33154
|
1 |
(* Title: HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy
|
|
2 |
Author: Amine Chaieb
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* Implementation and verification of mutivariate polynomials Library *}
|
|
6 |
|
|
7 |
|
|
8 |
theory Reflected_Multivariate_Polynomial
|
|
9 |
imports Parity Abstract_Rat Efficient_Nat List Polynomial_List
|
|
10 |
begin
|
|
11 |
|
|
12 |
(* Impelementation *)
|
|
13 |
|
|
14 |
subsection{* Datatype of polynomial expressions *}
|
|
15 |
|
|
16 |
datatype poly = C Num| Bound nat| Add poly poly|Sub poly poly
|
|
17 |
| Mul poly poly| Neg poly| Pw poly nat| CN poly nat poly
|
|
18 |
|
|
19 |
ML{* @{term "Add"}*}
|
|
20 |
syntax "_poly0" :: "poly" ("0\<^sub>p")
|
|
21 |
translations "0\<^sub>p" \<rightleftharpoons> "C (0\<^sub>N)"
|
|
22 |
syntax "_poly" :: "int \<Rightarrow> poly" ("_\<^sub>p")
|
|
23 |
translations "i\<^sub>p" \<rightleftharpoons> "C (i\<^sub>N)"
|
|
24 |
|
|
25 |
subsection{* Boundedness, substitution and all that *}
|
|
26 |
consts polysize:: "poly \<Rightarrow> nat"
|
|
27 |
primrec
|
|
28 |
"polysize (C c) = 1"
|
|
29 |
"polysize (Bound n) = 1"
|
|
30 |
"polysize (Neg p) = 1 + polysize p"
|
|
31 |
"polysize (Add p q) = 1 + polysize p + polysize q"
|
|
32 |
"polysize (Sub p q) = 1 + polysize p + polysize q"
|
|
33 |
"polysize (Mul p q) = 1 + polysize p + polysize q"
|
|
34 |
"polysize (Pw p n) = 1 + polysize p"
|
|
35 |
"polysize (CN c n p) = 4 + polysize c + polysize p"
|
|
36 |
|
|
37 |
consts
|
|
38 |
polybound0:: "poly \<Rightarrow> bool" (* a poly is INDEPENDENT of Bound 0 *)
|
|
39 |
polysubst0:: "poly \<Rightarrow> poly \<Rightarrow> poly" (* substitute a poly into a poly for Bound 0 *)
|
|
40 |
primrec
|
|
41 |
"polybound0 (C c) = True"
|
|
42 |
"polybound0 (Bound n) = (n>0)"
|
|
43 |
"polybound0 (Neg a) = polybound0 a"
|
|
44 |
"polybound0 (Add a b) = (polybound0 a \<and> polybound0 b)"
|
|
45 |
"polybound0 (Sub a b) = (polybound0 a \<and> polybound0 b)"
|
|
46 |
"polybound0 (Mul a b) = (polybound0 a \<and> polybound0 b)"
|
|
47 |
"polybound0 (Pw p n) = (polybound0 p)"
|
|
48 |
"polybound0 (CN c n p) = (n \<noteq> 0 \<and> polybound0 c \<and> polybound0 p)"
|
|
49 |
primrec
|
|
50 |
"polysubst0 t (C c) = (C c)"
|
|
51 |
"polysubst0 t (Bound n) = (if n=0 then t else Bound n)"
|
|
52 |
"polysubst0 t (Neg a) = Neg (polysubst0 t a)"
|
|
53 |
"polysubst0 t (Add a b) = Add (polysubst0 t a) (polysubst0 t b)"
|
|
54 |
"polysubst0 t (Sub a b) = Sub (polysubst0 t a) (polysubst0 t b)"
|
|
55 |
"polysubst0 t (Mul a b) = Mul (polysubst0 t a) (polysubst0 t b)"
|
|
56 |
"polysubst0 t (Pw p n) = Pw (polysubst0 t p) n"
|
|
57 |
"polysubst0 t (CN c n p) = (if n=0 then Add (polysubst0 t c) (Mul t (polysubst0 t p))
|
|
58 |
else CN (polysubst0 t c) n (polysubst0 t p))"
|
|
59 |
|
|
60 |
consts
|
|
61 |
decrpoly:: "poly \<Rightarrow> poly"
|
|
62 |
recdef decrpoly "measure polysize"
|
|
63 |
"decrpoly (Bound n) = Bound (n - 1)"
|
|
64 |
"decrpoly (Neg a) = Neg (decrpoly a)"
|
|
65 |
"decrpoly (Add a b) = Add (decrpoly a) (decrpoly b)"
|
|
66 |
"decrpoly (Sub a b) = Sub (decrpoly a) (decrpoly b)"
|
|
67 |
"decrpoly (Mul a b) = Mul (decrpoly a) (decrpoly b)"
|
|
68 |
"decrpoly (Pw p n) = Pw (decrpoly p) n"
|
|
69 |
"decrpoly (CN c n p) = CN (decrpoly c) (n - 1) (decrpoly p)"
|
|
70 |
"decrpoly a = a"
|
|
71 |
|
|
72 |
subsection{* Degrees and heads and coefficients *}
|
|
73 |
|
|
74 |
consts degree:: "poly \<Rightarrow> nat"
|
|
75 |
recdef degree "measure size"
|
|
76 |
"degree (CN c 0 p) = 1 + degree p"
|
|
77 |
"degree p = 0"
|
|
78 |
consts head:: "poly \<Rightarrow> poly"
|
|
79 |
|
|
80 |
recdef head "measure size"
|
|
81 |
"head (CN c 0 p) = head p"
|
|
82 |
"head p = p"
|
|
83 |
(* More general notions of degree and head *)
|
|
84 |
consts degreen:: "poly \<Rightarrow> nat \<Rightarrow> nat"
|
|
85 |
recdef degreen "measure size"
|
|
86 |
"degreen (CN c n p) = (\<lambda>m. if n=m then 1 + degreen p n else 0)"
|
|
87 |
"degreen p = (\<lambda>m. 0)"
|
|
88 |
|
|
89 |
consts headn:: "poly \<Rightarrow> nat \<Rightarrow> poly"
|
|
90 |
recdef headn "measure size"
|
|
91 |
"headn (CN c n p) = (\<lambda>m. if n \<le> m then headn p m else CN c n p)"
|
|
92 |
"headn p = (\<lambda>m. p)"
|
|
93 |
|
|
94 |
consts coefficients:: "poly \<Rightarrow> poly list"
|
|
95 |
recdef coefficients "measure size"
|
|
96 |
"coefficients (CN c 0 p) = c#(coefficients p)"
|
|
97 |
"coefficients p = [p]"
|
|
98 |
|
|
99 |
consts isconstant:: "poly \<Rightarrow> bool"
|
|
100 |
recdef isconstant "measure size"
|
|
101 |
"isconstant (CN c 0 p) = False"
|
|
102 |
"isconstant p = True"
|
|
103 |
|
|
104 |
consts behead:: "poly \<Rightarrow> poly"
|
|
105 |
recdef behead "measure size"
|
|
106 |
"behead (CN c 0 p) = (let p' = behead p in if p' = 0\<^sub>p then c else CN c 0 p')"
|
|
107 |
"behead p = 0\<^sub>p"
|
|
108 |
|
|
109 |
consts headconst:: "poly \<Rightarrow> Num"
|
|
110 |
recdef headconst "measure size"
|
|
111 |
"headconst (CN c n p) = headconst p"
|
|
112 |
"headconst (C n) = n"
|
|
113 |
|
|
114 |
subsection{* Operations for normalization *}
|
|
115 |
consts
|
|
116 |
polyadd :: "poly\<times>poly \<Rightarrow> poly"
|
|
117 |
polyneg :: "poly \<Rightarrow> poly" ("~\<^sub>p")
|
|
118 |
polysub :: "poly\<times>poly \<Rightarrow> poly"
|
|
119 |
polymul :: "poly\<times>poly \<Rightarrow> poly"
|
|
120 |
polypow :: "nat \<Rightarrow> poly \<Rightarrow> poly"
|
|
121 |
syntax "_polyadd" :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "+\<^sub>p" 60)
|
|
122 |
translations "a +\<^sub>p b" \<rightleftharpoons> "polyadd (a,b)"
|
|
123 |
syntax "_polymul" :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "*\<^sub>p" 60)
|
|
124 |
translations "a *\<^sub>p b" \<rightleftharpoons> "polymul (a,b)"
|
|
125 |
syntax "_polysub" :: "poly \<Rightarrow> poly \<Rightarrow> poly" (infixl "-\<^sub>p" 60)
|
|
126 |
translations "a -\<^sub>p b" \<rightleftharpoons> "polysub (a,b)"
|
|
127 |
syntax "_polypow" :: "nat \<Rightarrow> poly \<Rightarrow> poly" (infixl "^\<^sub>p" 60)
|
|
128 |
translations "a ^\<^sub>p k" \<rightleftharpoons> "polypow k a"
|
|
129 |
|
|
130 |
recdef polyadd "measure (\<lambda> (a,b). polysize a + polysize b)"
|
|
131 |
"polyadd (C c, C c') = C (c+\<^sub>Nc')"
|
|
132 |
"polyadd (C c, CN c' n' p') = CN (polyadd (C c, c')) n' p'"
|
|
133 |
"polyadd (CN c n p, C c') = CN (polyadd (c, C c')) n p"
|
|
134 |
stupid: "polyadd (CN c n p, CN c' n' p') =
|
|
135 |
(if n < n' then CN (polyadd(c,CN c' n' p')) n p
|
|
136 |
else if n'<n then CN (polyadd(CN c n p, c')) n' p'
|
|
137 |
else (let cc' = polyadd (c,c') ;
|
|
138 |
pp' = polyadd (p,p')
|
|
139 |
in (if pp' = 0\<^sub>p then cc' else CN cc' n pp')))"
|
|
140 |
"polyadd (a, b) = Add a b"
|
|
141 |
(hints recdef_simp add: Let_def measure_def split_def inv_image_def)
|
|
142 |
|
|
143 |
(*
|
|
144 |
declare stupid [simp del, code del]
|
|
145 |
|
|
146 |
lemma [simp,code]: "polyadd (CN c n p, CN c' n' p') =
|
|
147 |
(if n < n' then CN (polyadd(c,CN c' n' p')) n p
|
|
148 |
else if n'<n then CN (polyadd(CN c n p, c')) n' p'
|
|
149 |
else (let cc' = polyadd (c,c') ;
|
|
150 |
pp' = polyadd (p,p')
|
|
151 |
in (if pp' = 0\<^sub>p then cc' else CN cc' n pp')))"
|
|
152 |
by (simp add: Let_def stupid)
|
|
153 |
*)
|
|
154 |
|
|
155 |
recdef polyneg "measure size"
|
|
156 |
"polyneg (C c) = C (~\<^sub>N c)"
|
|
157 |
"polyneg (CN c n p) = CN (polyneg c) n (polyneg p)"
|
|
158 |
"polyneg a = Neg a"
|
|
159 |
|
|
160 |
defs polysub_def[code]: "polysub \<equiv> \<lambda> (p,q). polyadd (p,polyneg q)"
|
|
161 |
|
|
162 |
recdef polymul "measure (\<lambda>(a,b). size a + size b)"
|
|
163 |
"polymul(C c, C c') = C (c*\<^sub>Nc')"
|
|
164 |
"polymul(C c, CN c' n' p') =
|
|
165 |
(if c = 0\<^sub>N then 0\<^sub>p else CN (polymul(C c,c')) n' (polymul(C c, p')))"
|
|
166 |
"polymul(CN c n p, C c') =
|
|
167 |
(if c' = 0\<^sub>N then 0\<^sub>p else CN (polymul(c,C c')) n (polymul(p, C c')))"
|
|
168 |
"polymul(CN c n p, CN c' n' p') =
|
|
169 |
(if n<n' then CN (polymul(c,CN c' n' p')) n (polymul(p,CN c' n' p'))
|
|
170 |
else if n' < n
|
|
171 |
then CN (polymul(CN c n p,c')) n' (polymul(CN c n p,p'))
|
|
172 |
else polyadd(polymul(CN c n p, c'),CN 0\<^sub>p n' (polymul(CN c n p, p'))))"
|
|
173 |
"polymul (a,b) = Mul a b"
|
|
174 |
recdef polypow "measure id"
|
|
175 |
"polypow 0 = (\<lambda>p. 1\<^sub>p)"
|
|
176 |
"polypow n = (\<lambda>p. let q = polypow (n div 2) p ; d = polymul(q,q) in
|
|
177 |
if even n then d else polymul(p,d))"
|
|
178 |
|
|
179 |
consts polynate :: "poly \<Rightarrow> poly"
|
|
180 |
recdef polynate "measure polysize"
|
|
181 |
"polynate (Bound n) = CN 0\<^sub>p n 1\<^sub>p"
|
|
182 |
"polynate (Add p q) = (polynate p +\<^sub>p polynate q)"
|
|
183 |
"polynate (Sub p q) = (polynate p -\<^sub>p polynate q)"
|
|
184 |
"polynate (Mul p q) = (polynate p *\<^sub>p polynate q)"
|
|
185 |
"polynate (Neg p) = (~\<^sub>p (polynate p))"
|
|
186 |
"polynate (Pw p n) = ((polynate p) ^\<^sub>p n)"
|
|
187 |
"polynate (CN c n p) = polynate (Add c (Mul (Bound n) p))"
|
|
188 |
"polynate (C c) = C (normNum c)"
|
|
189 |
|
|
190 |
fun poly_cmul :: "Num \<Rightarrow> poly \<Rightarrow> poly" where
|
|
191 |
"poly_cmul y (C x) = C (y *\<^sub>N x)"
|
|
192 |
| "poly_cmul y (CN c n p) = CN (poly_cmul y c) n (poly_cmul y p)"
|
|
193 |
| "poly_cmul y p = C y *\<^sub>p p"
|
|
194 |
|
|
195 |
constdefs monic:: "poly \<Rightarrow> (poly \<times> bool)"
|
|
196 |
"monic p \<equiv> (let h = headconst p in if h = 0\<^sub>N then (p,False) else ((C (Ninv h)) *\<^sub>p p, 0>\<^sub>N h))"
|
|
197 |
|
|
198 |
subsection{* Pseudo-division *}
|
|
199 |
|
|
200 |
constdefs shift1:: "poly \<Rightarrow> poly"
|
|
201 |
"shift1 p \<equiv> CN 0\<^sub>p 0 p"
|
|
202 |
consts funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
|
|
203 |
|
|
204 |
primrec
|
|
205 |
"funpow 0 f x = x"
|
|
206 |
"funpow (Suc n) f x = funpow n f (f x)"
|
|
207 |
function (tailrec) polydivide_aux :: "(poly \<times> nat \<times> poly \<times> nat \<times> poly) \<Rightarrow> (nat \<times> poly)"
|
|
208 |
where
|
|
209 |
"polydivide_aux (a,n,p,k,s) =
|
|
210 |
(if s = 0\<^sub>p then (k,s)
|
|
211 |
else (let b = head s; m = degree s in
|
|
212 |
(if m < n then (k,s) else
|
|
213 |
(let p'= funpow (m - n) shift1 p in
|
|
214 |
(if a = b then polydivide_aux (a,n,p,k,s -\<^sub>p p')
|
|
215 |
else polydivide_aux (a,n,p,Suc k, (a *\<^sub>p s) -\<^sub>p (b *\<^sub>p p')))))))"
|
|
216 |
by pat_completeness auto
|
|
217 |
|
|
218 |
|
|
219 |
constdefs polydivide:: "poly \<Rightarrow> poly \<Rightarrow> (nat \<times> poly)"
|
|
220 |
"polydivide s p \<equiv> polydivide_aux (head p,degree p,p,0, s)"
|
|
221 |
|
|
222 |
fun poly_deriv_aux :: "nat \<Rightarrow> poly \<Rightarrow> poly" where
|
|
223 |
"poly_deriv_aux n (CN c 0 p) = CN (poly_cmul ((int n)\<^sub>N) c) 0 (poly_deriv_aux (n + 1) p)"
|
|
224 |
| "poly_deriv_aux n p = poly_cmul ((int n)\<^sub>N) p"
|
|
225 |
|
|
226 |
fun poly_deriv :: "poly \<Rightarrow> poly" where
|
|
227 |
"poly_deriv (CN c 0 p) = poly_deriv_aux 1 p"
|
|
228 |
| "poly_deriv p = 0\<^sub>p"
|
|
229 |
|
|
230 |
(* Verification *)
|
|
231 |
lemma nth_pos2[simp]: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)"
|
|
232 |
using Nat.gr0_conv_Suc
|
|
233 |
by clarsimp
|
|
234 |
|
|
235 |
subsection{* Semantics of the polynomial representation *}
|
|
236 |
|
|
237 |
consts Ipoly :: "'a list \<Rightarrow> poly \<Rightarrow> 'a::{ring_char_0,power,division_by_zero,field}"
|
|
238 |
primrec
|
|
239 |
"Ipoly bs (C c) = INum c"
|
|
240 |
"Ipoly bs (Bound n) = bs!n"
|
|
241 |
"Ipoly bs (Neg a) = - Ipoly bs a"
|
|
242 |
"Ipoly bs (Add a b) = Ipoly bs a + Ipoly bs b"
|
|
243 |
"Ipoly bs (Sub a b) = Ipoly bs a - Ipoly bs b"
|
|
244 |
"Ipoly bs (Mul a b) = Ipoly bs a * Ipoly bs b"
|
|
245 |
"Ipoly bs (Pw t n) = (Ipoly bs t) ^ n"
|
|
246 |
"Ipoly bs (CN c n p) = (Ipoly bs c) + (bs!n)*(Ipoly bs p)"
|
|
247 |
syntax "_Ipoly" :: "poly \<Rightarrow> 'a list \<Rightarrow>'a::{ring_char_0,power,division_by_zero,field}" ("\<lparr>_\<rparr>\<^sub>p\<^bsup>_\<^esup>")
|
|
248 |
translations "\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup>" \<rightleftharpoons> "Ipoly bs p"
|
|
249 |
|
|
250 |
lemma Ipoly_CInt: "Ipoly bs (C (i,1)) = of_int i"
|
|
251 |
by (simp add: INum_def)
|
|
252 |
lemma Ipoly_CRat: "Ipoly bs (C (i, j)) = of_int i / of_int j"
|
|
253 |
by (simp add: INum_def)
|
|
254 |
|
|
255 |
lemmas RIpoly_eqs = Ipoly.simps(2-7) Ipoly_CInt Ipoly_CRat
|
|
256 |
|
|
257 |
subsection {* Normal form and normalization *}
|
|
258 |
|
|
259 |
consts isnpolyh:: "poly \<Rightarrow> nat \<Rightarrow> bool"
|
|
260 |
recdef isnpolyh "measure size"
|
|
261 |
"isnpolyh (C c) = (\<lambda>k. isnormNum c)"
|
|
262 |
"isnpolyh (CN c n p) = (\<lambda>k. n\<ge> k \<and> (isnpolyh c (Suc n)) \<and> (isnpolyh p n) \<and> (p \<noteq> 0\<^sub>p))"
|
|
263 |
"isnpolyh p = (\<lambda>k. False)"
|
|
264 |
|
|
265 |
lemma isnpolyh_mono: "\<lbrakk>n' \<le> n ; isnpolyh p n\<rbrakk> \<Longrightarrow> isnpolyh p n'"
|
|
266 |
by (induct p rule: isnpolyh.induct, auto)
|
|
267 |
|
|
268 |
constdefs isnpoly:: "poly \<Rightarrow> bool"
|
|
269 |
"isnpoly p \<equiv> isnpolyh p 0"
|
|
270 |
|
|
271 |
text{* polyadd preserves normal forms *}
|
|
272 |
|
|
273 |
lemma polyadd_normh: "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk>
|
|
274 |
\<Longrightarrow> isnpolyh (polyadd(p,q)) (min n0 n1)"
|
|
275 |
proof(induct p q arbitrary: n0 n1 rule: polyadd.induct)
|
|
276 |
case (2 a b c' n' p' n0 n1)
|
|
277 |
from prems have th1: "isnpolyh (C (a,b)) (Suc n')" by simp
|
|
278 |
from prems(3) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" by simp_all
|
|
279 |
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
|
|
280 |
with prems(1)[OF th1 th2] have th3:"isnpolyh (C (a,b) +\<^sub>p c') (Suc n')" by simp
|
|
281 |
from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp
|
|
282 |
thus ?case using prems th3 by simp
|
|
283 |
next
|
|
284 |
case (3 c' n' p' a b n1 n0)
|
|
285 |
from prems have th1: "isnpolyh (C (a,b)) (Suc n')" by simp
|
|
286 |
from prems(2) have th2: "isnpolyh c' (Suc n')" and nplen1: "n' \<ge> n1" by simp_all
|
|
287 |
with isnpolyh_mono have cp: "isnpolyh c' (Suc n')" by simp
|
|
288 |
with prems(1)[OF th2 th1] have th3:"isnpolyh (c' +\<^sub>p C (a,b)) (Suc n')" by simp
|
|
289 |
from nplen1 have n01len1: "min n0 n1 \<le> n'" by simp
|
|
290 |
thus ?case using prems th3 by simp
|
|
291 |
next
|
|
292 |
case (4 c n p c' n' p' n0 n1)
|
|
293 |
hence nc: "isnpolyh c (Suc n)" and np: "isnpolyh p n" by simp_all
|
|
294 |
from prems have nc': "isnpolyh c' (Suc n')" and np': "isnpolyh p' n'" by simp_all
|
|
295 |
from prems have ngen0: "n \<ge> n0" by simp
|
|
296 |
from prems have n'gen1: "n' \<ge> n1" by simp
|
|
297 |
have "n < n' \<or> n' < n \<or> n = n'" by auto
|
|
298 |
moreover {assume eq: "n = n'" hence eq': "\<not> n' < n \<and> \<not> n < n'" by simp
|
|
299 |
with prems(2)[rule_format, OF eq' nc nc']
|
|
300 |
have ncc':"isnpolyh (c +\<^sub>p c') (Suc n)" by auto
|
|
301 |
hence ncc'n01: "isnpolyh (c +\<^sub>p c') (min n0 n1)"
|
|
302 |
using isnpolyh_mono[where n'="min n0 n1" and n="Suc n"] ngen0 n'gen1 by auto
|
|
303 |
from eq prems(1)[rule_format, OF eq' np np'] have npp': "isnpolyh (p +\<^sub>p p') n" by simp
|
|
304 |
have minle: "min n0 n1 \<le> n'" using ngen0 n'gen1 eq by simp
|
|
305 |
from minle npp' ncc'n01 prems ngen0 n'gen1 ncc' have ?case by (simp add: Let_def)}
|
|
306 |
moreover {assume lt: "n < n'"
|
|
307 |
have "min n0 n1 \<le> n0" by simp
|
|
308 |
with prems have th1:"min n0 n1 \<le> n" by auto
|
|
309 |
from prems have th21: "isnpolyh c (Suc n)" by simp
|
|
310 |
from prems have th22: "isnpolyh (CN c' n' p') n'" by simp
|
|
311 |
from lt have th23: "min (Suc n) n' = Suc n" by arith
|
|
312 |
from prems(4)[rule_format, OF lt th21 th22]
|
|
313 |
have "isnpolyh (polyadd (c, CN c' n' p')) (Suc n)" using th23 by simp
|
|
314 |
with prems th1 have ?case by simp }
|
|
315 |
moreover {assume gt: "n' < n" hence gt': "n' < n \<and> \<not> n < n'" by simp
|
|
316 |
have "min n0 n1 \<le> n1" by simp
|
|
317 |
with prems have th1:"min n0 n1 \<le> n'" by auto
|
|
318 |
from prems have th21: "isnpolyh c' (Suc n')" by simp_all
|
|
319 |
from prems have th22: "isnpolyh (CN c n p) n" by simp
|
|
320 |
from gt have th23: "min n (Suc n') = Suc n'" by arith
|
|
321 |
from prems(3)[rule_format, OF gt' th22 th21]
|
|
322 |
have "isnpolyh (polyadd (CN c n p,c')) (Suc n')" using th23 by simp
|
|
323 |
with prems th1 have ?case by simp}
|
|
324 |
ultimately show ?case by blast
|
|
325 |
qed auto
|
|
326 |
|
|
327 |
lemma polyadd[simp]: "Ipoly bs (polyadd (p,q)) = (Ipoly bs p) + (Ipoly bs q)"
|
|
328 |
by (induct p q rule: polyadd.induct, auto simp add: Let_def ring_simps right_distrib[symmetric] simp del: right_distrib)
|
|
329 |
|
|
330 |
lemma polyadd_norm: "\<lbrakk> isnpoly p ; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polyadd(p,q))"
|
|
331 |
using polyadd_normh[of "p" "0" "q" "0"] isnpoly_def by simp
|
|
332 |
|
|
333 |
text{* The degree of addition and other general lemmas needed for the normal form of polymul*}
|
|
334 |
|
|
335 |
lemma polyadd_different_degreen:
|
|
336 |
"\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degreen p m \<noteq> degreen q m ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow>
|
|
337 |
degreen (polyadd(p,q)) m = max (degreen p m) (degreen q m)"
|
|
338 |
proof (induct p q arbitrary: m n0 n1 rule: polyadd.induct)
|
|
339 |
case (4 c n p c' n' p' m n0 n1)
|
|
340 |
thus ?case
|
|
341 |
apply (cases "n' < n", simp_all add: Let_def)
|
|
342 |
apply (cases "n = n'", simp_all)
|
|
343 |
apply (cases "n' = m", simp_all add: Let_def)
|
|
344 |
by (erule allE[where x="m"], erule allE[where x="Suc m"],
|
|
345 |
erule allE[where x="m"], erule allE[where x="Suc m"],
|
|
346 |
clarsimp,erule allE[where x="m"],erule allE[where x="Suc m"], simp)
|
|
347 |
qed simp_all
|
|
348 |
|
|
349 |
lemma headnz[simp]: "\<lbrakk>isnpolyh p n ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> headn p m \<noteq> 0\<^sub>p"
|
|
350 |
by (induct p arbitrary: n rule: headn.induct, auto)
|
|
351 |
lemma degree_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> degree p = 0"
|
|
352 |
by (induct p arbitrary: n rule: degree.induct, auto)
|
|
353 |
lemma degreen_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> degreen p m = 0"
|
|
354 |
by (induct p arbitrary: n rule: degreen.induct, auto)
|
|
355 |
|
|
356 |
lemma degree_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> degree p = 0"
|
|
357 |
by (induct p arbitrary: n rule: degree.induct, auto)
|
|
358 |
|
|
359 |
lemma degree_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degree c = 0"
|
|
360 |
using degree_isnpolyh_Suc by auto
|
|
361 |
lemma degreen_npolyhCN[simp]: "isnpolyh (CN c n p) n0 \<Longrightarrow> degreen c n = 0"
|
|
362 |
using degreen_0 by auto
|
|
363 |
|
|
364 |
|
|
365 |
lemma degreen_polyadd:
|
|
366 |
assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1" and m: "m \<le> max n0 n1"
|
|
367 |
shows "degreen (p +\<^sub>p q) m \<le> max (degreen p m) (degreen q m)"
|
|
368 |
using np nq m
|
|
369 |
proof (induct p q arbitrary: n0 n1 m rule: polyadd.induct)
|
|
370 |
case (2 c c' n' p' n0 n1) thus ?case by (cases n', simp_all)
|
|
371 |
next
|
|
372 |
case (3 c n p c' n0 n1) thus ?case by (cases n, auto)
|
|
373 |
next
|
|
374 |
case (4 c n p c' n' p' n0 n1 m)
|
|
375 |
thus ?case
|
|
376 |
apply (cases "n < n'", simp_all add: Let_def)
|
|
377 |
apply (cases "n' < n", simp_all)
|
|
378 |
apply (erule allE[where x="n"],erule allE[where x="Suc n"],clarify)
|
|
379 |
apply (erule allE[where x="n'"],erule allE[where x="Suc n'"],clarify)
|
|
380 |
by (erule allE[where x="m"],erule allE[where x="m"], auto)
|
|
381 |
qed auto
|
|
382 |
|
|
383 |
|
|
384 |
lemma polyadd_eq_const_degreen: "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; polyadd (p,q) = C c\<rbrakk>
|
|
385 |
\<Longrightarrow> degreen p m = degreen q m"
|
|
386 |
proof (induct p q arbitrary: m n0 n1 c rule: polyadd.induct)
|
|
387 |
case (4 c n p c' n' p' m n0 n1 x)
|
|
388 |
hence z: "CN c n p +\<^sub>p CN c' n' p' = C x" by simp
|
|
389 |
{assume nn': "n' < n" hence ?case using prems by simp}
|
|
390 |
moreover
|
|
391 |
{assume nn':"\<not> n' < n" hence "n < n' \<or> n = n'" by arith
|
|
392 |
moreover {assume "n < n'" with prems have ?case by simp }
|
|
393 |
moreover {assume eq: "n = n'" hence ?case using prems
|
|
394 |
by (cases "p +\<^sub>p p' = 0\<^sub>p", auto simp add: Let_def) }
|
|
395 |
ultimately have ?case by blast}
|
|
396 |
ultimately show ?case by blast
|
|
397 |
qed simp_all
|
|
398 |
|
|
399 |
lemma polymul_properties:
|
|
400 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
401 |
and np: "isnpolyh p n0" and nq: "isnpolyh q n1" and m: "m \<le> min n0 n1"
|
|
402 |
shows "isnpolyh (p *\<^sub>p q) (min n0 n1)"
|
|
403 |
and "(p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p)"
|
|
404 |
and "degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0
|
|
405 |
else degreen p m + degreen q m)"
|
|
406 |
using np nq m
|
|
407 |
proof(induct p q arbitrary: n0 n1 m rule: polymul.induct)
|
|
408 |
case (2 a b c' n' p')
|
|
409 |
let ?c = "(a,b)"
|
|
410 |
{ case (1 n0 n1)
|
|
411 |
hence n: "isnpolyh (C ?c) n'" "isnpolyh c' (Suc n')" "isnpolyh p' n'" "isnormNum ?c"
|
|
412 |
"isnpolyh (CN c' n' p') n1"
|
|
413 |
by simp_all
|
|
414 |
{assume "?c = 0\<^sub>N" hence ?case by auto}
|
|
415 |
moreover {assume cnz: "?c \<noteq> 0\<^sub>N"
|
|
416 |
from "2.hyps"(1)[rule_format,where xb="n'", OF cnz n(1) n(3)]
|
|
417 |
"2.hyps"(2)[rule_format, where x="Suc n'"
|
|
418 |
and xa="Suc n'" and xb = "n'", OF cnz ] cnz n have ?case
|
|
419 |
by (auto simp add: min_def)}
|
|
420 |
ultimately show ?case by blast
|
|
421 |
next
|
|
422 |
case (2 n0 n1) thus ?case by auto
|
|
423 |
next
|
|
424 |
case (3 n0 n1) thus ?case using "2.hyps" by auto }
|
|
425 |
next
|
|
426 |
case (3 c n p a b){
|
|
427 |
let ?c' = "(a,b)"
|
|
428 |
case (1 n0 n1)
|
|
429 |
hence n: "isnpolyh (C ?c') n" "isnpolyh c (Suc n)" "isnpolyh p n" "isnormNum ?c'"
|
|
430 |
"isnpolyh (CN c n p) n0"
|
|
431 |
by simp_all
|
|
432 |
{assume "?c' = 0\<^sub>N" hence ?case by auto}
|
|
433 |
moreover {assume cnz: "?c' \<noteq> 0\<^sub>N"
|
|
434 |
from "3.hyps"(1)[rule_format,where xb="n", OF cnz n(3) n(1)]
|
|
435 |
"3.hyps"(2)[rule_format, where x="Suc n"
|
|
436 |
and xa="Suc n" and xb = "n", OF cnz ] cnz n have ?case
|
|
437 |
by (auto simp add: min_def)}
|
|
438 |
ultimately show ?case by blast
|
|
439 |
next
|
|
440 |
case (2 n0 n1) thus ?case apply auto done
|
|
441 |
next
|
|
442 |
case (3 n0 n1) thus ?case using "3.hyps" by auto }
|
|
443 |
next
|
|
444 |
case (4 c n p c' n' p')
|
|
445 |
let ?cnp = "CN c n p" let ?cnp' = "CN c' n' p'"
|
|
446 |
{fix n0 n1
|
|
447 |
assume "isnpolyh ?cnp n0" and "isnpolyh ?cnp' n1"
|
|
448 |
hence cnp: "isnpolyh ?cnp n" and cnp': "isnpolyh ?cnp' n'"
|
|
449 |
and np: "isnpolyh p n" and nc: "isnpolyh c (Suc n)"
|
|
450 |
and np': "isnpolyh p' n'" and nc': "isnpolyh c' (Suc n')"
|
|
451 |
and nn0: "n \<ge> n0" and nn1:"n' \<ge> n1"
|
|
452 |
by simp_all
|
|
453 |
have "n < n' \<or> n' < n \<or> n' = n" by auto
|
|
454 |
moreover
|
|
455 |
{assume nn': "n < n'"
|
|
456 |
with "4.hyps"(5)[rule_format, OF nn' np cnp', where xb ="n"]
|
|
457 |
"4.hyps"(6)[rule_format, OF nn' nc cnp', where xb="n"] nn' nn0 nn1 cnp
|
|
458 |
have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
|
|
459 |
by (simp add: min_def) }
|
|
460 |
moreover
|
|
461 |
|
|
462 |
{assume nn': "n > n'" hence stupid: "n' < n \<and> \<not> n < n'" by arith
|
|
463 |
with "4.hyps"(3)[rule_format, OF stupid cnp np', where xb="n'"]
|
|
464 |
"4.hyps"(4)[rule_format, OF stupid cnp nc', where xb="Suc n'"]
|
|
465 |
nn' nn0 nn1 cnp'
|
|
466 |
have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
|
|
467 |
by (cases "Suc n' = n", simp_all add: min_def)}
|
|
468 |
moreover
|
|
469 |
{assume nn': "n' = n" hence stupid: "\<not> n' < n \<and> \<not> n < n'" by arith
|
|
470 |
from "4.hyps"(1)[rule_format, OF stupid cnp np', where xb="n"]
|
|
471 |
"4.hyps"(2)[rule_format, OF stupid cnp nc', where xb="n"] nn' cnp cnp' nn1
|
|
472 |
|
|
473 |
have "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)"
|
|
474 |
by simp (rule polyadd_normh,simp_all add: min_def isnpolyh_mono[OF nn0]) }
|
|
475 |
ultimately show "isnpolyh (?cnp *\<^sub>p ?cnp') (min n0 n1)" by blast }
|
|
476 |
note th = this
|
|
477 |
{fix n0 n1 m
|
|
478 |
assume np: "isnpolyh ?cnp n0" and np':"isnpolyh ?cnp' n1"
|
|
479 |
and m: "m \<le> min n0 n1"
|
|
480 |
let ?d = "degreen (?cnp *\<^sub>p ?cnp') m"
|
|
481 |
let ?d1 = "degreen ?cnp m"
|
|
482 |
let ?d2 = "degreen ?cnp' m"
|
|
483 |
let ?eq = "?d = (if ?cnp = 0\<^sub>p \<or> ?cnp' = 0\<^sub>p then 0 else ?d1 + ?d2)"
|
|
484 |
have "n'<n \<or> n < n' \<or> n' = n" by auto
|
|
485 |
moreover
|
|
486 |
{assume "n' < n \<or> n < n'"
|
|
487 |
with "4.hyps" np np' m
|
|
488 |
have ?eq apply (cases "n' < n", simp_all)
|
|
489 |
apply (erule allE[where x="n"],erule allE[where x="n"],auto)
|
|
490 |
done }
|
|
491 |
moreover
|
|
492 |
{assume nn': "n' = n" hence nn:"\<not> n' < n \<and> \<not> n < n'" by arith
|
|
493 |
from "4.hyps"(1)[rule_format, OF nn, where x="n" and xa ="n'" and xb="n"]
|
|
494 |
"4.hyps"(2)[rule_format, OF nn, where x="n" and xa ="Suc n'" and xb="n"]
|
|
495 |
np np' nn'
|
|
496 |
have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
|
|
497 |
"isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
|
|
498 |
"(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)"
|
|
499 |
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p" by (auto simp add: min_def)
|
|
500 |
{assume mn: "m = n"
|
|
501 |
from "4.hyps"(1)[rule_format, OF nn norm(1,4), where xb="n"]
|
|
502 |
"4.hyps"(2)[rule_format, OF nn norm(1,2), where xb="n"] norm nn' mn
|
|
503 |
have degs: "degreen (?cnp *\<^sub>p c') n =
|
|
504 |
(if c'=0\<^sub>p then 0 else ?d1 + degreen c' n)"
|
|
505 |
"degreen (?cnp *\<^sub>p p') n = ?d1 + degreen p' n" by (simp_all add: min_def)
|
|
506 |
from degs norm
|
|
507 |
have th1: "degreen(?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n" by simp
|
|
508 |
hence neq: "degreen (?cnp *\<^sub>p c') n \<noteq> degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
|
|
509 |
by simp
|
|
510 |
have nmin: "n \<le> min n n" by (simp add: min_def)
|
|
511 |
from polyadd_different_degreen[OF norm(3,6) neq nmin] th1
|
|
512 |
have deg: "degreen (CN c n p *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n = degreen (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp
|
|
513 |
from "4.hyps"(1)[rule_format, OF nn norm(1,4), where xb="n"]
|
|
514 |
"4.hyps"(2)[rule_format, OF nn norm(1,2), where xb="n"]
|
|
515 |
mn norm m nn' deg
|
|
516 |
have ?eq by simp}
|
|
517 |
moreover
|
|
518 |
{assume mn: "m \<noteq> n" hence mn': "m < n" using m np by auto
|
|
519 |
from nn' m np have max1: "m \<le> max n n" by simp
|
|
520 |
hence min1: "m \<le> min n n" by simp
|
|
521 |
hence min2: "m \<le> min n (Suc n)" by simp
|
|
522 |
{assume "c' = 0\<^sub>p"
|
|
523 |
from `c' = 0\<^sub>p` have ?eq
|
|
524 |
using "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
|
|
525 |
"4.hyps"(2)[rule_format, OF nn norm(1,2) min2] mn nn'
|
|
526 |
apply simp
|
|
527 |
done}
|
|
528 |
moreover
|
|
529 |
{assume cnz: "c' \<noteq> 0\<^sub>p"
|
|
530 |
from "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
|
|
531 |
"4.hyps"(2)[rule_format, OF nn norm(1,2) min2]
|
|
532 |
degreen_polyadd[OF norm(3,6) max1]
|
|
533 |
|
|
534 |
have "degreen (?cnp *\<^sub>p c' +\<^sub>p CN 0\<^sub>p n (?cnp *\<^sub>p p')) m
|
|
535 |
\<le> max (degreen (?cnp *\<^sub>p c') m) (degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) m)"
|
|
536 |
using mn nn' cnz np np' by simp
|
|
537 |
with "4.hyps"(1)[rule_format, OF nn norm(1,4) min1]
|
|
538 |
"4.hyps"(2)[rule_format, OF nn norm(1,2) min2]
|
|
539 |
degreen_0[OF norm(3) mn'] have ?eq using nn' mn cnz np np' by clarsimp}
|
|
540 |
ultimately have ?eq by blast }
|
|
541 |
ultimately have ?eq by blast}
|
|
542 |
ultimately show ?eq by blast}
|
|
543 |
note degth = this
|
|
544 |
{ case (2 n0 n1)
|
|
545 |
hence np: "isnpolyh ?cnp n0" and np': "isnpolyh ?cnp' n1"
|
|
546 |
and m: "m \<le> min n0 n1" by simp_all
|
|
547 |
hence mn: "m \<le> n" by simp
|
|
548 |
let ?c0p = "CN 0\<^sub>p n (?cnp *\<^sub>p p')"
|
|
549 |
{assume C: "?cnp *\<^sub>p c' +\<^sub>p ?c0p = 0\<^sub>p" "n' = n"
|
|
550 |
hence nn: "\<not>n' < n \<and> \<not> n<n'" by simp
|
|
551 |
from "4.hyps"(1) [rule_format, OF nn, where x="n" and xa = "n" and xb="n"]
|
|
552 |
"4.hyps"(2) [rule_format, OF nn, where x="n" and xa = "Suc n" and xb="n"]
|
|
553 |
np np' C(2) mn
|
|
554 |
have norm: "isnpolyh ?cnp n" "isnpolyh c' (Suc n)" "isnpolyh (?cnp *\<^sub>p c') n"
|
|
555 |
"isnpolyh p' n" "isnpolyh (?cnp *\<^sub>p p') n" "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n"
|
|
556 |
"(?cnp *\<^sub>p c' = 0\<^sub>p) = (c' = 0\<^sub>p)"
|
|
557 |
"?cnp *\<^sub>p p' \<noteq> 0\<^sub>p"
|
|
558 |
"degreen (?cnp *\<^sub>p c') n = (if c'=0\<^sub>p then 0 else degreen ?cnp n + degreen c' n)"
|
|
559 |
"degreen (?cnp *\<^sub>p p') n = degreen ?cnp n + degreen p' n"
|
|
560 |
by (simp_all add: min_def)
|
|
561 |
|
|
562 |
from norm have cn: "isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp
|
|
563 |
have degneq: "degreen (?cnp *\<^sub>p c') n < degreen (CN 0\<^sub>p n (?cnp *\<^sub>p p')) n"
|
|
564 |
using norm by simp
|
|
565 |
from polyadd_eq_const_degreen[OF norm(3) cn C(1), where m="n"] degneq
|
|
566 |
have "False" by simp }
|
|
567 |
thus ?case using "4.hyps" by clarsimp}
|
|
568 |
qed auto
|
|
569 |
|
|
570 |
lemma polymul[simp]: "Ipoly bs (p *\<^sub>p q) = (Ipoly bs p) * (Ipoly bs q)"
|
|
571 |
by(induct p q rule: polymul.induct, auto simp add: ring_simps)
|
|
572 |
|
|
573 |
lemma polymul_normh:
|
|
574 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
575 |
shows "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (p *\<^sub>p q) (min n0 n1)"
|
|
576 |
using polymul_properties(1) by blast
|
|
577 |
lemma polymul_eq0_iff:
|
|
578 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
579 |
shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p *\<^sub>p q = 0\<^sub>p) = (p = 0\<^sub>p \<or> q = 0\<^sub>p) "
|
|
580 |
using polymul_properties(2) by blast
|
|
581 |
lemma polymul_degreen:
|
|
582 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
583 |
shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; m \<le> min n0 n1\<rbrakk> \<Longrightarrow> degreen (p *\<^sub>p q) m = (if (p = 0\<^sub>p \<or> q = 0\<^sub>p) then 0 else degreen p m + degreen q m)"
|
|
584 |
using polymul_properties(3) by blast
|
|
585 |
lemma polymul_norm:
|
|
586 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
587 |
shows "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polymul (p,q))"
|
|
588 |
using polymul_normh[of "p" "0" "q" "0"] isnpoly_def by simp
|
|
589 |
|
|
590 |
lemma headconst_zero: "isnpolyh p n0 \<Longrightarrow> headconst p = 0\<^sub>N \<longleftrightarrow> p = 0\<^sub>p"
|
|
591 |
by (induct p arbitrary: n0 rule: headconst.induct, auto)
|
|
592 |
|
|
593 |
lemma headconst_isnormNum: "isnpolyh p n0 \<Longrightarrow> isnormNum (headconst p)"
|
|
594 |
by (induct p arbitrary: n0, auto)
|
|
595 |
|
|
596 |
lemma monic_eqI: assumes np: "isnpolyh p n0"
|
|
597 |
shows "INum (headconst p) * Ipoly bs (fst (monic p)) = (Ipoly bs p ::'a::{ring_char_0,power,division_by_zero,field})"
|
|
598 |
unfolding monic_def Let_def
|
|
599 |
proof(cases "headconst p = 0\<^sub>N", simp_all add: headconst_zero[OF np])
|
|
600 |
let ?h = "headconst p"
|
|
601 |
assume pz: "p \<noteq> 0\<^sub>p"
|
|
602 |
{assume hz: "INum ?h = (0::'a)"
|
|
603 |
from headconst_isnormNum[OF np] have norm: "isnormNum ?h" "isnormNum 0\<^sub>N" by simp_all
|
|
604 |
from isnormNum_unique[where ?'a = 'a, OF norm] hz have "?h = 0\<^sub>N" by simp
|
|
605 |
with headconst_zero[OF np] have "p =0\<^sub>p" by blast with pz have "False" by blast}
|
|
606 |
thus "INum (headconst p) = (0::'a) \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by blast
|
|
607 |
qed
|
|
608 |
|
|
609 |
|
|
610 |
|
|
611 |
|
|
612 |
text{* polyneg is a negation and preserves normal form *}
|
|
613 |
lemma polyneg[simp]: "Ipoly bs (polyneg p) = - Ipoly bs p"
|
|
614 |
by (induct p rule: polyneg.induct, auto)
|
|
615 |
|
|
616 |
lemma polyneg0: "isnpolyh p n \<Longrightarrow> ((~\<^sub>p p) = 0\<^sub>p) = (p = 0\<^sub>p)"
|
|
617 |
by (induct p arbitrary: n rule: polyneg.induct, auto simp add: Nneg_def)
|
|
618 |
lemma polyneg_polyneg: "isnpolyh p n0 \<Longrightarrow> ~\<^sub>p (~\<^sub>p p) = p"
|
|
619 |
by (induct p arbitrary: n0 rule: polyneg.induct, auto)
|
|
620 |
lemma polyneg_normh: "\<And>n. isnpolyh p n \<Longrightarrow> isnpolyh (polyneg p) n "
|
|
621 |
by (induct p rule: polyneg.induct, auto simp add: polyneg0)
|
|
622 |
|
|
623 |
lemma polyneg_norm: "isnpoly p \<Longrightarrow> isnpoly (polyneg p)"
|
|
624 |
using isnpoly_def polyneg_normh by simp
|
|
625 |
|
|
626 |
|
|
627 |
text{* polysub is a substraction and preserves normalform *}
|
|
628 |
lemma polysub[simp]: "Ipoly bs (polysub (p,q)) = (Ipoly bs p) - (Ipoly bs q)"
|
|
629 |
by (simp add: polysub_def polyneg polyadd)
|
|
630 |
lemma polysub_normh: "\<And> n0 n1. \<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> isnpolyh (polysub(p,q)) (min n0 n1)"
|
|
631 |
by (simp add: polysub_def polyneg_normh polyadd_normh)
|
|
632 |
|
|
633 |
lemma polysub_norm: "\<lbrakk> isnpoly p; isnpoly q\<rbrakk> \<Longrightarrow> isnpoly (polysub(p,q))"
|
|
634 |
using polyadd_norm polyneg_norm by (simp add: polysub_def)
|
|
635 |
lemma polysub_same_0[simp]: assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
636 |
shows "isnpolyh p n0 \<Longrightarrow> polysub (p, p) = 0\<^sub>p"
|
|
637 |
unfolding polysub_def split_def fst_conv snd_conv
|
|
638 |
by (induct p arbitrary: n0,auto simp add: Let_def Nsub0[simplified Nsub_def])
|
|
639 |
|
|
640 |
lemma polysub_0:
|
|
641 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
642 |
shows "\<lbrakk> isnpolyh p n0 ; isnpolyh q n1\<rbrakk> \<Longrightarrow> (p -\<^sub>p q = 0\<^sub>p) = (p = q)"
|
|
643 |
unfolding polysub_def split_def fst_conv snd_conv
|
|
644 |
apply (induct p q arbitrary: n0 n1 rule:polyadd.induct, simp_all add: Nsub0[simplified Nsub_def])
|
|
645 |
apply (clarsimp simp add: Let_def)
|
|
646 |
apply (case_tac "n < n'", simp_all)
|
|
647 |
apply (case_tac "n' < n", simp_all)
|
|
648 |
apply (erule impE)+
|
|
649 |
apply (rule_tac x="Suc n" in exI, simp)
|
|
650 |
apply (rule_tac x="n" in exI, simp)
|
|
651 |
apply (erule impE)+
|
|
652 |
apply (rule_tac x="n" in exI, simp)
|
|
653 |
apply (rule_tac x="Suc n" in exI, simp)
|
|
654 |
apply (erule impE)+
|
|
655 |
apply (rule_tac x="Suc n" in exI, simp)
|
|
656 |
apply (rule_tac x="n" in exI, simp)
|
|
657 |
apply (erule impE)+
|
|
658 |
apply (rule_tac x="Suc n" in exI, simp)
|
|
659 |
apply clarsimp
|
|
660 |
done
|
|
661 |
|
|
662 |
text{* polypow is a power function and preserves normal forms *}
|
|
663 |
lemma polypow[simp]: "Ipoly bs (polypow n p) = ((Ipoly bs p :: 'a::{ring_char_0,division_by_zero,field})) ^ n"
|
|
664 |
proof(induct n rule: polypow.induct)
|
|
665 |
case 1 thus ?case by simp
|
|
666 |
next
|
|
667 |
case (2 n)
|
|
668 |
let ?q = "polypow ((Suc n) div 2) p"
|
|
669 |
let ?d = "polymul(?q,?q)"
|
|
670 |
have "odd (Suc n) \<or> even (Suc n)" by simp
|
|
671 |
moreover
|
|
672 |
{assume odd: "odd (Suc n)"
|
|
673 |
have th: "(Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat))))) = Suc n div 2 + Suc n div 2 + 1" by arith
|
|
674 |
from odd have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs (polymul(p, ?d))" by (simp add: Let_def)
|
|
675 |
also have "\<dots> = (Ipoly bs p) * (Ipoly bs p)^(Suc n div 2)*(Ipoly bs p)^(Suc n div 2)"
|
|
676 |
using "2.hyps" by simp
|
|
677 |
also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2 + 1)"
|
|
678 |
apply (simp only: power_add power_one_right) by simp
|
|
679 |
also have "\<dots> = (Ipoly bs p) ^ (Suc (Suc (Suc (0\<Colon>nat)) * (Suc n div Suc (Suc (0\<Colon>nat)))))"
|
|
680 |
by (simp only: th)
|
|
681 |
finally have ?case
|
|
682 |
using odd_nat_div_two_times_two_plus_one[OF odd, symmetric] by simp }
|
|
683 |
moreover
|
|
684 |
{assume even: "even (Suc n)"
|
|
685 |
have th: "(Suc (Suc (0\<Colon>nat))) * (Suc n div Suc (Suc (0\<Colon>nat))) = Suc n div 2 + Suc n div 2" by arith
|
|
686 |
from even have "Ipoly bs (p ^\<^sub>p Suc n) = Ipoly bs ?d" by (simp add: Let_def)
|
|
687 |
also have "\<dots> = (Ipoly bs p) ^ (Suc n div 2 + Suc n div 2)"
|
|
688 |
using "2.hyps" apply (simp only: power_add) by simp
|
|
689 |
finally have ?case using even_nat_div_two_times_two[OF even] by (simp only: th)}
|
|
690 |
ultimately show ?case by blast
|
|
691 |
qed
|
|
692 |
|
|
693 |
lemma polypow_normh:
|
|
694 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
695 |
shows "isnpolyh p n \<Longrightarrow> isnpolyh (polypow k p) n"
|
|
696 |
proof (induct k arbitrary: n rule: polypow.induct)
|
|
697 |
case (2 k n)
|
|
698 |
let ?q = "polypow (Suc k div 2) p"
|
|
699 |
let ?d = "polymul (?q,?q)"
|
|
700 |
from prems have th1:"isnpolyh ?q n" and th2: "isnpolyh p n" by blast+
|
|
701 |
from polymul_normh[OF th1 th1] have dn: "isnpolyh ?d n" by simp
|
|
702 |
from polymul_normh[OF th2 dn] have on: "isnpolyh (polymul(p,?d)) n" by simp
|
|
703 |
from dn on show ?case by (simp add: Let_def)
|
|
704 |
qed auto
|
|
705 |
|
|
706 |
lemma polypow_norm:
|
|
707 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
708 |
shows "isnpoly p \<Longrightarrow> isnpoly (polypow k p)"
|
|
709 |
by (simp add: polypow_normh isnpoly_def)
|
|
710 |
|
|
711 |
text{* Finally the whole normalization*}
|
|
712 |
|
|
713 |
lemma polynate[simp]: "Ipoly bs (polynate p) = (Ipoly bs p :: 'a ::{ring_char_0,division_by_zero,field})"
|
|
714 |
by (induct p rule:polynate.induct, auto)
|
|
715 |
|
|
716 |
lemma polynate_norm[simp]:
|
|
717 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
718 |
shows "isnpoly (polynate p)"
|
|
719 |
by (induct p rule: polynate.induct, simp_all add: polyadd_norm polymul_norm polysub_norm polyneg_norm polypow_norm) (simp_all add: isnpoly_def)
|
|
720 |
|
|
721 |
text{* shift1 *}
|
|
722 |
|
|
723 |
|
|
724 |
lemma shift1: "Ipoly bs (shift1 p) = Ipoly bs (Mul (Bound 0) p)"
|
|
725 |
by (simp add: shift1_def polymul)
|
|
726 |
|
|
727 |
lemma shift1_isnpoly:
|
|
728 |
assumes pn: "isnpoly p" and pnz: "p \<noteq> 0\<^sub>p" shows "isnpoly (shift1 p) "
|
|
729 |
using pn pnz by (simp add: shift1_def isnpoly_def )
|
|
730 |
|
|
731 |
lemma shift1_nz[simp]:"shift1 p \<noteq> 0\<^sub>p"
|
|
732 |
by (simp add: shift1_def)
|
|
733 |
lemma funpow_shift1_isnpoly:
|
|
734 |
"\<lbrakk> isnpoly p ; p \<noteq> 0\<^sub>p\<rbrakk> \<Longrightarrow> isnpoly (funpow n shift1 p)"
|
|
735 |
by (induct n arbitrary: p, auto simp add: shift1_isnpoly)
|
|
736 |
|
|
737 |
lemma funpow_isnpolyh:
|
|
738 |
assumes f: "\<And> p. isnpolyh p n \<Longrightarrow> isnpolyh (f p) n "and np: "isnpolyh p n"
|
|
739 |
shows "isnpolyh (funpow k f p) n"
|
|
740 |
using f np by (induct k arbitrary: p, auto)
|
|
741 |
|
|
742 |
lemma funpow_shift1: "(Ipoly bs (funpow n shift1 p) :: 'a :: {ring_char_0,division_by_zero,field}) = Ipoly bs (Mul (Pw (Bound 0) n) p)"
|
|
743 |
by (induct n arbitrary: p, simp_all add: shift1_isnpoly shift1 power_Suc )
|
|
744 |
|
|
745 |
lemma shift1_isnpolyh: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> isnpolyh (shift1 p) 0"
|
|
746 |
using isnpolyh_mono[where n="n0" and n'="0" and p="p"] by (simp add: shift1_def)
|
|
747 |
|
|
748 |
lemma funpow_shift1_1:
|
|
749 |
"(Ipoly bs (funpow n shift1 p) :: 'a :: {ring_char_0,division_by_zero,field}) = Ipoly bs (funpow n shift1 1\<^sub>p *\<^sub>p p)"
|
|
750 |
by (simp add: funpow_shift1)
|
|
751 |
|
|
752 |
lemma poly_cmul[simp]: "Ipoly bs (poly_cmul c p) = Ipoly bs (Mul (C c) p)"
|
|
753 |
by (induct p arbitrary: n0 rule: poly_cmul.induct, auto simp add: ring_simps)
|
|
754 |
|
|
755 |
lemma behead:
|
|
756 |
assumes np: "isnpolyh p n"
|
|
757 |
shows "Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = (Ipoly bs p :: 'a :: {ring_char_0,division_by_zero,field})"
|
|
758 |
using np
|
|
759 |
proof (induct p arbitrary: n rule: behead.induct)
|
|
760 |
case (1 c p n) hence pn: "isnpolyh p n" by simp
|
|
761 |
from prems(2)[OF pn]
|
|
762 |
have th:"Ipoly bs (Add (Mul (head p) (Pw (Bound 0) (degree p))) (behead p)) = Ipoly bs p" .
|
|
763 |
then show ?case using "1.hyps" apply (simp add: Let_def,cases "behead p = 0\<^sub>p")
|
|
764 |
by (simp_all add: th[symmetric] ring_simps power_Suc)
|
|
765 |
qed (auto simp add: Let_def)
|
|
766 |
|
|
767 |
lemma behead_isnpolyh:
|
|
768 |
assumes np: "isnpolyh p n" shows "isnpolyh (behead p) n"
|
|
769 |
using np by (induct p rule: behead.induct, auto simp add: Let_def isnpolyh_mono)
|
|
770 |
|
|
771 |
subsection{* Miscilanious lemmas about indexes, decrementation, substitution etc ... *}
|
|
772 |
lemma isnpolyh_polybound0: "isnpolyh p (Suc n) \<Longrightarrow> polybound0 p"
|
|
773 |
proof(induct p arbitrary: n rule: polybound0.induct, auto)
|
|
774 |
case (goal1 c n p n')
|
|
775 |
hence "n = Suc (n - 1)" by simp
|
|
776 |
hence "isnpolyh p (Suc (n - 1))" using `isnpolyh p n` by simp
|
|
777 |
with prems(2) show ?case by simp
|
|
778 |
qed
|
|
779 |
|
|
780 |
lemma isconstant_polybound0: "isnpolyh p n0 \<Longrightarrow> isconstant p \<longleftrightarrow> polybound0 p"
|
|
781 |
by (induct p arbitrary: n0 rule: isconstant.induct, auto simp add: isnpolyh_polybound0)
|
|
782 |
|
|
783 |
lemma decrpoly_zero[simp]: "decrpoly p = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p" by (induct p, auto)
|
|
784 |
|
|
785 |
lemma decrpoly_normh: "isnpolyh p n0 \<Longrightarrow> polybound0 p \<Longrightarrow> isnpolyh (decrpoly p) (n0 - 1)"
|
|
786 |
apply (induct p arbitrary: n0, auto)
|
|
787 |
apply (atomize)
|
|
788 |
apply (erule_tac x = "Suc nat" in allE)
|
|
789 |
apply auto
|
|
790 |
done
|
|
791 |
|
|
792 |
lemma head_polybound0: "isnpolyh p n0 \<Longrightarrow> polybound0 (head p)"
|
|
793 |
by (induct p arbitrary: n0 rule: head.induct, auto intro: isnpolyh_polybound0)
|
|
794 |
|
|
795 |
lemma polybound0_I:
|
|
796 |
assumes nb: "polybound0 a"
|
|
797 |
shows "Ipoly (b#bs) a = Ipoly (b'#bs) a"
|
|
798 |
using nb
|
|
799 |
by (induct a rule: polybound0.induct) auto
|
|
800 |
lemma polysubst0_I:
|
|
801 |
shows "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b#bs) a)#bs) t"
|
|
802 |
by (induct t) simp_all
|
|
803 |
|
|
804 |
lemma polysubst0_I':
|
|
805 |
assumes nb: "polybound0 a"
|
|
806 |
shows "Ipoly (b#bs) (polysubst0 a t) = Ipoly ((Ipoly (b'#bs) a)#bs) t"
|
|
807 |
by (induct t) (simp_all add: polybound0_I[OF nb, where b="b" and b'="b'"])
|
|
808 |
|
|
809 |
lemma decrpoly: assumes nb: "polybound0 t"
|
|
810 |
shows "Ipoly (x#bs) t = Ipoly bs (decrpoly t)"
|
|
811 |
using nb by (induct t rule: decrpoly.induct, simp_all)
|
|
812 |
|
|
813 |
lemma polysubst0_polybound0: assumes nb: "polybound0 t"
|
|
814 |
shows "polybound0 (polysubst0 t a)"
|
|
815 |
using nb by (induct a rule: polysubst0.induct, auto)
|
|
816 |
|
|
817 |
lemma degree0_polybound0: "isnpolyh p n \<Longrightarrow> degree p = 0 \<Longrightarrow> polybound0 p"
|
|
818 |
by (induct p arbitrary: n rule: degree.induct, auto simp add: isnpolyh_polybound0)
|
|
819 |
|
|
820 |
fun maxindex :: "poly \<Rightarrow> nat" where
|
|
821 |
"maxindex (Bound n) = n + 1"
|
|
822 |
| "maxindex (CN c n p) = max (n + 1) (max (maxindex c) (maxindex p))"
|
|
823 |
| "maxindex (Add p q) = max (maxindex p) (maxindex q)"
|
|
824 |
| "maxindex (Sub p q) = max (maxindex p) (maxindex q)"
|
|
825 |
| "maxindex (Mul p q) = max (maxindex p) (maxindex q)"
|
|
826 |
| "maxindex (Neg p) = maxindex p"
|
|
827 |
| "maxindex (Pw p n) = maxindex p"
|
|
828 |
| "maxindex (C x) = 0"
|
|
829 |
|
|
830 |
definition wf_bs :: "'a list \<Rightarrow> poly \<Rightarrow> bool" where
|
|
831 |
"wf_bs bs p = (length bs \<ge> maxindex p)"
|
|
832 |
|
|
833 |
lemma wf_bs_coefficients: "wf_bs bs p \<Longrightarrow> \<forall> c \<in> set (coefficients p). wf_bs bs c"
|
|
834 |
proof(induct p rule: coefficients.induct)
|
|
835 |
case (1 c p)
|
|
836 |
show ?case
|
|
837 |
proof
|
|
838 |
fix x assume xc: "x \<in> set (coefficients (CN c 0 p))"
|
|
839 |
hence "x = c \<or> x \<in> set (coefficients p)" by simp
|
|
840 |
moreover
|
|
841 |
{assume "x = c" hence "wf_bs bs x" using "1.prems" unfolding wf_bs_def by simp}
|
|
842 |
moreover
|
|
843 |
{assume H: "x \<in> set (coefficients p)"
|
|
844 |
from "1.prems" have "wf_bs bs p" unfolding wf_bs_def by simp
|
|
845 |
with "1.hyps" H have "wf_bs bs x" by blast }
|
|
846 |
ultimately show "wf_bs bs x" by blast
|
|
847 |
qed
|
|
848 |
qed simp_all
|
|
849 |
|
|
850 |
lemma maxindex_coefficients: " \<forall>c\<in> set (coefficients p). maxindex c \<le> maxindex p"
|
|
851 |
by (induct p rule: coefficients.induct, auto)
|
|
852 |
|
|
853 |
lemma length_exists: "\<exists>xs. length xs = n" by (rule exI[where x="replicate n x"], simp)
|
|
854 |
|
|
855 |
lemma wf_bs_I: "wf_bs bs p ==> Ipoly (bs@bs') p = Ipoly bs p"
|
|
856 |
unfolding wf_bs_def by (induct p, auto simp add: nth_append)
|
|
857 |
|
|
858 |
lemma take_maxindex_wf: assumes wf: "wf_bs bs p"
|
|
859 |
shows "Ipoly (take (maxindex p) bs) p = Ipoly bs p"
|
|
860 |
proof-
|
|
861 |
let ?ip = "maxindex p"
|
|
862 |
let ?tbs = "take ?ip bs"
|
|
863 |
from wf have "length ?tbs = ?ip" unfolding wf_bs_def by simp
|
|
864 |
hence wf': "wf_bs ?tbs p" unfolding wf_bs_def by simp
|
|
865 |
have eq: "bs = ?tbs @ (drop ?ip bs)" by simp
|
|
866 |
from wf_bs_I[OF wf', of "drop ?ip bs"] show ?thesis using eq by simp
|
|
867 |
qed
|
|
868 |
|
|
869 |
lemma decr_maxindex: "polybound0 p \<Longrightarrow> maxindex (decrpoly p) = maxindex p - 1"
|
|
870 |
by (induct p, auto)
|
|
871 |
|
|
872 |
lemma wf_bs_insensitive: "length bs = length bs' \<Longrightarrow> wf_bs bs p = wf_bs bs' p"
|
|
873 |
unfolding wf_bs_def by simp
|
|
874 |
|
|
875 |
lemma wf_bs_insensitive': "wf_bs (x#bs) p = wf_bs (y#bs) p"
|
|
876 |
unfolding wf_bs_def by simp
|
|
877 |
|
|
878 |
|
|
879 |
|
|
880 |
lemma wf_bs_coefficients': "\<forall>c \<in> set (coefficients p). wf_bs bs c \<Longrightarrow> wf_bs (x#bs) p"
|
|
881 |
by(induct p rule: coefficients.induct, auto simp add: wf_bs_def)
|
|
882 |
lemma coefficients_Nil[simp]: "coefficients p \<noteq> []"
|
|
883 |
by (induct p rule: coefficients.induct, simp_all)
|
|
884 |
|
|
885 |
|
|
886 |
lemma coefficients_head: "last (coefficients p) = head p"
|
|
887 |
by (induct p rule: coefficients.induct, auto)
|
|
888 |
|
|
889 |
lemma wf_bs_decrpoly: "wf_bs bs (decrpoly p) \<Longrightarrow> wf_bs (x#bs) p"
|
|
890 |
unfolding wf_bs_def by (induct p rule: decrpoly.induct, auto)
|
|
891 |
|
|
892 |
lemma length_le_list_ex: "length xs \<le> n \<Longrightarrow> \<exists> ys. length (xs @ ys) = n"
|
|
893 |
apply (rule exI[where x="replicate (n - length xs) z"])
|
|
894 |
by simp
|
|
895 |
lemma isnpolyh_Suc_const:"isnpolyh p (Suc n) \<Longrightarrow> isconstant p"
|
|
896 |
by (cases p, auto) (case_tac "nat", simp_all)
|
|
897 |
|
|
898 |
lemma wf_bs_polyadd: "wf_bs bs p \<and> wf_bs bs q \<longrightarrow> wf_bs bs (p +\<^sub>p q)"
|
|
899 |
unfolding wf_bs_def
|
|
900 |
apply (induct p q rule: polyadd.induct)
|
|
901 |
apply (auto simp add: Let_def)
|
|
902 |
done
|
|
903 |
|
|
904 |
lemma wf_bs_polyul: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p *\<^sub>p q)"
|
|
905 |
|
|
906 |
unfolding wf_bs_def
|
|
907 |
apply (induct p q arbitrary: bs rule: polymul.induct)
|
|
908 |
apply (simp_all add: wf_bs_polyadd)
|
|
909 |
apply clarsimp
|
|
910 |
apply (rule wf_bs_polyadd[unfolded wf_bs_def, rule_format])
|
|
911 |
apply auto
|
|
912 |
done
|
|
913 |
|
|
914 |
lemma wf_bs_polyneg: "wf_bs bs p \<Longrightarrow> wf_bs bs (~\<^sub>p p)"
|
|
915 |
unfolding wf_bs_def by (induct p rule: polyneg.induct, auto)
|
|
916 |
|
|
917 |
lemma wf_bs_polysub: "wf_bs bs p \<Longrightarrow> wf_bs bs q \<Longrightarrow> wf_bs bs (p -\<^sub>p q)"
|
|
918 |
unfolding polysub_def split_def fst_conv snd_conv using wf_bs_polyadd wf_bs_polyneg by blast
|
|
919 |
|
|
920 |
subsection{* Canonicity of polynomial representation, see lemma isnpolyh_unique*}
|
|
921 |
|
|
922 |
definition "polypoly bs p = map (Ipoly bs) (coefficients p)"
|
|
923 |
definition "polypoly' bs p = map ((Ipoly bs o decrpoly)) (coefficients p)"
|
|
924 |
definition "poly_nate bs p = map ((Ipoly bs o decrpoly)) (coefficients (polynate p))"
|
|
925 |
|
|
926 |
lemma coefficients_normh: "isnpolyh p n0 \<Longrightarrow> \<forall> q \<in> set (coefficients p). isnpolyh q n0"
|
|
927 |
proof (induct p arbitrary: n0 rule: coefficients.induct)
|
|
928 |
case (1 c p n0)
|
|
929 |
have cp: "isnpolyh (CN c 0 p) n0" by fact
|
|
930 |
hence norm: "isnpolyh c 0" "isnpolyh p 0" "p \<noteq> 0\<^sub>p" "n0 = 0"
|
|
931 |
by (auto simp add: isnpolyh_mono[where n'=0])
|
|
932 |
from "1.hyps"[OF norm(2)] norm(1) norm(4) show ?case by simp
|
|
933 |
qed auto
|
|
934 |
|
|
935 |
lemma coefficients_isconst:
|
|
936 |
"isnpolyh p n \<Longrightarrow> \<forall>q\<in>set (coefficients p). isconstant q"
|
|
937 |
by (induct p arbitrary: n rule: coefficients.induct,
|
|
938 |
auto simp add: isnpolyh_Suc_const)
|
|
939 |
|
|
940 |
lemma polypoly_polypoly':
|
|
941 |
assumes np: "isnpolyh p n0"
|
|
942 |
shows "polypoly (x#bs) p = polypoly' bs p"
|
|
943 |
proof-
|
|
944 |
let ?cf = "set (coefficients p)"
|
|
945 |
from coefficients_normh[OF np] have cn_norm: "\<forall> q\<in> ?cf. isnpolyh q n0" .
|
|
946 |
{fix q assume q: "q \<in> ?cf"
|
|
947 |
from q cn_norm have th: "isnpolyh q n0" by blast
|
|
948 |
from coefficients_isconst[OF np] q have "isconstant q" by blast
|
|
949 |
with isconstant_polybound0[OF th] have "polybound0 q" by blast}
|
|
950 |
hence "\<forall>q \<in> ?cf. polybound0 q" ..
|
|
951 |
hence "\<forall>q \<in> ?cf. Ipoly (x#bs) q = Ipoly bs (decrpoly q)"
|
|
952 |
using polybound0_I[where b=x and bs=bs and b'=y] decrpoly[where x=x and bs=bs]
|
|
953 |
by auto
|
|
954 |
|
|
955 |
thus ?thesis unfolding polypoly_def polypoly'_def by simp
|
|
956 |
qed
|
|
957 |
|
|
958 |
lemma polypoly_poly:
|
|
959 |
assumes np: "isnpolyh p n0" shows "Ipoly (x#bs) p = poly (polypoly (x#bs) p) x"
|
|
960 |
using np
|
|
961 |
by (induct p arbitrary: n0 bs rule: coefficients.induct, auto simp add: polypoly_def)
|
|
962 |
|
|
963 |
lemma polypoly'_poly:
|
|
964 |
assumes np: "isnpolyh p n0" shows "\<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup> = poly (polypoly' bs p) x"
|
|
965 |
using polypoly_poly[OF np, simplified polypoly_polypoly'[OF np]] .
|
|
966 |
|
|
967 |
|
|
968 |
lemma polypoly_poly_polybound0:
|
|
969 |
assumes np: "isnpolyh p n0" and nb: "polybound0 p"
|
|
970 |
shows "polypoly bs p = [Ipoly bs p]"
|
|
971 |
using np nb unfolding polypoly_def
|
|
972 |
by (cases p, auto, case_tac nat, auto)
|
|
973 |
|
|
974 |
lemma head_isnpolyh: "isnpolyh p n0 \<Longrightarrow> isnpolyh (head p) n0"
|
|
975 |
by (induct p rule: head.induct, auto)
|
|
976 |
|
|
977 |
lemma headn_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (headn p m = 0\<^sub>p) = (p = 0\<^sub>p)"
|
|
978 |
by (cases p,auto)
|
|
979 |
|
|
980 |
lemma head_eq_headn0: "head p = headn p 0"
|
|
981 |
by (induct p rule: head.induct, simp_all)
|
|
982 |
|
|
983 |
lemma head_nz[simp]: "isnpolyh p n0 \<Longrightarrow> (head p = 0\<^sub>p) = (p = 0\<^sub>p)"
|
|
984 |
by (simp add: head_eq_headn0)
|
|
985 |
|
|
986 |
lemma isnpolyh_zero_iff:
|
|
987 |
assumes nq: "isnpolyh p n0" and eq :"\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a::{ring_char_0,power,division_by_zero,field})"
|
|
988 |
shows "p = 0\<^sub>p"
|
|
989 |
using nq eq
|
|
990 |
proof (induct n\<equiv>"maxindex p" arbitrary: p n0 rule: nat_less_induct)
|
|
991 |
fix n p n0
|
|
992 |
assume H: "\<forall>m<n. \<forall>p n0. isnpolyh p n0 \<longrightarrow>
|
|
993 |
(\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)) \<longrightarrow> m = maxindex p \<longrightarrow> p = 0\<^sub>p"
|
|
994 |
and np: "isnpolyh p n0" and zp: "\<forall>bs. wf_bs bs p \<longrightarrow> \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" and n: "n = maxindex p"
|
|
995 |
{assume nz: "n = 0"
|
|
996 |
then obtain c where "p = C c" using n np by (cases p, auto)
|
|
997 |
with zp np have "p = 0\<^sub>p" unfolding wf_bs_def by simp}
|
|
998 |
moreover
|
|
999 |
{assume nz: "n \<noteq> 0"
|
|
1000 |
let ?h = "head p"
|
|
1001 |
let ?hd = "decrpoly ?h"
|
|
1002 |
let ?ihd = "maxindex ?hd"
|
|
1003 |
from head_isnpolyh[OF np] head_polybound0[OF np] have h:"isnpolyh ?h n0" "polybound0 ?h"
|
|
1004 |
by simp_all
|
|
1005 |
hence nhd: "isnpolyh ?hd (n0 - 1)" using decrpoly_normh by blast
|
|
1006 |
|
|
1007 |
from maxindex_coefficients[of p] coefficients_head[of p, symmetric]
|
|
1008 |
have mihn: "maxindex ?h \<le> n" unfolding n by auto
|
|
1009 |
with decr_maxindex[OF h(2)] nz have ihd_lt_n: "?ihd < n" by auto
|
|
1010 |
{fix bs:: "'a list" assume bs: "wf_bs bs ?hd"
|
|
1011 |
let ?ts = "take ?ihd bs"
|
|
1012 |
let ?rs = "drop ?ihd bs"
|
|
1013 |
have ts: "wf_bs ?ts ?hd" using bs unfolding wf_bs_def by simp
|
|
1014 |
have bs_ts_eq: "?ts@ ?rs = bs" by simp
|
|
1015 |
from wf_bs_decrpoly[OF ts] have tsh: " \<forall>x. wf_bs (x#?ts) ?h" by simp
|
|
1016 |
from ihd_lt_n have "ALL x. length (x#?ts) \<le> n" by simp
|
|
1017 |
with length_le_list_ex obtain xs where xs:"length ((x#?ts) @ xs) = n" by blast
|
|
1018 |
hence "\<forall> x. wf_bs ((x#?ts) @ xs) p" using n unfolding wf_bs_def by simp
|
|
1019 |
with zp have "\<forall> x. Ipoly ((x#?ts) @ xs) p = 0" by blast
|
|
1020 |
hence "\<forall> x. Ipoly (x#(?ts @ xs)) p = 0" by simp
|
|
1021 |
with polypoly_poly[OF np, where ?'a = 'a] polypoly_polypoly'[OF np, where ?'a = 'a]
|
|
1022 |
have "\<forall>x. poly (polypoly' (?ts @ xs) p) x = poly [] x" by simp
|
|
1023 |
hence "poly (polypoly' (?ts @ xs) p) = poly []" by (auto intro: ext)
|
|
1024 |
hence "\<forall> c \<in> set (coefficients p). Ipoly (?ts @ xs) (decrpoly c) = 0"
|
|
1025 |
thm poly_zero
|
|
1026 |
using poly_zero[where ?'a='a] by (simp add: polypoly'_def list_all_iff)
|
|
1027 |
with coefficients_head[of p, symmetric]
|
|
1028 |
have th0: "Ipoly (?ts @ xs) ?hd = 0" by simp
|
|
1029 |
from bs have wf'': "wf_bs ?ts ?hd" unfolding wf_bs_def by simp
|
|
1030 |
with th0 wf_bs_I[of ?ts ?hd xs] have "Ipoly ?ts ?hd = 0" by simp
|
|
1031 |
with wf'' wf_bs_I[of ?ts ?hd ?rs] bs_ts_eq have "\<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = 0" by simp }
|
|
1032 |
then have hdz: "\<forall>bs. wf_bs bs ?hd \<longrightarrow> \<lparr>?hd\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)" by blast
|
|
1033 |
|
|
1034 |
from H[rule_format, OF ihd_lt_n nhd] hdz have "?hd = 0\<^sub>p" by blast
|
|
1035 |
hence "?h = 0\<^sub>p" by simp
|
|
1036 |
with head_nz[OF np] have "p = 0\<^sub>p" by simp}
|
|
1037 |
ultimately show "p = 0\<^sub>p" by blast
|
|
1038 |
qed
|
|
1039 |
|
|
1040 |
lemma isnpolyh_unique:
|
|
1041 |
assumes np:"isnpolyh p n0" and nq: "isnpolyh q n1"
|
|
1042 |
shows "(\<forall>bs. \<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (\<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup> :: 'a::{ring_char_0,power,division_by_zero,field})) \<longleftrightarrow> p = q"
|
|
1043 |
proof(auto)
|
|
1044 |
assume H: "\<forall>bs. (\<lparr>p\<rparr>\<^sub>p\<^bsup>bs\<^esup> ::'a)= \<lparr>q\<rparr>\<^sub>p\<^bsup>bs\<^esup>"
|
|
1045 |
hence "\<forall>bs.\<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup>= (0::'a)" by simp
|
|
1046 |
hence "\<forall>bs. wf_bs bs (p -\<^sub>p q) \<longrightarrow> \<lparr>p -\<^sub>p q\<rparr>\<^sub>p\<^bsup>bs\<^esup> = (0::'a)"
|
|
1047 |
using wf_bs_polysub[where p=p and q=q] by auto
|
|
1048 |
with isnpolyh_zero_iff[OF polysub_normh[OF np nq]] polysub_0[OF np nq]
|
|
1049 |
show "p = q" by blast
|
|
1050 |
qed
|
|
1051 |
|
|
1052 |
|
|
1053 |
text{* consequenses of unicity on the algorithms for polynomial normalization *}
|
|
1054 |
|
|
1055 |
lemma polyadd_commute: assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1056 |
and np: "isnpolyh p n0" and nq: "isnpolyh q n1" shows "p +\<^sub>p q = q +\<^sub>p p"
|
|
1057 |
using isnpolyh_unique[OF polyadd_normh[OF np nq] polyadd_normh[OF nq np]] by simp
|
|
1058 |
|
|
1059 |
lemma zero_normh: "isnpolyh 0\<^sub>p n" by simp
|
|
1060 |
lemma one_normh: "isnpolyh 1\<^sub>p n" by simp
|
|
1061 |
lemma polyadd_0[simp]:
|
|
1062 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1063 |
and np: "isnpolyh p n0" shows "p +\<^sub>p 0\<^sub>p = p" and "0\<^sub>p +\<^sub>p p = p"
|
|
1064 |
using isnpolyh_unique[OF polyadd_normh[OF np zero_normh] np]
|
|
1065 |
isnpolyh_unique[OF polyadd_normh[OF zero_normh np] np] by simp_all
|
|
1066 |
|
|
1067 |
lemma polymul_1[simp]:
|
|
1068 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1069 |
and np: "isnpolyh p n0" shows "p *\<^sub>p 1\<^sub>p = p" and "1\<^sub>p *\<^sub>p p = p"
|
|
1070 |
using isnpolyh_unique[OF polymul_normh[OF np one_normh] np]
|
|
1071 |
isnpolyh_unique[OF polymul_normh[OF one_normh np] np] by simp_all
|
|
1072 |
lemma polymul_0[simp]:
|
|
1073 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1074 |
and np: "isnpolyh p n0" shows "p *\<^sub>p 0\<^sub>p = 0\<^sub>p" and "0\<^sub>p *\<^sub>p p = 0\<^sub>p"
|
|
1075 |
using isnpolyh_unique[OF polymul_normh[OF np zero_normh] zero_normh]
|
|
1076 |
isnpolyh_unique[OF polymul_normh[OF zero_normh np] zero_normh] by simp_all
|
|
1077 |
|
|
1078 |
lemma polymul_commute:
|
|
1079 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1080 |
and np:"isnpolyh p n0" and nq: "isnpolyh q n1"
|
|
1081 |
shows "p *\<^sub>p q = q *\<^sub>p p"
|
|
1082 |
using isnpolyh_unique[OF polymul_normh[OF np nq] polymul_normh[OF nq np], where ?'a = "'a\<Colon>{ring_char_0,power,division_by_zero,field}"] by simp
|
|
1083 |
|
|
1084 |
declare polyneg_polyneg[simp]
|
|
1085 |
|
|
1086 |
lemma isnpolyh_polynate_id[simp]:
|
|
1087 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1088 |
and np:"isnpolyh p n0" shows "polynate p = p"
|
|
1089 |
using isnpolyh_unique[where ?'a= "'a::{ring_char_0,division_by_zero,field}", OF polynate_norm[of p, unfolded isnpoly_def] np] polynate[where ?'a = "'a::{ring_char_0,division_by_zero,field}"] by simp
|
|
1090 |
|
|
1091 |
lemma polynate_idempotent[simp]:
|
|
1092 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1093 |
shows "polynate (polynate p) = polynate p"
|
|
1094 |
using isnpolyh_polynate_id[OF polynate_norm[of p, unfolded isnpoly_def]] .
|
|
1095 |
|
|
1096 |
lemma poly_nate_polypoly': "poly_nate bs p = polypoly' bs (polynate p)"
|
|
1097 |
unfolding poly_nate_def polypoly'_def ..
|
|
1098 |
lemma poly_nate_poly: shows "poly (poly_nate bs p) = (\<lambda>x:: 'a ::{ring_char_0,division_by_zero,field}. \<lparr>p\<rparr>\<^sub>p\<^bsup>x # bs\<^esup>)"
|
|
1099 |
using polypoly'_poly[OF polynate_norm[unfolded isnpoly_def], symmetric, of bs p]
|
|
1100 |
unfolding poly_nate_polypoly' by (auto intro: ext)
|
|
1101 |
|
|
1102 |
subsection{* heads, degrees and all that *}
|
|
1103 |
lemma degree_eq_degreen0: "degree p = degreen p 0"
|
|
1104 |
by (induct p rule: degree.induct, simp_all)
|
|
1105 |
|
|
1106 |
lemma degree_polyneg: assumes n: "isnpolyh p n"
|
|
1107 |
shows "degree (polyneg p) = degree p"
|
|
1108 |
using n
|
|
1109 |
by (induct p arbitrary: n rule: polyneg.induct, simp_all) (case_tac na, auto)
|
|
1110 |
|
|
1111 |
lemma degree_polyadd:
|
|
1112 |
assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
|
|
1113 |
shows "degree (p +\<^sub>p q) \<le> max (degree p) (degree q)"
|
|
1114 |
using degreen_polyadd[OF np nq, where m= "0"] degree_eq_degreen0 by simp
|
|
1115 |
|
|
1116 |
|
|
1117 |
lemma degree_polysub: assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
|
|
1118 |
shows "degree (p -\<^sub>p q) \<le> max (degree p) (degree q)"
|
|
1119 |
proof-
|
|
1120 |
from nq have nq': "isnpolyh (~\<^sub>p q) n1" using polyneg_normh by simp
|
|
1121 |
from degree_polyadd[OF np nq'] show ?thesis by (simp add: polysub_def degree_polyneg[OF nq])
|
|
1122 |
qed
|
|
1123 |
|
|
1124 |
lemma degree_polysub_samehead:
|
|
1125 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1126 |
and np: "isnpolyh p n0" and nq: "isnpolyh q n1" and h: "head p = head q"
|
|
1127 |
and d: "degree p = degree q"
|
|
1128 |
shows "degree (p -\<^sub>p q) < degree p \<or> (p -\<^sub>p q = 0\<^sub>p)"
|
|
1129 |
unfolding polysub_def split_def fst_conv snd_conv
|
|
1130 |
using np nq h d
|
|
1131 |
proof(induct p q rule:polyadd.induct)
|
|
1132 |
case (1 a b a' b') thus ?case by (simp add: Nsub_def Nsub0[simplified Nsub_def])
|
|
1133 |
next
|
|
1134 |
case (2 a b c' n' p')
|
|
1135 |
let ?c = "(a,b)"
|
|
1136 |
from prems have "degree (C ?c) = degree (CN c' n' p')" by simp
|
|
1137 |
hence nz:"n' > 0" by (cases n', auto)
|
|
1138 |
hence "head (CN c' n' p') = CN c' n' p'" by (cases n', auto)
|
|
1139 |
with prems show ?case by simp
|
|
1140 |
next
|
|
1141 |
case (3 c n p a' b')
|
|
1142 |
let ?c' = "(a',b')"
|
|
1143 |
from prems have "degree (C ?c') = degree (CN c n p)" by simp
|
|
1144 |
hence nz:"n > 0" by (cases n, auto)
|
|
1145 |
hence "head (CN c n p) = CN c n p" by (cases n, auto)
|
|
1146 |
with prems show ?case by simp
|
|
1147 |
next
|
|
1148 |
case (4 c n p c' n' p')
|
|
1149 |
hence H: "isnpolyh (CN c n p) n0" "isnpolyh (CN c' n' p') n1"
|
|
1150 |
"head (CN c n p) = head (CN c' n' p')" "degree (CN c n p) = degree (CN c' n' p')" by simp+
|
|
1151 |
hence degc: "degree c = 0" and degc': "degree c' = 0" by simp_all
|
|
1152 |
hence degnc: "degree (~\<^sub>p c) = 0" and degnc': "degree (~\<^sub>p c') = 0"
|
|
1153 |
using H(1-2) degree_polyneg by auto
|
|
1154 |
from H have cnh: "isnpolyh c (Suc n)" and c'nh: "isnpolyh c' (Suc n')" by simp+
|
|
1155 |
from degree_polysub[OF cnh c'nh, simplified polysub_def] degc degc' have degcmc': "degree (c +\<^sub>p ~\<^sub>pc') = 0" by simp
|
|
1156 |
from H have pnh: "isnpolyh p n" and p'nh: "isnpolyh p' n'" by auto
|
|
1157 |
have "n = n' \<or> n < n' \<or> n > n'" by arith
|
|
1158 |
moreover
|
|
1159 |
{assume nn': "n = n'"
|
|
1160 |
have "n = 0 \<or> n >0" by arith
|
|
1161 |
moreover {assume nz: "n = 0" hence ?case using prems by (auto simp add: Let_def degcmc')}
|
|
1162 |
moreover {assume nz: "n > 0"
|
|
1163 |
with nn' H(3) have cc':"c = c'" and pp': "p = p'" by (cases n, auto)+
|
|
1164 |
hence ?case using polysub_same_0[OF p'nh, simplified polysub_def split_def fst_conv snd_conv] polysub_same_0[OF c'nh, simplified polysub_def split_def fst_conv snd_conv] using nn' prems by (simp add: Let_def)}
|
|
1165 |
ultimately have ?case by blast}
|
|
1166 |
moreover
|
|
1167 |
{assume nn': "n < n'" hence n'p: "n' > 0" by simp
|
|
1168 |
hence headcnp':"head (CN c' n' p') = CN c' n' p'" by (cases n', simp_all)
|
|
1169 |
have degcnp': "degree (CN c' n' p') = 0" and degcnpeq: "degree (CN c n p) = degree (CN c' n' p')" using prems by (cases n', simp_all)
|
|
1170 |
hence "n > 0" by (cases n, simp_all)
|
|
1171 |
hence headcnp: "head (CN c n p) = CN c n p" by (cases n, auto)
|
|
1172 |
from H(3) headcnp headcnp' nn' have ?case by auto}
|
|
1173 |
moreover
|
|
1174 |
{assume nn': "n > n'" hence np: "n > 0" by simp
|
|
1175 |
hence headcnp:"head (CN c n p) = CN c n p" by (cases n, simp_all)
|
|
1176 |
from prems have degcnpeq: "degree (CN c' n' p') = degree (CN c n p)" by simp
|
|
1177 |
from np have degcnp: "degree (CN c n p) = 0" by (cases n, simp_all)
|
|
1178 |
with degcnpeq have "n' > 0" by (cases n', simp_all)
|
|
1179 |
hence headcnp': "head (CN c' n' p') = CN c' n' p'" by (cases n', auto)
|
|
1180 |
from H(3) headcnp headcnp' nn' have ?case by auto}
|
|
1181 |
ultimately show ?case by blast
|
|
1182 |
qed auto
|
|
1183 |
|
|
1184 |
lemma shift1_head : "isnpolyh p n0 \<Longrightarrow> head (shift1 p) = head p"
|
|
1185 |
by (induct p arbitrary: n0 rule: head.induct, simp_all add: shift1_def)
|
|
1186 |
|
|
1187 |
lemma funpow_shift1_head: "isnpolyh p n0 \<Longrightarrow> p\<noteq> 0\<^sub>p \<Longrightarrow> head (funpow k shift1 p) = head p"
|
|
1188 |
proof(induct k arbitrary: n0 p)
|
|
1189 |
case (Suc k n0 p) hence "isnpolyh (shift1 p) 0" by (simp add: shift1_isnpolyh)
|
|
1190 |
with prems have "head (funpow k shift1 (shift1 p)) = head (shift1 p)"
|
|
1191 |
and "head (shift1 p) = head p" by (simp_all add: shift1_head)
|
|
1192 |
thus ?case by simp
|
|
1193 |
qed auto
|
|
1194 |
|
|
1195 |
lemma shift1_degree: "degree (shift1 p) = 1 + degree p"
|
|
1196 |
by (simp add: shift1_def)
|
|
1197 |
lemma funpow_shift1_degree: "degree (funpow k shift1 p) = k + degree p "
|
|
1198 |
by (induct k arbitrary: p, auto simp add: shift1_degree)
|
|
1199 |
|
|
1200 |
lemma funpow_shift1_nz: "p \<noteq> 0\<^sub>p \<Longrightarrow> funpow n shift1 p \<noteq> 0\<^sub>p"
|
|
1201 |
by (induct n arbitrary: p, simp_all add: funpow_def)
|
|
1202 |
|
|
1203 |
lemma head_isnpolyh_Suc[simp]: "isnpolyh p (Suc n) \<Longrightarrow> head p = p"
|
|
1204 |
by (induct p arbitrary: n rule: degree.induct, auto)
|
|
1205 |
lemma headn_0[simp]: "isnpolyh p n \<Longrightarrow> m < n \<Longrightarrow> headn p m = p"
|
|
1206 |
by (induct p arbitrary: n rule: degreen.induct, auto)
|
|
1207 |
lemma head_isnpolyh_Suc': "n > 0 \<Longrightarrow> isnpolyh p n \<Longrightarrow> head p = p"
|
|
1208 |
by (induct p arbitrary: n rule: degree.induct, auto)
|
|
1209 |
lemma head_head[simp]: "isnpolyh p n0 \<Longrightarrow> head (head p) = head p"
|
|
1210 |
by (induct p rule: head.induct, auto)
|
|
1211 |
|
|
1212 |
lemma polyadd_eq_const_degree:
|
|
1213 |
"\<lbrakk> isnpolyh p n0 ; isnpolyh q n1 ; polyadd (p,q) = C c\<rbrakk> \<Longrightarrow> degree p = degree q"
|
|
1214 |
using polyadd_eq_const_degreen degree_eq_degreen0 by simp
|
|
1215 |
|
|
1216 |
lemma polyadd_head: assumes np: "isnpolyh p n0" and nq: "isnpolyh q n1"
|
|
1217 |
and deg: "degree p \<noteq> degree q"
|
|
1218 |
shows "head (p +\<^sub>p q) = (if degree p < degree q then head q else head p)"
|
|
1219 |
using np nq deg
|
|
1220 |
apply(induct p q arbitrary: n0 n1 rule: polyadd.induct,simp_all)
|
|
1221 |
apply (case_tac n', simp, simp)
|
|
1222 |
apply (case_tac n, simp, simp)
|
|
1223 |
apply (case_tac n, case_tac n', simp add: Let_def)
|
|
1224 |
apply (case_tac "pa +\<^sub>p p' = 0\<^sub>p")
|
|
1225 |
apply (clarsimp simp add: polyadd_eq_const_degree)
|
|
1226 |
apply clarsimp
|
|
1227 |
apply (erule_tac impE,blast)
|
|
1228 |
apply (erule_tac impE,blast)
|
|
1229 |
apply clarsimp
|
|
1230 |
apply simp
|
|
1231 |
apply (case_tac n', simp_all)
|
|
1232 |
done
|
|
1233 |
|
|
1234 |
lemma polymul_head_polyeq:
|
|
1235 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1236 |
shows "\<lbrakk>isnpolyh p n0; isnpolyh q n1 ; p \<noteq> 0\<^sub>p ; q \<noteq> 0\<^sub>p \<rbrakk> \<Longrightarrow> head (p *\<^sub>p q) = head p *\<^sub>p head q"
|
|
1237 |
proof (induct p q arbitrary: n0 n1 rule: polymul.induct)
|
|
1238 |
case (2 a b c' n' p' n0 n1)
|
|
1239 |
hence "isnpolyh (head (CN c' n' p')) n1" "isnormNum (a,b)" by (simp_all add: head_isnpolyh)
|
|
1240 |
thus ?case using prems by (cases n', auto)
|
|
1241 |
next
|
|
1242 |
case (3 c n p a' b' n0 n1)
|
|
1243 |
hence "isnpolyh (head (CN c n p)) n0" "isnormNum (a',b')" by (simp_all add: head_isnpolyh)
|
|
1244 |
thus ?case using prems by (cases n, auto)
|
|
1245 |
next
|
|
1246 |
case (4 c n p c' n' p' n0 n1)
|
|
1247 |
hence norm: "isnpolyh p n" "isnpolyh c (Suc n)" "isnpolyh p' n'" "isnpolyh c' (Suc n')"
|
|
1248 |
"isnpolyh (CN c n p) n" "isnpolyh (CN c' n' p') n'"
|
|
1249 |
by simp_all
|
|
1250 |
have "n < n' \<or> n' < n \<or> n = n'" by arith
|
|
1251 |
moreover
|
|
1252 |
{assume nn': "n < n'" hence ?case
|
|
1253 |
thm prems
|
|
1254 |
using norm
|
|
1255 |
prems(6)[rule_format, OF nn' norm(1,6)]
|
|
1256 |
prems(7)[rule_format, OF nn' norm(2,6)] by (simp, cases n, simp,cases n', simp_all)}
|
|
1257 |
moreover {assume nn': "n'< n"
|
|
1258 |
hence stupid: "n' < n \<and> \<not> n < n'" by simp
|
|
1259 |
hence ?case using norm prems(4) [rule_format, OF stupid norm(5,3)]
|
|
1260 |
prems(5)[rule_format, OF stupid norm(5,4)]
|
|
1261 |
by (simp,cases n',simp,cases n,auto)}
|
|
1262 |
moreover {assume nn': "n' = n"
|
|
1263 |
hence stupid: "\<not> n' < n \<and> \<not> n < n'" by simp
|
|
1264 |
from nn' polymul_normh[OF norm(5,4)]
|
|
1265 |
have ncnpc':"isnpolyh (CN c n p *\<^sub>p c') n" by (simp add: min_def)
|
|
1266 |
from nn' polymul_normh[OF norm(5,3)] norm
|
|
1267 |
have ncnpp':"isnpolyh (CN c n p *\<^sub>p p') n" by simp
|
|
1268 |
from nn' ncnpp' polymul_eq0_iff[OF norm(5,3)] norm(6)
|
|
1269 |
have ncnpp0':"isnpolyh (CN 0\<^sub>p n (CN c n p *\<^sub>p p')) n" by simp
|
|
1270 |
from polyadd_normh[OF ncnpc' ncnpp0']
|
|
1271 |
have nth: "isnpolyh ((CN c n p *\<^sub>p c') +\<^sub>p (CN 0\<^sub>p n (CN c n p *\<^sub>p p'))) n"
|
|
1272 |
by (simp add: min_def)
|
|
1273 |
{assume np: "n > 0"
|
|
1274 |
with nn' head_isnpolyh_Suc'[OF np nth]
|
|
1275 |
head_isnpolyh_Suc'[OF np norm(5)] head_isnpolyh_Suc'[OF np norm(6)[simplified nn']]
|
|
1276 |
have ?case by simp}
|
|
1277 |
moreover
|
|
1278 |
{moreover assume nz: "n = 0"
|
|
1279 |
from polymul_degreen[OF norm(5,4), where m="0"]
|
|
1280 |
polymul_degreen[OF norm(5,3), where m="0"] nn' nz degree_eq_degreen0
|
|
1281 |
norm(5,6) degree_npolyhCN[OF norm(6)]
|
|
1282 |
have dth:"degree (CN c 0 p *\<^sub>p c') < degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
|
|
1283 |
hence dth':"degree (CN c 0 p *\<^sub>p c') \<noteq> degree (CN 0\<^sub>p 0 (CN c 0 p *\<^sub>p p'))" by simp
|
|
1284 |
from polyadd_head[OF ncnpc'[simplified nz] ncnpp0'[simplified nz] dth'] dth
|
|
1285 |
have ?case using norm prems(2)[rule_format, OF stupid norm(5,3)]
|
|
1286 |
prems(3)[rule_format, OF stupid norm(5,4)] nn' nz by simp }
|
|
1287 |
ultimately have ?case by (cases n) auto}
|
|
1288 |
ultimately show ?case by blast
|
|
1289 |
qed simp_all
|
|
1290 |
|
|
1291 |
lemma degree_coefficients: "degree p = length (coefficients p) - 1"
|
|
1292 |
by(induct p rule: degree.induct, auto)
|
|
1293 |
|
|
1294 |
lemma degree_head[simp]: "degree (head p) = 0"
|
|
1295 |
by (induct p rule: head.induct, auto)
|
|
1296 |
|
|
1297 |
lemma degree_CN: "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<le> 1+ degree p"
|
|
1298 |
by (cases n, simp_all)
|
|
1299 |
lemma degree_CN': "isnpolyh p n \<Longrightarrow> degree (CN c n p) \<ge> degree p"
|
|
1300 |
by (cases n, simp_all)
|
|
1301 |
|
|
1302 |
lemma polyadd_different_degree: "\<lbrakk>isnpolyh p n0 ; isnpolyh q n1; degree p \<noteq> degree q\<rbrakk> \<Longrightarrow> degree (polyadd(p,q)) = max (degree p) (degree q)"
|
|
1303 |
using polyadd_different_degreen degree_eq_degreen0 by simp
|
|
1304 |
|
|
1305 |
lemma degreen_polyneg: "isnpolyh p n0 \<Longrightarrow> degreen (~\<^sub>p p) m = degreen p m"
|
|
1306 |
by (induct p arbitrary: n0 rule: polyneg.induct, auto)
|
|
1307 |
|
|
1308 |
lemma degree_polymul:
|
|
1309 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})"
|
|
1310 |
and np: "isnpolyh p n0" and nq: "isnpolyh q n1"
|
|
1311 |
shows "degree (p *\<^sub>p q) \<le> degree p + degree q"
|
|
1312 |
using polymul_degreen[OF np nq, where m="0"] degree_eq_degreen0 by simp
|
|
1313 |
|
|
1314 |
lemma polyneg_degree: "isnpolyh p n \<Longrightarrow> degree (polyneg p) = degree p"
|
|
1315 |
by (induct p arbitrary: n rule: degree.induct, auto)
|
|
1316 |
|
|
1317 |
lemma polyneg_head: "isnpolyh p n \<Longrightarrow> head(polyneg p) = polyneg (head p)"
|
|
1318 |
by (induct p arbitrary: n rule: degree.induct, auto)
|
|
1319 |
|
|
1320 |
subsection {* Correctness of polynomial pseudo division *}
|
|
1321 |
|
|
1322 |
lemma polydivide_aux_real_domintros:
|
|
1323 |
assumes call1: "\<lbrakk>s \<noteq> 0\<^sub>p; \<not> degree s < n; a = head s\<rbrakk>
|
|
1324 |
\<Longrightarrow> polydivide_aux_dom (a, n, p, k, s -\<^sub>p funpow (degree s - n) shift1 p)"
|
|
1325 |
and call2 |