


228 
(*By equality of types, can prove C(p) from C(eq), an elimination rule*)


229 
EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"


230 


231 
(*The type F*)


232 


233 
FF "F type"


234 
FE "[ p: F; C type ] ==> contr(p) : C"


235 
FEL "[ p = q : F; C type ] ==> contr(p) = contr(q) : C"


236 


237 
(*The type T


238 
MartinLof's book (page 68) discusses elimination and computation.


239 
Elimination can be derived by computation and equality of types,


240 
but with an extra premise C(x) type x:T.


241 
Also computation can be derived from elimination. *)


242 


243 
TF "T type"


244 
TI "tt : T"


245 
TE "[ p : T; c : C(tt) ] ==> c : C(p)"


246 
TEL "[ p = q : T; c = d : C(tt) ] ==> c = d : C(p)"


247 
TC "p : T ==> p = tt : T"


248 
end


249 


250 


251 
ML


252 


253 
val print_translation =


254 
[("Prod", dependent_tr' ("@PROD", "@>")),


255 
("Sum", dependent_tr' ("@SUM", "@*"))];


256 
