author | nipkow |
Thu, 17 Jul 2025 21:06:22 +0100 | |
changeset 82885 | 5d2a599f88af |
parent 82323 | b022c013b04b |
permissions | -rw-r--r-- |
70095 | 1 |
section\<open>Homology, II: Homology Groups\<close> |
2 |
||
3 |
theory Homology_Groups |
|
4 |
imports Simplices "HOL-Algebra.Exact_Sequence" |
|
5 |
||
6 |
begin |
|
7 |
subsection\<open>Homology Groups\<close> |
|
8 |
||
9 |
text\<open>Now actually connect to group theory and set up homology groups. Note that we define homomogy |
|
10 |
groups for all \emph{integers} @{term p}, since this seems to avoid some special-case reasoning, |
|
11 |
though they are trivial for @{term"p < 0"}.\<close> |
|
12 |
||
13 |
definition chain_group :: "nat \<Rightarrow> 'a topology \<Rightarrow> 'a chain monoid" |
|
14 |
where "chain_group p X \<equiv> free_Abelian_group (singular_simplex_set p X)" |
|
15 |
||
16 |
lemma carrier_chain_group [simp]: "carrier(chain_group p X) = singular_chain_set p X" |
|
17 |
by (auto simp: chain_group_def singular_chain_def free_Abelian_group_def) |
|
18 |
||
19 |
lemma one_chain_group [simp]: "one(chain_group p X) = 0" |
|
20 |
by (auto simp: chain_group_def free_Abelian_group_def) |
|
21 |
||
22 |
lemma mult_chain_group [simp]: "monoid.mult(chain_group p X) = (+)" |
|
23 |
by (auto simp: chain_group_def free_Abelian_group_def) |
|
24 |
||
25 |
lemma m_inv_chain_group [simp]: "Poly_Mapping.keys a \<subseteq> singular_simplex_set p X \<Longrightarrow> inv\<^bsub>chain_group p X\<^esub> a = -a" |
|
26 |
unfolding chain_group_def by simp |
|
27 |
||
28 |
lemma group_chain_group [simp]: "Group.group (chain_group p X)" |
|
29 |
by (simp add: chain_group_def) |
|
30 |
||
31 |
lemma abelian_chain_group: "comm_group(chain_group p X)" |
|
32 |
by (simp add: free_Abelian_group_def group.group_comm_groupI [OF group_chain_group]) |
|
33 |
||
34 |
lemma subgroup_singular_relcycle: |
|
35 |
"subgroup (singular_relcycle_set p X S) (chain_group p X)" |
|
36 |
proof |
|
37 |
show "x \<otimes>\<^bsub>chain_group p X\<^esub> y \<in> singular_relcycle_set p X S" |
|
38 |
if "x \<in> singular_relcycle_set p X S" and "y \<in> singular_relcycle_set p X S" for x y |
|
39 |
using that by (simp add: singular_relcycle_add) |
|
40 |
next |
|
41 |
show "inv\<^bsub>chain_group p X\<^esub> x \<in> singular_relcycle_set p X S" |
|
42 |
if "x \<in> singular_relcycle_set p X S" for x |
|
43 |
using that |
|
44 |
by clarsimp (metis m_inv_chain_group singular_chain_def singular_relcycle singular_relcycle_minus) |
|
45 |
qed (auto simp: singular_relcycle) |
|
46 |
||
47 |
||
48 |
definition relcycle_group :: "nat \<Rightarrow> 'a topology \<Rightarrow> 'a set \<Rightarrow> ('a chain) monoid" |
|
49 |
where "relcycle_group p X S \<equiv> |
|
50 |
subgroup_generated (chain_group p X) (Collect(singular_relcycle p X S))" |
|
51 |
||
52 |
lemma carrier_relcycle_group [simp]: |
|
53 |
"carrier (relcycle_group p X S) = singular_relcycle_set p X S" |
|
54 |
proof - |
|
55 |
have "carrier (chain_group p X) \<inter> singular_relcycle_set p X S = singular_relcycle_set p X S" |
|
56 |
using subgroup.subset subgroup_singular_relcycle by blast |
|
57 |
moreover have "generate (chain_group p X) (singular_relcycle_set p X S) \<subseteq> singular_relcycle_set p X S" |
|
58 |
by (simp add: group.generate_subgroup_incl group_chain_group subgroup_singular_relcycle) |
|
59 |
ultimately show ?thesis |
|
60 |
by (auto simp: relcycle_group_def subgroup_generated_def generate.incl) |
|
61 |
qed |
|
62 |
||
63 |
lemma one_relcycle_group [simp]: "one(relcycle_group p X S) = 0" |
|
64 |
by (simp add: relcycle_group_def) |
|
65 |
||
66 |
lemma mult_relcycle_group [simp]: "(\<otimes>\<^bsub>relcycle_group p X S\<^esub>) = (+)" |
|
67 |
by (simp add: relcycle_group_def) |
|
68 |
||
69 |
lemma abelian_relcycle_group [simp]: |
|
70 |
"comm_group(relcycle_group p X S)" |
|
71 |
unfolding relcycle_group_def |
|
72 |
by (intro group.abelian_subgroup_generated group_chain_group) (auto simp: abelian_chain_group singular_relcycle) |
|
73 |
||
74 |
lemma group_relcycle_group [simp]: "group(relcycle_group p X S)" |
|
75 |
by (simp add: comm_group.axioms(2)) |
|
76 |
||
77 |
lemma relcycle_group_restrict [simp]: |
|
78 |
"relcycle_group p X (topspace X \<inter> S) = relcycle_group p X S" |
|
79 |
by (metis relcycle_group_def singular_relcycle_restrict) |
|
80 |
||
81 |
||
82 |
definition relative_homology_group :: "int \<Rightarrow> 'a topology \<Rightarrow> 'a set \<Rightarrow> ('a chain) set monoid" |
|
83 |
where |
|
84 |
"relative_homology_group p X S \<equiv> |
|
85 |
if p < 0 then singleton_group undefined else |
|
86 |
(relcycle_group (nat p) X S) Mod (singular_relboundary_set (nat p) X S)" |
|
87 |
||
88 |
abbreviation homology_group |
|
89 |
where "homology_group p X \<equiv> relative_homology_group p X {}" |
|
90 |
||
91 |
lemma relative_homology_group_restrict [simp]: |
|
92 |
"relative_homology_group p X (topspace X \<inter> S) = relative_homology_group p X S" |
|
93 |
by (simp add: relative_homology_group_def) |
|
94 |
||
95 |
lemma nontrivial_relative_homology_group: |
|
96 |
fixes p::nat |
|
97 |
shows "relative_homology_group p X S |
|
98 |
= relcycle_group p X S Mod singular_relboundary_set p X S" |
|
99 |
by (simp add: relative_homology_group_def) |
|
100 |
||
101 |
lemma singular_relboundary_ss: |
|
102 |
"singular_relboundary p X S x \<Longrightarrow> Poly_Mapping.keys x \<subseteq> singular_simplex_set p X" |
|
103 |
using singular_chain_def singular_relboundary_imp_chain by blast |
|
104 |
||
105 |
lemma trivial_relative_homology_group [simp]: |
|
106 |
"p < 0 \<Longrightarrow> trivial_group(relative_homology_group p X S)" |
|
107 |
by (simp add: relative_homology_group_def) |
|
108 |
||
109 |
lemma subgroup_singular_relboundary: |
|
110 |
"subgroup (singular_relboundary_set p X S) (chain_group p X)" |
|
111 |
unfolding chain_group_def |
|
112 |
proof unfold_locales |
|
113 |
show "singular_relboundary_set p X S |
|
114 |
\<subseteq> carrier (free_Abelian_group (singular_simplex_set p X))" |
|
115 |
using singular_chain_def singular_relboundary_imp_chain by fastforce |
|
116 |
next |
|
117 |
fix x |
|
118 |
assume "x \<in> singular_relboundary_set p X S" |
|
119 |
then show "inv\<^bsub>free_Abelian_group (singular_simplex_set p X)\<^esub> x |
|
120 |
\<in> singular_relboundary_set p X S" |
|
121 |
by (simp add: singular_relboundary_ss singular_relboundary_minus) |
|
122 |
qed (auto simp: free_Abelian_group_def singular_relboundary_add) |
|
123 |
||
124 |
lemma subgroup_singular_relboundary_relcycle: |
|
125 |
"subgroup (singular_relboundary_set p X S) (relcycle_group p X S)" |
|
126 |
unfolding relcycle_group_def |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
127 |
by (simp add: Collect_mono group.subgroup_of_subgroup_generated singular_relboundary_imp_relcycle subgroup_singular_relboundary) |
70095 | 128 |
|
129 |
lemma normal_subgroup_singular_relboundary_relcycle: |
|
130 |
"(singular_relboundary_set p X S) \<lhd> (relcycle_group p X S)" |
|
131 |
by (simp add: comm_group.normal_iff_subgroup subgroup_singular_relboundary_relcycle) |
|
132 |
||
133 |
lemma group_relative_homology_group [simp]: |
|
134 |
"group (relative_homology_group p X S)" |
|
135 |
by (simp add: relative_homology_group_def normal.factorgroup_is_group |
|
136 |
normal_subgroup_singular_relboundary_relcycle) |
|
137 |
||
138 |
lemma right_coset_singular_relboundary: |
|
139 |
"r_coset (relcycle_group p X S) (singular_relboundary_set p X S) |
|
140 |
= (\<lambda>a. {b. homologous_rel p X S a b})" |
|
141 |
using singular_relboundary_minus |
|
142 |
by (force simp: r_coset_def homologous_rel_def relcycle_group_def subgroup_generated_def) |
|
143 |
||
144 |
lemma carrier_relative_homology_group: |
|
145 |
"carrier(relative_homology_group (int p) X S) |
|
146 |
= (homologous_rel_set p X S) ` singular_relcycle_set p X S" |
|
147 |
by (auto simp: set_eq_iff image_iff relative_homology_group_def FactGroup_def RCOSETS_def right_coset_singular_relboundary) |
|
148 |
||
149 |
lemma carrier_relative_homology_group_0: |
|
150 |
"carrier(relative_homology_group 0 X S) |
|
151 |
= (homologous_rel_set 0 X S) ` singular_relcycle_set 0 X S" |
|
152 |
using carrier_relative_homology_group [of 0 X S] by simp |
|
153 |
||
154 |
lemma one_relative_homology_group [simp]: |
|
155 |
"one(relative_homology_group (int p) X S) = singular_relboundary_set p X S" |
|
156 |
by (simp add: relative_homology_group_def FactGroup_def) |
|
157 |
||
158 |
lemma mult_relative_homology_group: |
|
159 |
"(\<otimes>\<^bsub>relative_homology_group (int p) X S\<^esub>) = (\<lambda>R S. (\<Union>r\<in>R. \<Union>s\<in>S. {r + s}))" |
|
160 |
unfolding relcycle_group_def subgroup_generated_def chain_group_def free_Abelian_group_def set_mult_def relative_homology_group_def FactGroup_def |
|
161 |
by force |
|
162 |
||
163 |
lemma inv_relative_homology_group: |
|
164 |
assumes "R \<in> carrier (relative_homology_group (int p) X S)" |
|
165 |
shows "m_inv(relative_homology_group (int p) X S) R = uminus ` R" |
|
166 |
proof (rule group.inv_equality [OF group_relative_homology_group _ assms]) |
|
167 |
obtain c where c: "R = homologous_rel_set p X S c" "singular_relcycle p X S c" |
|
168 |
using assms by (auto simp: carrier_relative_homology_group) |
|
169 |
have "singular_relboundary p X S (b - a)" |
|
170 |
if "a \<in> R" and "b \<in> R" for a b |
|
171 |
using c that |
|
172 |
by clarify (metis homologous_rel_def homologous_rel_eq) |
|
173 |
moreover |
|
174 |
have "x \<in> (\<Union>x\<in>R. \<Union>y\<in>R. {y - x})" |
|
175 |
if "singular_relboundary p X S x" for x |
|
176 |
using c |
|
177 |
by simp (metis diff_eq_eq homologous_rel_def homologous_rel_refl homologous_rel_sym that) |
|
178 |
ultimately |
|
179 |
have "(\<Union>x\<in>R. \<Union>xa\<in>R. {xa - x}) = singular_relboundary_set p X S" |
|
180 |
by auto |
|
181 |
then show "uminus ` R \<otimes>\<^bsub>relative_homology_group (int p) X S\<^esub> R = |
|
182 |
\<one>\<^bsub>relative_homology_group (int p) X S\<^esub>" |
|
183 |
by (auto simp: carrier_relative_homology_group mult_relative_homology_group) |
|
184 |
have "singular_relcycle p X S (-c)" |
|
185 |
using c by (simp add: singular_relcycle_minus) |
|
186 |
moreover have "homologous_rel p X S c x \<Longrightarrow> homologous_rel p X S (-c) (- x)" for x |
|
187 |
by (metis homologous_rel_def homologous_rel_sym minus_diff_eq minus_diff_minus) |
|
188 |
moreover have "homologous_rel p X S (-c) x \<Longrightarrow> x \<in> uminus ` homologous_rel_set p X S c" for x |
|
189 |
by (clarsimp simp: image_iff) (metis add.inverse_inverse diff_0 homologous_rel_diff homologous_rel_refl) |
|
190 |
ultimately show "uminus ` R \<in> carrier (relative_homology_group (int p) X S)" |
|
191 |
using c by (auto simp: carrier_relative_homology_group) |
|
192 |
qed |
|
193 |
||
194 |
lemma homologous_rel_eq_relboundary: |
|
195 |
"homologous_rel p X S c = singular_relboundary p X S |
|
196 |
\<longleftrightarrow> singular_relboundary p X S c" (is "?lhs = ?rhs") |
|
197 |
proof |
|
198 |
assume ?lhs |
|
199 |
then show ?rhs |
|
200 |
unfolding homologous_rel_def |
|
201 |
by (metis diff_zero singular_relboundary_0) |
|
202 |
next |
|
203 |
assume R: ?rhs |
|
204 |
show ?lhs |
|
205 |
unfolding homologous_rel_def |
|
206 |
using singular_relboundary_diff R by fastforce |
|
207 |
qed |
|
208 |
||
209 |
lemma homologous_rel_set_eq_relboundary: |
|
210 |
"homologous_rel_set p X S c = singular_relboundary_set p X S \<longleftrightarrow> singular_relboundary p X S c" |
|
211 |
by (auto simp flip: homologous_rel_eq_relboundary) |
|
212 |
||
213 |
text\<open>Lift the boundary and induced maps to homology groups. We totalize both |
|
214 |
quite aggressively to the appropriate group identity in all "undefined" |
|
215 |
situations, which makes several of the properties cleaner and simpler.\<close> |
|
216 |
||
217 |
lemma homomorphism_chain_boundary: |
|
218 |
"chain_boundary p \<in> hom (relcycle_group p X S) (relcycle_group(p - Suc 0) (subtopology X S) {})" |
|
219 |
(is "?h \<in> hom ?G ?H") |
|
220 |
proof (rule homI) |
|
221 |
show "\<And>x. x \<in> carrier ?G \<Longrightarrow> ?h x \<in> carrier ?H" |
|
222 |
by (auto simp: singular_relcycle_def mod_subset_def chain_boundary_boundary) |
|
223 |
qed (simp add: relcycle_group_def subgroup_generated_def chain_boundary_add) |
|
224 |
||
225 |
||
226 |
lemma hom_boundary1: |
|
227 |
"\<exists>d. \<forall>p X S. |
|
228 |
d p X S \<in> hom (relative_homology_group (int p) X S) |
|
229 |
(homology_group (int (p - Suc 0)) (subtopology X S)) |
|
230 |
\<and> (\<forall>c. singular_relcycle p X S c |
|
231 |
\<longrightarrow> d p X S (homologous_rel_set p X S c) |
|
232 |
= homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c))" |
|
233 |
(is "\<exists>d. \<forall>p X S. ?\<Phi> (d p X S) p X S") |
|
234 |
proof ((subst choice_iff [symmetric])+, clarify) |
|
235 |
fix p X and S :: "'a set" |
|
236 |
define \<theta> where "\<theta> \<equiv> r_coset (relcycle_group(p - Suc 0) (subtopology X S) {}) |
|
237 |
(singular_relboundary_set (p - Suc 0) (subtopology X S) {}) \<circ> chain_boundary p" |
|
238 |
define H where "H \<equiv> relative_homology_group (int (p - Suc 0)) (subtopology X S) {}" |
|
239 |
define J where "J \<equiv> relcycle_group (p - Suc 0) (subtopology X S) {}" |
|
240 |
||
241 |
have \<theta>: "\<theta> \<in> hom (relcycle_group p X S) H" |
|
242 |
unfolding \<theta>_def |
|
243 |
proof (rule hom_compose) |
|
244 |
show "chain_boundary p \<in> hom (relcycle_group p X S) J" |
|
245 |
by (simp add: J_def homomorphism_chain_boundary) |
|
246 |
show "(#>\<^bsub>relcycle_group (p - Suc 0) (subtopology X S) {}\<^esub>) |
|
247 |
(singular_relboundary_set (p - Suc 0) (subtopology X S) {}) \<in> hom J H" |
|
248 |
by (simp add: H_def J_def nontrivial_relative_homology_group |
|
249 |
normal.r_coset_hom_Mod normal_subgroup_singular_relboundary_relcycle) |
|
250 |
qed |
|
251 |
have *: "singular_relboundary (p - Suc 0) (subtopology X S) {} (chain_boundary p c)" |
|
252 |
if "singular_relboundary p X S c" for c |
|
253 |
proof (cases "p=0") |
|
254 |
case True |
|
255 |
then show ?thesis |
|
256 |
by (metis chain_boundary_def singular_relboundary_0) |
|
257 |
next |
|
258 |
case False |
|
259 |
with that have "\<exists>d. singular_chain p (subtopology X S) d \<and> chain_boundary p d = chain_boundary p c" |
|
260 |
by (metis add.left_neutral chain_boundary_add chain_boundary_boundary_alt singular_relboundary) |
|
261 |
with that False show ?thesis |
|
262 |
by (auto simp: singular_boundary) |
|
263 |
qed |
|
264 |
have \<theta>_eq: "\<theta> x = \<theta> y" |
|
265 |
if x: "x \<in> singular_relcycle_set p X S" and y: "y \<in> singular_relcycle_set p X S" |
|
266 |
and eq: "singular_relboundary_set p X S #>\<^bsub>relcycle_group p X S\<^esub> x |
|
267 |
= singular_relboundary_set p X S #>\<^bsub>relcycle_group p X S\<^esub> y" for x y |
|
268 |
proof - |
|
269 |
have "singular_relboundary p X S (x-y)" |
|
270 |
by (metis eq homologous_rel_def homologous_rel_eq mem_Collect_eq right_coset_singular_relboundary) |
|
271 |
with * have "(singular_relboundary (p - Suc 0) (subtopology X S) {}) (chain_boundary p (x-y))" |
|
272 |
by blast |
|
273 |
then show ?thesis |
|
274 |
unfolding \<theta>_def comp_def |
|
275 |
by (metis chain_boundary_diff homologous_rel_def homologous_rel_eq right_coset_singular_relboundary) |
|
276 |
qed |
|
277 |
obtain d |
|
278 |
where "d \<in> hom ((relcycle_group p X S) Mod (singular_relboundary_set p X S)) H" |
|
279 |
and d: "\<And>u. u \<in> singular_relcycle_set p X S \<Longrightarrow> d (homologous_rel_set p X S u) = \<theta> u" |
|
280 |
by (metis FactGroup_universal [OF \<theta> normal_subgroup_singular_relboundary_relcycle \<theta>_eq] right_coset_singular_relboundary carrier_relcycle_group) |
|
281 |
then have "d \<in> hom (relative_homology_group p X S) H" |
|
282 |
by (simp add: nontrivial_relative_homology_group) |
|
283 |
then show "\<exists>d. ?\<Phi> d p X S" |
|
284 |
by (force simp: H_def right_coset_singular_relboundary d \<theta>_def) |
|
285 |
qed |
|
286 |
||
287 |
lemma hom_boundary2: |
|
288 |
"\<exists>d. (\<forall>p X S. |
|
289 |
(d p X S) \<in> hom (relative_homology_group p X S) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
290 |
(homology_group (p-1) (subtopology X S))) |
70095 | 291 |
\<and> (\<forall>p X S c. singular_relcycle p X S c \<and> Suc 0 \<le> p |
292 |
\<longrightarrow> d p X S (homologous_rel_set p X S c) |
|
293 |
= homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c))" |
|
294 |
(is "\<exists>d. ?\<Phi> d") |
|
295 |
proof - |
|
296 |
have *: "\<exists>f. \<Phi>(\<lambda>p. if p \<le> 0 then \<lambda>q r t. undefined else f(nat p)) \<Longrightarrow> \<exists>f. \<Phi> f" for \<Phi> |
|
297 |
by blast |
|
298 |
show ?thesis |
|
299 |
apply (rule * [OF ex_forward [OF hom_boundary1]]) |
|
300 |
apply (simp add: not_le relative_homology_group_def nat_diff_distrib' int_eq_iff nat_diff_distrib flip: nat_1) |
|
301 |
by (simp add: hom_def singleton_group_def) |
|
302 |
qed |
|
303 |
||
304 |
lemma hom_boundary3: |
|
305 |
"\<exists>d. ((\<forall>p X S c. c \<notin> carrier(relative_homology_group p X S) |
|
306 |
\<longrightarrow> d p X S c = one(homology_group (p-1) (subtopology X S))) \<and> |
|
307 |
(\<forall>p X S. |
|
308 |
d p X S \<in> hom (relative_homology_group p X S) |
|
309 |
(homology_group (p-1) (subtopology X S))) \<and> |
|
310 |
(\<forall>p X S c. |
|
311 |
singular_relcycle p X S c \<and> 1 \<le> p |
|
312 |
\<longrightarrow> d p X S (homologous_rel_set p X S c) |
|
313 |
= homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c)) \<and> |
|
314 |
(\<forall>p X S. d p X S = d p X (topspace X \<inter> S))) \<and> |
|
315 |
(\<forall>p X S c. d p X S c \<in> carrier(homology_group (p-1) (subtopology X S))) \<and> |
|
316 |
(\<forall>p. p \<le> 0 \<longrightarrow> d p = (\<lambda>q r t. undefined))" |
|
317 |
(is "\<exists>x. ?P x \<and> ?Q x \<and> ?R x") |
|
318 |
proof - |
|
319 |
have "\<And>x. ?Q x \<Longrightarrow> ?R x" |
|
320 |
by (erule all_forward) (force simp: relative_homology_group_def) |
|
321 |
moreover have "\<exists>x. ?P x \<and> ?Q x" |
|
322 |
proof - |
|
323 |
obtain d:: "[int, 'a topology, 'a set, ('a chain) set] \<Rightarrow> ('a chain) set" |
|
324 |
where 1: "\<And>p X S. d p X S \<in> hom (relative_homology_group p X S) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
325 |
(homology_group (p-1) (subtopology X S))" |
70095 | 326 |
and 2: "\<And>n X S c. singular_relcycle n X S c \<and> Suc 0 \<le> n |
327 |
\<Longrightarrow> d n X S (homologous_rel_set n X S c) |
|
328 |
= homologous_rel_set (n - Suc 0) (subtopology X S) {} (chain_boundary n c)" |
|
329 |
using hom_boundary2 by blast |
|
330 |
have 4: "c \<in> carrier (relative_homology_group p X S) \<Longrightarrow> |
|
331 |
d p X (topspace X \<inter> S) c \<in> carrier (relative_homology_group (p-1) (subtopology X S) {})" |
|
332 |
for p X S c |
|
333 |
using hom_carrier [OF 1 [of p X "topspace X \<inter> S"]] |
|
334 |
by (simp add: image_subset_iff subtopology_restrict) |
|
335 |
show ?thesis |
|
336 |
apply (rule_tac x="\<lambda>p X S c. |
|
337 |
if c \<in> carrier(relative_homology_group p X S) |
|
338 |
then d p X (topspace X \<inter> S) c |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
339 |
else one(homology_group (p-1) (subtopology X S))" in exI) |
70095 | 340 |
apply (simp add: Int_left_absorb subtopology_restrict carrier_relative_homology_group |
341 |
group.is_monoid group.restrict_hom_iff 4 cong: if_cong) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
342 |
by (metis "1" "2" homologous_rel_restrict relative_homology_group_restrict singular_relcycle_def subtopology_restrict) |
70095 | 343 |
qed |
344 |
ultimately show ?thesis |
|
345 |
by auto |
|
346 |
qed |
|
347 |
||
348 |
||
349 |
consts hom_boundary :: "[int,'a topology,'a set,'a chain set] \<Rightarrow> 'a chain set" |
|
350 |
specification (hom_boundary) |
|
351 |
hom_boundary: |
|
352 |
"((\<forall>p X S c. c \<notin> carrier(relative_homology_group p X S) |
|
353 |
\<longrightarrow> hom_boundary p X S c = one(homology_group (p-1) (subtopology X (S::'a set)))) \<and> |
|
354 |
(\<forall>p X S. |
|
355 |
hom_boundary p X S \<in> hom (relative_homology_group p X S) |
|
356 |
(homology_group (p-1) (subtopology X (S::'a set)))) \<and> |
|
357 |
(\<forall>p X S c. |
|
358 |
singular_relcycle p X S c \<and> 1 \<le> p |
|
359 |
\<longrightarrow> hom_boundary p X S (homologous_rel_set p X S c) |
|
360 |
= homologous_rel_set (p - Suc 0) (subtopology X (S::'a set)) {} (chain_boundary p c)) \<and> |
|
361 |
(\<forall>p X S. hom_boundary p X S = hom_boundary p X (topspace X \<inter> (S::'a set)))) \<and> |
|
362 |
(\<forall>p X S c. hom_boundary p X S c \<in> carrier(homology_group (p-1) (subtopology X (S::'a set)))) \<and> |
|
363 |
(\<forall>p. p \<le> 0 \<longrightarrow> hom_boundary p = (\<lambda>q r. \<lambda>t::'a chain set. undefined))" |
|
364 |
by (fact hom_boundary3) |
|
365 |
||
366 |
lemma hom_boundary_default: |
|
367 |
"c \<notin> carrier(relative_homology_group p X S) |
|
368 |
\<Longrightarrow> hom_boundary p X S c = one(homology_group (p-1) (subtopology X S))" |
|
369 |
and hom_boundary_hom: "hom_boundary p X S \<in> hom (relative_homology_group p X S) (homology_group (p-1) (subtopology X S))" |
|
370 |
and hom_boundary_restrict [simp]: "hom_boundary p X (topspace X \<inter> S) = hom_boundary p X S" |
|
371 |
and hom_boundary_carrier: "hom_boundary p X S c \<in> carrier(homology_group (p-1) (subtopology X S))" |
|
372 |
and hom_boundary_trivial: "p \<le> 0 \<Longrightarrow> hom_boundary p = (\<lambda>q r t. undefined)" |
|
373 |
by (metis hom_boundary)+ |
|
374 |
||
375 |
lemma hom_boundary_chain_boundary: |
|
376 |
"\<lbrakk>singular_relcycle p X S c; 1 \<le> p\<rbrakk> |
|
377 |
\<Longrightarrow> hom_boundary (int p) X S (homologous_rel_set p X S c) = |
|
378 |
homologous_rel_set (p - Suc 0) (subtopology X S) {} (chain_boundary p c)" |
|
379 |
by (metis hom_boundary)+ |
|
380 |
||
381 |
lemma hom_chain_map: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
382 |
"\<lbrakk>continuous_map X Y f; f \<in> S \<rightarrow> T\<rbrakk> |
70095 | 383 |
\<Longrightarrow> (chain_map p f) \<in> hom (relcycle_group p X S) (relcycle_group p Y T)" |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
384 |
by (simp add: chain_map_add hom_def singular_relcycle_chain_map) |
70095 | 385 |
|
386 |
||
387 |
lemma hom_induced1: |
|
388 |
"\<exists>hom_relmap. |
|
389 |
(\<forall>p X S Y T f. |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
390 |
continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T |
70095 | 391 |
\<longrightarrow> (hom_relmap p X S Y T f) \<in> hom (relative_homology_group (int p) X S) |
392 |
(relative_homology_group (int p) Y T)) \<and> |
|
393 |
(\<forall>p X S Y T f c. |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
394 |
continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> |
70095 | 395 |
singular_relcycle p X S c |
396 |
\<longrightarrow> hom_relmap p X S Y T f (homologous_rel_set p X S c) = |
|
397 |
homologous_rel_set p Y T (chain_map p f c))" |
|
398 |
proof - |
|
399 |
have "\<exists>y. (y \<in> hom (relative_homology_group (int p) X S) (relative_homology_group (int p) Y T)) \<and> |
|
400 |
(\<forall>c. singular_relcycle p X S c \<longrightarrow> |
|
401 |
y (homologous_rel_set p X S c) = homologous_rel_set p Y T (chain_map p f c))" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
402 |
if contf: "continuous_map X Y f" and fim: "f \<in> (topspace X \<inter> S) \<rightarrow> T" |
70095 | 403 |
for p X S Y T and f :: "'a \<Rightarrow> 'b" |
404 |
proof - |
|
405 |
let ?f = "(#>\<^bsub>relcycle_group p Y T\<^esub>) (singular_relboundary_set p Y T) \<circ> chain_map p f" |
|
406 |
let ?F = "\<lambda>x. singular_relboundary_set p X S #>\<^bsub>relcycle_group p X S\<^esub> x" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
407 |
have "chain_map p f \<in> hom (relcycle_group p X S) (relcycle_group p Y T)" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
408 |
by (metis contf fim hom_chain_map relcycle_group_restrict) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
409 |
then have 1: "?f \<in> hom (relcycle_group p X S) (relative_homology_group (int p) Y T)" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
410 |
by (simp add: hom_compose normal.r_coset_hom_Mod normal_subgroup_singular_relboundary_relcycle relative_homology_group_def) |
70095 | 411 |
have 2: "singular_relboundary_set p X S \<lhd> relcycle_group p X S" |
412 |
using normal_subgroup_singular_relboundary_relcycle by blast |
|
413 |
have 3: "?f x = ?f y" |
|
414 |
if "singular_relcycle p X S x" "singular_relcycle p X S y" "?F x = ?F y" for x y |
|
415 |
proof - |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
416 |
have "homologous_rel p X S x y" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
417 |
by (metis (no_types) homologous_rel_set_eq right_coset_singular_relboundary that(3)) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
418 |
then have "singular_relboundary p Y T (chain_map p f (x - y))" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
419 |
using singular_relboundary_chain_map [OF _ contf fim] by (simp add: homologous_rel_def) |
70095 | 420 |
then have "singular_relboundary p Y T (chain_map p f x - chain_map p f y)" |
421 |
by (simp add: chain_map_diff) |
|
422 |
with that |
|
423 |
show ?thesis |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
424 |
by (metis comp_apply homologous_rel_def homologous_rel_set_eq right_coset_singular_relboundary) |
70095 | 425 |
qed |
426 |
obtain g where "g \<in> hom (relcycle_group p X S Mod singular_relboundary_set p X S) |
|
427 |
(relative_homology_group (int p) Y T)" |
|
428 |
"\<And>x. x \<in> singular_relcycle_set p X S \<Longrightarrow> g (?F x) = ?f x" |
|
429 |
using FactGroup_universal [OF 1 2 3, unfolded carrier_relcycle_group] by blast |
|
430 |
then show ?thesis |
|
431 |
by (force simp: right_coset_singular_relboundary nontrivial_relative_homology_group) |
|
432 |
qed |
|
433 |
then show ?thesis |
|
434 |
apply (simp flip: all_conj_distrib) |
|
435 |
apply ((subst choice_iff [symmetric])+) |
|
436 |
apply metis |
|
437 |
done |
|
438 |
qed |
|
439 |
||
440 |
lemma hom_induced2: |
|
441 |
"\<exists>hom_relmap. |
|
442 |
(\<forall>p X S Y T f. |
|
443 |
continuous_map X Y f \<and> |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
444 |
f \<in> (topspace X \<inter> S) \<rightarrow> T |
70095 | 445 |
\<longrightarrow> (hom_relmap p X S Y T f) \<in> hom (relative_homology_group p X S) |
446 |
(relative_homology_group p Y T)) \<and> |
|
447 |
(\<forall>p X S Y T f c. |
|
448 |
continuous_map X Y f \<and> |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
449 |
f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> |
70095 | 450 |
singular_relcycle p X S c |
451 |
\<longrightarrow> hom_relmap p X S Y T f (homologous_rel_set p X S c) = |
|
452 |
homologous_rel_set p Y T (chain_map p f c)) \<and> |
|
453 |
(\<forall>p. p < 0 \<longrightarrow> hom_relmap p = (\<lambda>X S Y T f c. undefined))" |
|
454 |
(is "\<exists>d. ?\<Phi> d") |
|
455 |
proof - |
|
456 |
have *: "\<exists>f. \<Phi>(\<lambda>p. if p < 0 then \<lambda>X S Y T f c. undefined else f(nat p)) \<Longrightarrow> \<exists>f. \<Phi> f" for \<Phi> |
|
457 |
by blast |
|
458 |
show ?thesis |
|
459 |
apply (rule * [OF ex_forward [OF hom_induced1]]) |
|
460 |
apply (simp add: not_le relative_homology_group_def nat_diff_distrib' int_eq_iff nat_diff_distrib flip: nat_1) |
|
461 |
done |
|
462 |
qed |
|
463 |
||
464 |
lemma hom_induced3: |
|
465 |
"\<exists>hom_relmap. |
|
466 |
((\<forall>p X S Y T f c. |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
467 |
~(continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> |
70095 | 468 |
c \<in> carrier(relative_homology_group p X S)) |
469 |
\<longrightarrow> hom_relmap p X S Y T f c = one(relative_homology_group p Y T)) \<and> |
|
470 |
(\<forall>p X S Y T f. |
|
471 |
hom_relmap p X S Y T f \<in> hom (relative_homology_group p X S) (relative_homology_group p Y T)) \<and> |
|
472 |
(\<forall>p X S Y T f c. |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
473 |
continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> singular_relcycle p X S c |
70095 | 474 |
\<longrightarrow> hom_relmap p X S Y T f (homologous_rel_set p X S c) = |
475 |
homologous_rel_set p Y T (chain_map p f c)) \<and> |
|
476 |
(\<forall>p X S Y T. |
|
477 |
hom_relmap p X S Y T = |
|
478 |
hom_relmap p X (topspace X \<inter> S) Y (topspace Y \<inter> T))) \<and> |
|
479 |
(\<forall>p X S Y f T c. |
|
480 |
hom_relmap p X S Y T f c \<in> carrier(relative_homology_group p Y T)) \<and> |
|
481 |
(\<forall>p. p < 0 \<longrightarrow> hom_relmap p = (\<lambda>X S Y T f c. undefined))" |
|
482 |
(is "\<exists>x. ?P x \<and> ?Q x \<and> ?R x") |
|
483 |
proof - |
|
484 |
have "\<And>x. ?Q x \<Longrightarrow> ?R x" |
|
485 |
by (erule all_forward) (fastforce simp: relative_homology_group_def) |
|
486 |
moreover have "\<exists>x. ?P x \<and> ?Q x" |
|
487 |
proof - |
|
488 |
obtain hom_relmap:: "[int,'a topology,'a set,'b topology,'b set,'a \<Rightarrow> 'b,('a chain) set] \<Rightarrow> ('b chain) set" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
489 |
where 1: "\<And>p X S Y T f. \<lbrakk>continuous_map X Y f; f \<in> (topspace X \<inter> S) \<rightarrow> T\<rbrakk> \<Longrightarrow> |
70095 | 490 |
hom_relmap p X S Y T f |
491 |
\<in> hom (relative_homology_group p X S) (relative_homology_group p Y T)" |
|
492 |
and 2: "\<And>p X S Y T f c. |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
493 |
\<lbrakk>continuous_map X Y f; f \<in> (topspace X \<inter> S) \<rightarrow> T; singular_relcycle p X S c\<rbrakk> |
70095 | 494 |
\<Longrightarrow> |
495 |
hom_relmap (int p) X S Y T f (homologous_rel_set p X S c) = |
|
496 |
homologous_rel_set p Y T (chain_map p f c)" |
|
497 |
and 3: "(\<forall>p. p < 0 \<longrightarrow> hom_relmap p = (\<lambda>X S Y T f c. undefined))" |
|
498 |
using hom_induced2 [where ?'a='a and ?'b='b] |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
499 |
by (fastforce simp: Pi_iff) |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
500 |
have 4: "\<lbrakk>continuous_map X Y f; f \<in> (topspace X \<inter> S) \<rightarrow> T; c \<in> carrier (relative_homology_group p X S)\<rbrakk> \<Longrightarrow> |
70095 | 501 |
hom_relmap p X (topspace X \<inter> S) Y (topspace Y \<inter> T) f c |
502 |
\<in> carrier (relative_homology_group p Y T)" |
|
503 |
for p X S Y f T c |
|
78322
74c75da4cb01
Some fixes, and SOME TIME LIMITS
paulson <lp15@cam.ac.uk>
parents:
70095
diff
changeset
|
504 |
using hom_carrier [OF 1 [of X Y f "topspace X \<inter> S" "topspace Y \<inter> T" p]] |
74c75da4cb01
Some fixes, and SOME TIME LIMITS
paulson <lp15@cam.ac.uk>
parents:
70095
diff
changeset
|
505 |
continuous_map_image_subset_topspace by fastforce |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
506 |
have inhom: "(\<lambda>c. if continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> |
70095 | 507 |
c \<in> carrier (relative_homology_group p X S) |
508 |
then hom_relmap p X (topspace X \<inter> S) Y (topspace Y \<inter> T) f c |
|
509 |
else \<one>\<^bsub>relative_homology_group p Y T\<^esub>) |
|
510 |
\<in> hom (relative_homology_group p X S) (relative_homology_group p Y T)" (is "?h \<in> hom ?GX ?GY") |
|
511 |
for p X S Y T f |
|
512 |
proof (rule homI) |
|
513 |
show "\<And>x. x \<in> carrier ?GX \<Longrightarrow> ?h x \<in> carrier ?GY" |
|
514 |
by (auto simp: 4 group.is_monoid) |
|
515 |
show "?h (x \<otimes>\<^bsub>?GX\<^esub> y) = ?h x \<otimes>\<^bsub>?GY\<^esub>?h y" if "x \<in> carrier ?GX" "y \<in> carrier ?GX" for x y |
|
516 |
proof (cases "p < 0") |
|
517 |
case True |
|
518 |
with that show ?thesis |
|
519 |
by (simp add: relative_homology_group_def singleton_group_def 3) |
|
520 |
next |
|
521 |
case False |
|
522 |
show ?thesis |
|
523 |
proof (cases "continuous_map X Y f") |
|
524 |
case True |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
525 |
then have "f \<in> (topspace X \<inter> S) \<rightarrow> topspace Y" |
78322
74c75da4cb01
Some fixes, and SOME TIME LIMITS
paulson <lp15@cam.ac.uk>
parents:
70095
diff
changeset
|
526 |
using continuous_map_image_subset_topspace by blast |
70095 | 527 |
then show ?thesis |
528 |
using True False that |
|
78322
74c75da4cb01
Some fixes, and SOME TIME LIMITS
paulson <lp15@cam.ac.uk>
parents:
70095
diff
changeset
|
529 |
using 1 [of X Y f "topspace X \<inter> S" "topspace Y \<inter> T" p] |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
530 |
by (simp add: 4 Pi_iff continuous_map_funspace hom_mult not_less group.is_monoid monoid.m_closed Int_left_absorb) |
70095 | 531 |
qed (simp add: group.is_monoid) |
532 |
qed |
|
533 |
qed |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
534 |
have hrel: "\<lbrakk>continuous_map X Y f; f \<in> (topspace X \<inter> S) \<rightarrow> T; singular_relcycle p X S c\<rbrakk> |
70095 | 535 |
\<Longrightarrow> hom_relmap (int p) X (topspace X \<inter> S) Y (topspace Y \<inter> T) |
536 |
f (homologous_rel_set p X S c) = homologous_rel_set p Y T (chain_map p f c)" |
|
537 |
for p X S Y T f c |
|
538 |
using 2 [of X Y f "topspace X \<inter> S" "topspace Y \<inter> T" p c] |
|
78322
74c75da4cb01
Some fixes, and SOME TIME LIMITS
paulson <lp15@cam.ac.uk>
parents:
70095
diff
changeset
|
539 |
continuous_map_image_subset_topspace by fastforce |
70095 | 540 |
show ?thesis |
541 |
apply (rule_tac x="\<lambda>p X S Y T f c. |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
542 |
if continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> |
70095 | 543 |
c \<in> carrier(relative_homology_group p X S) |
544 |
then hom_relmap p X (topspace X \<inter> S) Y (topspace Y \<inter> T) f c |
|
545 |
else one(relative_homology_group p Y T)" in exI) |
|
546 |
apply (simp add: Int_left_absorb subtopology_restrict carrier_relative_homology_group |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
547 |
group.is_monoid group.restrict_hom_iff 4 inhom hrel split: if_splits) |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
548 |
apply (intro ext strip) |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
549 |
apply (auto simp: continuous_map_def) |
70095 | 550 |
done |
551 |
qed |
|
552 |
ultimately show ?thesis |
|
553 |
by auto |
|
554 |
qed |
|
555 |
||
556 |
||
557 |
consts hom_induced:: "[int,'a topology,'a set,'b topology,'b set,'a \<Rightarrow> 'b,('a chain) set] \<Rightarrow> ('b chain) set" |
|
558 |
specification (hom_induced) |
|
559 |
hom_induced: |
|
560 |
"((\<forall>p X S Y T f c. |
|
561 |
~(continuous_map X Y f \<and> |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
562 |
f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> |
70095 | 563 |
c \<in> carrier(relative_homology_group p X S)) |
564 |
\<longrightarrow> hom_induced p X (S::'a set) Y (T::'b set) f c = |
|
565 |
one(relative_homology_group p Y T)) \<and> |
|
566 |
(\<forall>p X S Y T f. |
|
567 |
(hom_induced p X (S::'a set) Y (T::'b set) f) \<in> hom (relative_homology_group p X S) |
|
568 |
(relative_homology_group p Y T)) \<and> |
|
569 |
(\<forall>p X S Y T f c. |
|
570 |
continuous_map X Y f \<and> |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
571 |
f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> |
70095 | 572 |
singular_relcycle p X S c |
573 |
\<longrightarrow> hom_induced p X (S::'a set) Y (T::'b set) f (homologous_rel_set p X S c) = |
|
574 |
homologous_rel_set p Y T (chain_map p f c)) \<and> |
|
575 |
(\<forall>p X S Y T. |
|
576 |
hom_induced p X (S::'a set) Y (T::'b set) = |
|
577 |
hom_induced p X (topspace X \<inter> S) Y (topspace Y \<inter> T))) \<and> |
|
578 |
(\<forall>p X S Y f T c. |
|
579 |
hom_induced p X (S::'a set) Y (T::'b set) f c \<in> |
|
580 |
carrier(relative_homology_group p Y T)) \<and> |
|
581 |
(\<forall>p. p < 0 \<longrightarrow> hom_induced p = (\<lambda>X S Y T. \<lambda>f::'a\<Rightarrow>'b. \<lambda>c. undefined))" |
|
582 |
by (fact hom_induced3) |
|
583 |
||
584 |
lemma hom_induced_default: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
585 |
"~(continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> c \<in> carrier(relative_homology_group p X S)) |
70095 | 586 |
\<Longrightarrow> hom_induced p X S Y T f c = one(relative_homology_group p Y T)" |
587 |
and hom_induced_hom: |
|
588 |
"hom_induced p X S Y T f \<in> hom (relative_homology_group p X S) (relative_homology_group p Y T)" |
|
589 |
and hom_induced_restrict [simp]: |
|
590 |
"hom_induced p X (topspace X \<inter> S) Y (topspace Y \<inter> T) = hom_induced p X S Y T" |
|
591 |
and hom_induced_carrier: |
|
592 |
"hom_induced p X S Y T f c \<in> carrier(relative_homology_group p Y T)" |
|
593 |
and hom_induced_trivial: "p < 0 \<Longrightarrow> hom_induced p = (\<lambda>X S Y T f c. undefined)" |
|
594 |
by (metis hom_induced)+ |
|
595 |
||
596 |
lemma hom_induced_chain_map_gen: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
597 |
"\<lbrakk>continuous_map X Y f; f \<in> (topspace X \<inter> S) \<rightarrow> T; singular_relcycle p X S c\<rbrakk> |
70095 | 598 |
\<Longrightarrow> hom_induced p X S Y T f (homologous_rel_set p X S c) = homologous_rel_set p Y T (chain_map p f c)" |
599 |
by (metis hom_induced) |
|
600 |
||
601 |
lemma hom_induced_chain_map: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
602 |
"\<lbrakk>continuous_map X Y f; f \<in> S \<rightarrow> T; singular_relcycle p X S c\<rbrakk> |
70095 | 603 |
\<Longrightarrow> hom_induced p X S Y T f (homologous_rel_set p X S c) |
604 |
= homologous_rel_set p Y T (chain_map p f c)" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
605 |
by (simp add: Pi_iff hom_induced_chain_map_gen) |
70095 | 606 |
|
607 |
||
608 |
lemma hom_induced_eq: |
|
609 |
assumes "\<And>x. x \<in> topspace X \<Longrightarrow> f x = g x" |
|
610 |
shows "hom_induced p X S Y T f = hom_induced p X S Y T g" |
|
611 |
proof - |
|
612 |
consider "p < 0" | n where "p = int n" |
|
613 |
by (metis int_nat_eq not_less) |
|
614 |
then show ?thesis |
|
615 |
proof cases |
|
616 |
case 1 |
|
617 |
then show ?thesis |
|
618 |
by (simp add: hom_induced_trivial) |
|
619 |
next |
|
620 |
case 2 |
|
621 |
have "hom_induced n X S Y T f C = hom_induced n X S Y T g C" for C |
|
622 |
proof - |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
623 |
have "continuous_map X Y f \<and> f \<in> (topspace X \<inter> S) \<rightarrow> T \<and> C \<in> carrier (relative_homology_group n X S) |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
624 |
\<longleftrightarrow> continuous_map X Y g \<and> g \<in> (topspace X \<inter> S) \<rightarrow> T \<and> C \<in> carrier (relative_homology_group n X S)" |
70095 | 625 |
(is "?P = ?Q") |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
626 |
using assms Pi_iff continuous_map_eq [of X Y] |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
627 |
by (smt (verit, ccfv_SIG) Int_iff) |
70095 | 628 |
then consider "\<not> ?P \<and> \<not> ?Q" | "?P \<and> ?Q" |
629 |
by blast |
|
630 |
then show ?thesis |
|
631 |
proof cases |
|
632 |
case 1 |
|
633 |
then show ?thesis |
|
634 |
by (simp add: hom_induced_default) |
|
635 |
next |
|
636 |
case 2 |
|
637 |
have "homologous_rel_set n Y T (chain_map n f c) = homologous_rel_set n Y T (chain_map n g c)" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
638 |
if "continuous_map X Y f" "f \<in> (topspace X \<inter> S) \<rightarrow> T" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
639 |
"continuous_map X Y g" "g \<in> (topspace X \<inter> S) \<rightarrow> T" |
70095 | 640 |
"C = homologous_rel_set n X S c" "singular_relcycle n X S c" |
641 |
for c |
|
642 |
proof - |
|
643 |
have "chain_map n f c = chain_map n g c" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
644 |
using assms chain_map_eq singular_relcycle that by metis |
70095 | 645 |
then show ?thesis |
646 |
by simp |
|
647 |
qed |
|
648 |
with 2 show ?thesis |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
649 |
by (force simp: relative_homology_group_def carrier_FactGroup |
70095 | 650 |
right_coset_singular_relboundary hom_induced_chain_map_gen) |
651 |
qed |
|
652 |
qed |
|
653 |
with 2 show ?thesis |
|
654 |
by auto |
|
655 |
qed |
|
656 |
qed |
|
657 |
||
658 |
||
659 |
subsection\<open>Towards the Eilenberg-Steenrod axioms\<close> |
|
660 |
||
661 |
text\<open>First prove we get functors into abelian groups with the boundary map |
|
662 |
being a natural transformation between them, and prove Eilenberg-Steenrod |
|
663 |
axioms (we also prove additivity a bit later on if one counts that). \<close> |
|
664 |
(*1. Exact sequence from the inclusions and boundary map |
|
665 |
H_{p+1} X --(j')\<longlongrightarrow> H_{p+1}X (A) --(d')\<longlongrightarrow> H_p A --(i')\<longlongrightarrow> H_p X |
|
666 |
2. Dimension axiom: H_p X is trivial for one-point X and p =/= 0 |
|
667 |
3. Homotopy invariance of the induced map |
|
668 |
4. Excision: inclusion (X - U,A - U) --(i')\<longlongrightarrow> X (A) induces an isomorphism |
|
669 |
when cl U \<subseteq> int A*) |
|
670 |
||
671 |
||
672 |
lemma abelian_relative_homology_group [simp]: |
|
673 |
"comm_group(relative_homology_group p X S)" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
674 |
by (simp add: comm_group.abelian_FactGroup relative_homology_group_def subgroup_singular_relboundary_relcycle) |
70095 | 675 |
|
676 |
lemma abelian_homology_group: "comm_group(homology_group p X)" |
|
677 |
by simp |
|
678 |
||
679 |
||
680 |
lemma hom_induced_id_gen: |
|
681 |
assumes contf: "continuous_map X X f" and feq: "\<And>x. x \<in> topspace X \<Longrightarrow> f x = x" |
|
682 |
and c: "c \<in> carrier (relative_homology_group p X S)" |
|
683 |
shows "hom_induced p X S X S f c = c" |
|
684 |
proof - |
|
685 |
consider "p < 0" | n where "p = int n" |
|
686 |
by (metis int_nat_eq not_less) |
|
687 |
then show ?thesis |
|
688 |
proof cases |
|
689 |
case 1 |
|
690 |
with c show ?thesis |
|
691 |
by (simp add: hom_induced_trivial relative_homology_group_def) |
|
692 |
next |
|
693 |
case 2 |
|
694 |
have cm: "chain_map n f d = d" if "singular_relcycle n X S d" for d |
|
695 |
using that assms by (auto simp: chain_map_id_gen singular_relcycle) |
|
696 |
have "f ` (topspace X \<inter> S) \<subseteq> S" |
|
697 |
using feq by auto |
|
698 |
with 2 c show ?thesis |
|
699 |
by (auto simp: nontrivial_relative_homology_group carrier_FactGroup |
|
700 |
cm right_coset_singular_relboundary hom_induced_chain_map_gen assms) |
|
701 |
qed |
|
702 |
qed |
|
703 |
||
704 |
||
705 |
lemma hom_induced_id: |
|
706 |
"c \<in> carrier (relative_homology_group p X S) \<Longrightarrow> hom_induced p X S X S id c = c" |
|
707 |
by (rule hom_induced_id_gen) auto |
|
708 |
||
709 |
lemma hom_induced_compose: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
710 |
assumes "continuous_map X Y f" "f \<in> S \<rightarrow> T" "continuous_map Y Z g" "g \<in> T \<rightarrow> U" |
70095 | 711 |
shows "hom_induced p X S Z U (g \<circ> f) = hom_induced p Y T Z U g \<circ> hom_induced p X S Y T f" |
712 |
proof - |
|
713 |
consider (neg) "p < 0" | (int) n where "p = int n" |
|
714 |
by (metis int_nat_eq not_less) |
|
715 |
then show ?thesis |
|
716 |
proof cases |
|
717 |
case int |
|
718 |
have gf: "continuous_map X Z (g \<circ> f)" |
|
719 |
using assms continuous_map_compose by fastforce |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
720 |
have gfim: "(g \<circ> f) \<in> S \<rightarrow> U" |
70095 | 721 |
unfolding o_def using assms by blast |
722 |
have sr: "\<And>a. singular_relcycle n X S a \<Longrightarrow> singular_relcycle n Y T (chain_map n f a)" |
|
723 |
by (simp add: assms singular_relcycle_chain_map) |
|
724 |
show ?thesis |
|
725 |
proof |
|
726 |
fix c |
|
727 |
show "hom_induced p X S Z U (g \<circ> f) c = (hom_induced p Y T Z U g \<circ> hom_induced p X S Y T f) c" |
|
728 |
proof (cases "c \<in> carrier(relative_homology_group p X S)") |
|
729 |
case True |
|
730 |
with gfim show ?thesis |
|
731 |
unfolding int |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
732 |
by (auto simp: carrier_relative_homology_group gf gfim assms |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
733 |
sr chain_map_compose hom_induced_chain_map) |
70095 | 734 |
next |
735 |
case False |
|
736 |
then show ?thesis |
|
737 |
by (simp add: hom_induced_default hom_one [OF hom_induced_hom]) |
|
738 |
qed |
|
739 |
qed |
|
740 |
qed (force simp: hom_induced_trivial) |
|
741 |
qed |
|
742 |
||
743 |
lemma hom_induced_compose': |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
744 |
assumes "continuous_map X Y f" "f \<in> S \<rightarrow> T" "continuous_map Y Z g" "g \<in> T \<rightarrow> U" |
70095 | 745 |
shows "hom_induced p Y T Z U g (hom_induced p X S Y T f x) = hom_induced p X S Z U (g \<circ> f) x" |
746 |
using hom_induced_compose [OF assms] by simp |
|
747 |
||
748 |
lemma naturality_hom_induced: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
749 |
assumes "continuous_map X Y f" "f \<in> S \<rightarrow> T" |
70095 | 750 |
shows "hom_boundary q Y T \<circ> hom_induced q X S Y T f |
751 |
= hom_induced (q - 1) (subtopology X S) {} (subtopology Y T) {} f \<circ> hom_boundary q X S" |
|
752 |
proof (cases "q \<le> 0") |
|
753 |
case False |
|
754 |
then obtain p where p1: "p \<ge> Suc 0" and q: "q = int p" |
|
755 |
using zero_le_imp_eq_int by force |
|
756 |
show ?thesis |
|
757 |
proof |
|
758 |
fix c |
|
759 |
show "(hom_boundary q Y T \<circ> hom_induced q X S Y T f) c = |
|
760 |
(hom_induced (q - 1) (subtopology X S) {} (subtopology Y T) {} f \<circ> hom_boundary q X S) c" |
|
761 |
proof (cases "c \<in> carrier(relative_homology_group p X S)") |
|
762 |
case True |
|
763 |
then obtain a where ceq: "c = homologous_rel_set p X S a" and a: "singular_relcycle p X S a" |
|
764 |
by (force simp: carrier_relative_homology_group) |
|
765 |
then have sr: "singular_relcycle p Y T (chain_map p f a)" |
|
766 |
using assms singular_relcycle_chain_map by fastforce |
|
767 |
then have sb: "singular_relcycle (p - Suc 0) (subtopology X S) {} (chain_boundary p a)" |
|
768 |
by (metis One_nat_def a chain_boundary_boundary singular_chain_0 singular_relcycle) |
|
769 |
have p1_eq: "int p - 1 = int (p - Suc 0)" |
|
770 |
using p1 by auto |
|
771 |
have cbm: "(chain_boundary p (chain_map p f a)) |
|
772 |
= (chain_map (p - Suc 0) f (chain_boundary p a))" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
773 |
using a chain_boundary_chain_map singular_relcycle by metis |
70095 | 774 |
have contf: "continuous_map (subtopology X S) (subtopology Y T) f" |
775 |
using assms |
|
80175
200107cdd3ac
Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents:
80101
diff
changeset
|
776 |
by (auto simp: continuous_map_in_subtopology continuous_map_from_subtopology) |
70095 | 777 |
show ?thesis |
778 |
unfolding q using assms p1 a |
|
80175
200107cdd3ac
Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents:
80101
diff
changeset
|
779 |
by (simp add: cbm ceq contf hom_boundary_chain_boundary hom_induced_chain_map p1_eq sb sr |
200107cdd3ac
Some new simprules – and patches for proofs
paulson <lp15@cam.ac.uk>
parents:
80101
diff
changeset
|
780 |
del: of_nat_diff) |
70095 | 781 |
next |
782 |
case False |
|
783 |
with assms show ?thesis |
|
784 |
unfolding q o_def using assms |
|
785 |
apply (simp add: hom_induced_default hom_boundary_default) |
|
786 |
by (metis group_relative_homology_group hom_boundary hom_induced hom_one one_relative_homology_group) |
|
787 |
qed |
|
788 |
qed |
|
789 |
qed (force simp: hom_induced_trivial hom_boundary_trivial) |
|
790 |
||
791 |
||
792 |
||
793 |
lemma homology_exactness_axiom_1: |
|
794 |
"exact_seq ([homology_group (p-1) (subtopology X S), relative_homology_group p X S, homology_group p X], |
|
795 |
[hom_boundary p X S,hom_induced p X {} X S id])" |
|
796 |
proof - |
|
797 |
consider (neg) "p < 0" | (int) n where "p = int n" |
|
798 |
by (metis int_nat_eq not_less) |
|
799 |
then have "(hom_induced p X {} X S id) ` carrier (homology_group p X) |
|
800 |
= kernel (relative_homology_group p X S) (homology_group (p-1) (subtopology X S)) |
|
801 |
(hom_boundary p X S)" |
|
802 |
proof cases |
|
803 |
case neg |
|
804 |
then show ?thesis |
|
805 |
unfolding kernel_def singleton_group_def relative_homology_group_def |
|
806 |
by (auto simp: hom_induced_trivial hom_boundary_trivial) |
|
807 |
next |
|
808 |
case int |
|
809 |
have "hom_induced (int m) X {} X S id ` carrier (relative_homology_group (int m) X {}) |
|
810 |
= carrier (relative_homology_group (int m) X S) \<inter> |
|
811 |
{c. hom_boundary (int m) X S c = \<one>\<^bsub>relative_homology_group (int m - 1) (subtopology X S) {}\<^esub>}" for m |
|
812 |
proof (cases m) |
|
813 |
case 0 |
|
814 |
have "hom_induced 0 X {} X S id ` carrier (relative_homology_group 0 X {}) |
|
815 |
= carrier (relative_homology_group 0 X S)" (is "?lhs = ?rhs") |
|
816 |
proof |
|
817 |
show "?lhs \<subseteq> ?rhs" |
|
818 |
using hom_induced_hom [of 0 X "{}" X S id] |
|
819 |
by (simp add: hom_induced_hom hom_carrier) |
|
820 |
show "?rhs \<subseteq> ?lhs" |
|
821 |
apply (clarsimp simp add: image_iff carrier_relative_homology_group [of 0, simplified] singular_relcycle) |
|
822 |
apply (force simp: chain_map_id_gen chain_boundary_def singular_relcycle |
|
823 |
hom_induced_chain_map [of concl: 0, simplified]) |
|
824 |
done |
|
825 |
qed |
|
826 |
with 0 show ?thesis |
|
827 |
by (simp add: hom_boundary_trivial relative_homology_group_def [of "-1"] singleton_group_def) |
|
828 |
next |
|
829 |
case (Suc n) |
|
830 |
have "(hom_induced (int (Suc n)) X {} X S id \<circ> |
|
831 |
homologous_rel_set (Suc n) X {}) ` singular_relcycle_set (Suc n) X {} |
|
832 |
= homologous_rel_set (Suc n) X S ` |
|
833 |
(singular_relcycle_set (Suc n) X S \<inter> |
|
834 |
{c. hom_boundary (int (Suc n)) X S (homologous_rel_set (Suc n) X S c) |
|
835 |
= singular_relboundary_set n (subtopology X S) {}})" |
|
836 |
(is "?lhs = ?rhs") |
|
837 |
proof - |
|
838 |
have 1: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B \<longleftrightarrow> x \<in> C) \<Longrightarrow> f ` (A \<inter> B) = f ` (A \<inter> C)" for f A B C |
|
839 |
by blast |
|
840 |
have 2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> B \<and> f x = f y; \<And>x. x \<in> B \<Longrightarrow> \<exists>y. y \<in> A \<and> f x = f y\<rbrakk> |
|
841 |
\<Longrightarrow> f ` A = f ` B" for f A B |
|
842 |
by blast |
|
843 |
have "?lhs = homologous_rel_set (Suc n) X S ` singular_relcycle_set (Suc n) X {}" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
844 |
using hom_induced_chain_map chain_map_ident [of _ X] singular_relcycle |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
845 |
by (smt (verit, best) comp_apply continuous_map_id empty_iff funcsetI |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
846 |
image_cong mem_Collect_eq) |
70095 | 847 |
also have "\<dots> = homologous_rel_set (Suc n) X S ` |
848 |
(singular_relcycle_set (Suc n) X S \<inter> |
|
849 |
{c. singular_relboundary n (subtopology X S) {} (chain_boundary (Suc n) c)})" |
|
850 |
proof (rule 2) |
|
851 |
fix c |
|
852 |
assume "c \<in> singular_relcycle_set (Suc n) X {}" |
|
853 |
then show "\<exists>y. y \<in> singular_relcycle_set (Suc n) X S \<inter> |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
854 |
{c. singular_relboundary n (subtopology X S) {} (chain_boundary (Suc n) c)} \<and> |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
855 |
homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n) X S y" |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
856 |
using singular_cycle singular_relcycle |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
857 |
by (metis Int_Collect mem_Collect_eq singular_chain_0 |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
858 |
singular_relboundary_0) |
70095 | 859 |
next |
860 |
fix c |
|
861 |
assume c: "c \<in> singular_relcycle_set (Suc n) X S \<inter> |
|
862 |
{c. singular_relboundary n (subtopology X S) {} (chain_boundary (Suc n) c)}" |
|
863 |
then obtain d where d: "singular_chain (Suc n) (subtopology X S) d" |
|
864 |
"chain_boundary (Suc n) d = chain_boundary (Suc n) c" |
|
865 |
by (auto simp: singular_boundary) |
|
866 |
with c have "c - d \<in> singular_relcycle_set (Suc n) X {}" |
|
867 |
by (auto simp: singular_cycle chain_boundary_diff singular_chain_subtopology singular_relcycle singular_chain_diff) |
|
868 |
moreover have "homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n) X S (c - d)" |
|
869 |
proof (simp add: homologous_rel_set_eq) |
|
870 |
show "homologous_rel (Suc n) X S c (c - d)" |
|
871 |
using d by (simp add: homologous_rel_def singular_chain_imp_relboundary) |
|
872 |
qed |
|
873 |
ultimately show "\<exists>y. y \<in> singular_relcycle_set (Suc n) X {} \<and> |
|
874 |
homologous_rel_set (Suc n) X S c = homologous_rel_set (Suc n) X S y" |
|
875 |
by blast |
|
876 |
qed |
|
877 |
also have "\<dots> = ?rhs" |
|
878 |
by (rule 1) (simp add: hom_boundary_chain_boundary homologous_rel_set_eq_relboundary del: of_nat_Suc) |
|
879 |
finally show "?lhs = ?rhs" . |
|
880 |
qed |
|
881 |
with Suc show ?thesis |
|
882 |
unfolding carrier_relative_homology_group image_comp id_def by auto |
|
883 |
qed |
|
884 |
then show ?thesis |
|
885 |
by (auto simp: kernel_def int) |
|
886 |
qed |
|
887 |
then show ?thesis |
|
888 |
using hom_boundary_hom hom_induced_hom |
|
889 |
by (force simp: group_hom_def group_hom_axioms_def) |
|
890 |
qed |
|
891 |
||
892 |
||
893 |
lemma homology_exactness_axiom_2: |
|
894 |
"exact_seq ([homology_group (p-1) X, homology_group (p-1) (subtopology X S), relative_homology_group p X S], |
|
895 |
[hom_induced (p-1) (subtopology X S) {} X {} id, hom_boundary p X S])" |
|
896 |
proof - |
|
897 |
consider (neg) "p \<le> 0" | (int) n where "p = int (Suc n)" |
|
898 |
by (metis linear not0_implies_Suc of_nat_0 zero_le_imp_eq_int) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
899 |
then have "kernel (relative_homology_group (p-1) (subtopology X S) {}) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
900 |
(relative_homology_group (p-1) X {}) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
901 |
(hom_induced (p-1) (subtopology X S) {} X {} id) |
70095 | 902 |
= hom_boundary p X S ` carrier (relative_homology_group p X S)" |
903 |
proof cases |
|
904 |
case neg |
|
905 |
obtain x where "x \<in> carrier (relative_homology_group p X S)" |
|
906 |
using group_relative_homology_group group.is_monoid by blast |
|
907 |
with neg show ?thesis |
|
908 |
unfolding kernel_def singleton_group_def relative_homology_group_def |
|
909 |
by (force simp: hom_induced_trivial hom_boundary_trivial) |
|
910 |
next |
|
911 |
case int |
|
912 |
have "hom_boundary (int (Suc n)) X S ` carrier (relative_homology_group (int (Suc n)) X S) |
|
913 |
= carrier (relative_homology_group n (subtopology X S) {}) \<inter> |
|
914 |
{c. hom_induced n (subtopology X S) {} X {} id c = |
|
915 |
\<one>\<^bsub>relative_homology_group n X {}\<^esub>}" |
|
916 |
(is "?lhs = ?rhs") |
|
917 |
proof - |
|
918 |
have 1: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B \<longleftrightarrow> x \<in> C) \<Longrightarrow> f ` (A \<inter> B) = f ` (A \<inter> C)" for f A B C |
|
919 |
by blast |
|
920 |
have 2: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B \<longleftrightarrow> x \<in> f -` C) \<Longrightarrow> f ` (A \<inter> B) = f ` A \<inter> C" for f A B C |
|
921 |
by blast |
|
922 |
have "?lhs = homologous_rel_set n (subtopology X S) {} |
|
923 |
` (chain_boundary (Suc n) ` singular_relcycle_set (Suc n) X S)" |
|
924 |
unfolding carrier_relative_homology_group image_comp |
|
925 |
by (rule image_cong [OF refl]) (simp add: o_def hom_boundary_chain_boundary del: of_nat_Suc) |
|
926 |
also have "\<dots> = homologous_rel_set n (subtopology X S) {} ` |
|
927 |
(singular_relcycle_set n (subtopology X S) {} \<inter> singular_relboundary_set n X {})" |
|
928 |
by (force simp: singular_relcycle singular_boundary chain_boundary_boundary_alt) |
|
929 |
also have "\<dots> = ?rhs" |
|
930 |
unfolding carrier_relative_homology_group vimage_def |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
931 |
by (intro 2) (auto simp: hom_induced_chain_map chain_map_ident homologous_rel_set_eq_relboundary singular_relcycle) |
70095 | 932 |
finally show ?thesis . |
933 |
qed |
|
934 |
then show ?thesis |
|
935 |
by (auto simp: kernel_def int) |
|
936 |
qed |
|
937 |
then show ?thesis |
|
938 |
using hom_boundary_hom hom_induced_hom |
|
939 |
by (force simp: group_hom_def group_hom_axioms_def) |
|
940 |
qed |
|
941 |
||
942 |
||
943 |
lemma homology_exactness_axiom_3: |
|
944 |
"exact_seq ([relative_homology_group p X S, homology_group p X, homology_group p (subtopology X S)], |
|
945 |
[hom_induced p X {} X S id, hom_induced p (subtopology X S) {} X {} id])" |
|
946 |
proof (cases "p < 0") |
|
947 |
case True |
|
948 |
then show ?thesis |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
949 |
unfolding relative_homology_group_def |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
950 |
by (simp add: group_hom.kernel_to_trivial_group group_hom_axioms_def group_hom_def hom_induced_trivial) |
70095 | 951 |
next |
952 |
case False |
|
953 |
then obtain n where peq: "p = int n" |
|
954 |
by (metis int_ops(1) linorder_neqE_linordered_idom pos_int_cases) |
|
955 |
have "hom_induced n (subtopology X S) {} X {} id ` |
|
956 |
(homologous_rel_set n (subtopology X S) {} ` |
|
957 |
singular_relcycle_set n (subtopology X S) {}) |
|
958 |
= {c \<in> homologous_rel_set n X {} ` singular_relcycle_set n X {}. |
|
959 |
hom_induced n X {} X S id c = singular_relboundary_set n X S}" |
|
960 |
(is "?lhs = ?rhs") |
|
961 |
proof - |
|
962 |
have 2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> \<exists>y. y \<in> B \<and> f x = f y; \<And>x. x \<in> B \<Longrightarrow> \<exists>y. y \<in> A \<and> f x = f y\<rbrakk> |
|
963 |
\<Longrightarrow> f ` A = f ` B" for f A B |
|
964 |
by blast |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
965 |
have "\<And>f. singular_chain n (subtopology X S) f \<and> |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
966 |
singular_chain (n - Suc 0) trivial_topology (chain_boundary n f) \<Longrightarrow> |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
967 |
hom_induced (int n) (subtopology X S) {} X {} id (homologous_rel_set n (subtopology X S) {} f) = |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
968 |
homologous_rel_set n X {} f" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
969 |
by (auto simp: chain_map_ident hom_induced_chain_map singular_relcycle) |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
970 |
then have "?lhs = homologous_rel_set n X {} ` (singular_relcycle_set n (subtopology X S) {})" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
971 |
by (simp add: singular_relcycle image_comp) |
70095 | 972 |
also have "\<dots> = homologous_rel_set n X {} ` (singular_relcycle_set n X {} \<inter> singular_relboundary_set n X S)" |
973 |
proof (rule 2) |
|
974 |
fix c |
|
975 |
assume "c \<in> singular_relcycle_set n (subtopology X S) {}" |
|
976 |
then show "\<exists>y. y \<in> singular_relcycle_set n X {} \<inter> singular_relboundary_set n X S \<and> |
|
977 |
homologous_rel_set n X {} c = homologous_rel_set n X {} y" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
978 |
using singular_chain_imp_relboundary singular_relboundary_imp_chain |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
979 |
by (fastforce simp: singular_cycle) |
70095 | 980 |
next |
981 |
fix c |
|
982 |
assume "c \<in> singular_relcycle_set n X {} \<inter> singular_relboundary_set n X S" |
|
983 |
then obtain d e where c: "singular_relcycle n X {} c" "singular_relboundary n X S c" |
|
984 |
and d: "singular_chain n (subtopology X S) d" |
|
985 |
and e: "singular_chain (Suc n) X e" "chain_boundary (Suc n) e = c + d" |
|
986 |
using singular_relboundary_alt by blast |
|
987 |
then have "chain_boundary n (c + d) = 0" |
|
988 |
using chain_boundary_boundary_alt by fastforce |
|
989 |
then have "chain_boundary n c + chain_boundary n d = 0" |
|
990 |
by (metis chain_boundary_add) |
|
991 |
with c have "singular_relcycle n (subtopology X S) {} (- d)" |
|
992 |
by (metis (no_types) d eq_add_iff singular_cycle singular_relcycle_minus) |
|
993 |
moreover have "homologous_rel n X {} c (- d)" |
|
994 |
using c |
|
995 |
by (metis diff_minus_eq_add e homologous_rel_def singular_boundary) |
|
996 |
ultimately |
|
997 |
show "\<exists>y. y \<in> singular_relcycle_set n (subtopology X S) {} \<and> |
|
998 |
homologous_rel_set n X {} c = homologous_rel_set n X {} y" |
|
999 |
by (force simp: homologous_rel_set_eq) |
|
1000 |
qed |
|
1001 |
also have "\<dots> = homologous_rel_set n X {} ` |
|
1002 |
(singular_relcycle_set n X {} \<inter> homologous_rel_set n X {} -` {x. hom_induced n X {} X S id x = singular_relboundary_set n X S})" |
|
1003 |
by (rule 2) (auto simp: hom_induced_chain_map homologous_rel_set_eq_relboundary chain_map_ident [of _ X] singular_cycle cong: conj_cong) |
|
1004 |
also have "\<dots> = ?rhs" |
|
1005 |
by blast |
|
1006 |
finally show ?thesis . |
|
1007 |
qed |
|
1008 |
then have "kernel (relative_homology_group p X {}) (relative_homology_group p X S) (hom_induced p X {} X S id) |
|
1009 |
= hom_induced p (subtopology X S) {} X {} id ` carrier (relative_homology_group p (subtopology X S) {})" |
|
1010 |
by (simp add: kernel_def carrier_relative_homology_group peq) |
|
1011 |
then show ?thesis |
|
1012 |
by (simp add: not_less group_hom_def group_hom_axioms_def hom_induced_hom) |
|
1013 |
qed |
|
1014 |
||
1015 |
||
1016 |
lemma homology_dimension_axiom: |
|
1017 |
assumes X: "topspace X = {a}" and "p \<noteq> 0" |
|
1018 |
shows "trivial_group(homology_group p X)" |
|
1019 |
proof (cases "p < 0") |
|
1020 |
case True |
|
1021 |
then show ?thesis |
|
1022 |
by simp |
|
1023 |
next |
|
1024 |
case False |
|
1025 |
then obtain n where peq: "p = int n" "n > 0" |
|
1026 |
by (metis assms(2) neq0_conv nonneg_int_cases not_less of_nat_0) |
|
1027 |
have "homologous_rel_set n X {} ` singular_relcycle_set n X {} = {singular_relcycle_set n X {}}" |
|
1028 |
(is "?lhs = ?rhs") |
|
1029 |
proof |
|
1030 |
show "?lhs \<subseteq> ?rhs" |
|
1031 |
using peq assms |
|
1032 |
by (auto simp: image_subset_iff homologous_rel_set_eq_relboundary simp flip: singular_boundary_set_eq_cycle_singleton) |
|
1033 |
have "singular_relboundary n X {} 0" |
|
1034 |
by simp |
|
1035 |
with peq assms |
|
1036 |
show "?rhs \<subseteq> ?lhs" |
|
1037 |
by (auto simp: image_iff simp flip: homologous_rel_eq_relboundary singular_boundary_set_eq_cycle_singleton) |
|
1038 |
qed |
|
1039 |
with peq assms show ?thesis |
|
1040 |
unfolding trivial_group_def |
|
1041 |
by (simp add: carrier_relative_homology_group singular_boundary_set_eq_cycle_singleton [OF X]) |
|
1042 |
qed |
|
1043 |
||
1044 |
||
1045 |
proposition homology_homotopy_axiom: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1046 |
assumes "homotopic_with (\<lambda>h. h \<in> S \<rightarrow> T) X Y f g" |
70095 | 1047 |
shows "hom_induced p X S Y T f = hom_induced p X S Y T g" |
1048 |
proof (cases "p < 0") |
|
1049 |
case True |
|
1050 |
then show ?thesis |
|
1051 |
by (simp add: hom_induced_trivial) |
|
1052 |
next |
|
1053 |
case False |
|
1054 |
then obtain n where peq: "p = int n" |
|
1055 |
by (metis int_nat_eq not_le) |
|
1056 |
have cont: "continuous_map X Y f" "continuous_map X Y g" |
|
1057 |
using assms homotopic_with_imp_continuous_maps by blast+ |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1058 |
have im: "f \<in> (topspace X \<inter> S) \<rightarrow> T" "g \<in> (topspace X \<inter> S) \<rightarrow> T" |
70095 | 1059 |
using homotopic_with_imp_property assms by blast+ |
1060 |
show ?thesis |
|
1061 |
proof |
|
1062 |
fix c show "hom_induced p X S Y T f c = hom_induced p X S Y T g c" |
|
1063 |
proof (cases "c \<in> carrier(relative_homology_group p X S)") |
|
1064 |
case True |
|
1065 |
then obtain a where a: "c = homologous_rel_set n X S a" "singular_relcycle n X S a" |
|
1066 |
unfolding carrier_relative_homology_group peq by auto |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1067 |
with assms homotopic_imp_homologous_rel_chain_maps show ?thesis |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1068 |
by (force simp add: peq hom_induced_chain_map_gen cont im homologous_rel_set_eq) |
70095 | 1069 |
qed (simp add: hom_induced_default) |
1070 |
qed |
|
1071 |
qed |
|
1072 |
||
1073 |
proposition homology_excision_axiom: |
|
1074 |
assumes "X closure_of U \<subseteq> X interior_of T" "T \<subseteq> S" |
|
1075 |
shows |
|
1076 |
"hom_induced p (subtopology X (S - U)) (T - U) (subtopology X S) T id |
|
1077 |
\<in> iso (relative_homology_group p (subtopology X (S - U)) (T - U)) |
|
1078 |
(relative_homology_group p (subtopology X S) T)" |
|
1079 |
proof (cases "p < 0") |
|
1080 |
case True |
|
1081 |
then show ?thesis |
|
1082 |
unfolding iso_def bij_betw_def relative_homology_group_def by (simp add: hom_induced_trivial) |
|
1083 |
next |
|
1084 |
case False |
|
1085 |
then obtain n where peq: "p = int n" |
|
1086 |
by (metis int_nat_eq not_le) |
|
1087 |
have cont: "continuous_map (subtopology X (S - U)) (subtopology X S) id" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1088 |
by (meson Diff_subset continuous_map_from_subtopology_mono continuous_map_id) |
70095 | 1089 |
have TU: "topspace X \<inter> (S - U) \<inter> (T - U) \<subseteq> T" |
1090 |
by auto |
|
1091 |
show ?thesis |
|
1092 |
proof (simp add: iso_def peq carrier_relative_homology_group bij_betw_def hom_induced_hom, intro conjI) |
|
1093 |
show "inj_on (hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id) |
|
1094 |
(homologous_rel_set n (subtopology X (S - U)) (T - U) ` |
|
1095 |
singular_relcycle_set n (subtopology X (S - U)) (T - U))" |
|
1096 |
unfolding inj_on_def |
|
1097 |
proof (clarsimp simp add: homologous_rel_set_eq) |
|
1098 |
fix c d |
|
1099 |
assume c: "singular_relcycle n (subtopology X (S - U)) (T - U) c" |
|
1100 |
and d: "singular_relcycle n (subtopology X (S - U)) (T - U) d" |
|
1101 |
and hh: "hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id |
|
1102 |
(homologous_rel_set n (subtopology X (S - U)) (T - U) c) |
|
1103 |
= hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id |
|
1104 |
(homologous_rel_set n (subtopology X (S - U)) (T - U) d)" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1105 |
then obtain scc: "singular_chain n (subtopology X (S - U)) c" |
70095 | 1106 |
and scd: "singular_chain n (subtopology X (S - U)) d" |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1107 |
using singular_relcycle by metis |
70095 | 1108 |
have "singular_relboundary n (subtopology X (S - U)) (T - U) c" |
1109 |
if srb: "singular_relboundary n (subtopology X S) T c" |
|
1110 |
and src: "singular_relcycle n (subtopology X (S - U)) (T - U) c" for c |
|
1111 |
proof - |
|
1112 |
have [simp]: "(S - U) \<inter> (T - U) = T - U" "S \<inter> T = T" |
|
1113 |
using \<open>T \<subseteq> S\<close> by blast+ |
|
1114 |
have c: "singular_chain n (subtopology X (S - U)) c" |
|
1115 |
"singular_chain (n - Suc 0) (subtopology X (T - U)) (chain_boundary n c)" |
|
1116 |
using that by (auto simp: singular_relcycle_def mod_subset_def subtopology_subtopology) |
|
1117 |
obtain d e where d: "singular_chain (Suc n) (subtopology X S) d" |
|
1118 |
and e: "singular_chain n (subtopology X T) e" |
|
1119 |
and dce: "chain_boundary (Suc n) d = c + e" |
|
1120 |
using srb by (auto simp: singular_relboundary_alt subtopology_subtopology) |
|
1121 |
obtain m f g where f: "singular_chain (Suc n) (subtopology X (S - U)) f" |
|
1122 |
and g: "singular_chain (Suc n) (subtopology X T) g" |
|
1123 |
and dfg: "(singular_subdivision (Suc n) ^^ m) d = f + g" |
|
1124 |
using excised_chain_exists [OF assms d] . |
|
1125 |
obtain h where |
|
1126 |
h0: "\<And>p. h p 0 = (0 :: 'a chain)" |
|
1127 |
and hdiff: "\<And>p c1 c2. h p (c1-c2) = h p c1 - h p c2" |
|
1128 |
and hSuc: "\<And>p X c. singular_chain p X c \<Longrightarrow> singular_chain (Suc p) X (h p c)" |
|
1129 |
and hchain: "\<And>p X c. singular_chain p X c |
|
1130 |
\<Longrightarrow> chain_boundary (Suc p) (h p c) + h (p - Suc 0) (chain_boundary p c) |
|
1131 |
= (singular_subdivision p ^^ m) c - c" |
|
1132 |
using chain_homotopic_iterated_singular_subdivision by blast |
|
1133 |
have hadd: "\<And>p c1 c2. h p (c1 + c2) = h p c1 + h p c2" |
|
1134 |
by (metis add_diff_cancel diff_add_cancel hdiff) |
|
1135 |
define c1 where "c1 \<equiv> f - h n c" |
|
1136 |
define c2 where "c2 \<equiv> chain_boundary (Suc n) (h n e) - (chain_boundary (Suc n) g - e)" |
|
1137 |
show ?thesis |
|
1138 |
unfolding singular_relboundary_alt |
|
1139 |
proof (intro exI conjI) |
|
1140 |
show c1: "singular_chain (Suc n) (subtopology X (S - U)) c1" |
|
1141 |
by (simp add: \<open>singular_chain n (subtopology X (S - U)) c\<close> c1_def f hSuc singular_chain_diff) |
|
1142 |
have "chain_boundary (Suc n) (chain_boundary (Suc (Suc n)) (h (Suc n) d) + h n (c+e)) |
|
1143 |
= chain_boundary (Suc n) (f + g - d)" |
|
1144 |
using hchain [OF d] by (simp add: dce dfg) |
|
1145 |
then have "chain_boundary (Suc n) (h n (c + e)) |
|
1146 |
= chain_boundary (Suc n) f + chain_boundary (Suc n) g - (c + e)" |
|
1147 |
using chain_boundary_boundary_alt [of "Suc n" "subtopology X S"] |
|
1148 |
by (simp add: chain_boundary_add chain_boundary_diff d hSuc dce) |
|
1149 |
then have "chain_boundary (Suc n) (h n c) + chain_boundary (Suc n) (h n e) |
|
1150 |
= chain_boundary (Suc n) f + chain_boundary (Suc n) g - (c + e)" |
|
1151 |
by (simp add: chain_boundary_add hadd) |
|
1152 |
then have *: "chain_boundary (Suc n) (f - h n c) = c + (chain_boundary (Suc n) (h n e) - (chain_boundary (Suc n) g - e))" |
|
1153 |
by (simp add: algebra_simps chain_boundary_diff) |
|
1154 |
then show "chain_boundary (Suc n) c1 = c + c2" |
|
1155 |
unfolding c1_def c2_def |
|
1156 |
by (simp add: algebra_simps chain_boundary_diff) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1157 |
obtain "singular_chain n (subtopology X (S - U)) c2" "singular_chain n (subtopology X T) c2" |
70095 | 1158 |
using singular_chain_diff c c1 * |
1159 |
unfolding c1_def c2_def |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1160 |
by (metis add_diff_cancel_left' e g hSuc singular_chain_boundary_alt) |
70095 | 1161 |
then show "singular_chain n (subtopology (subtopology X (S - U)) (T - U)) c2" |
1162 |
by (fastforce simp add: singular_chain_subtopology) |
|
1163 |
qed |
|
1164 |
qed |
|
1165 |
then have "singular_relboundary n (subtopology X S) T (c - d) \<Longrightarrow> |
|
1166 |
singular_relboundary n (subtopology X (S - U)) (T - U) (c - d)" |
|
1167 |
using c d singular_relcycle_diff by metis |
|
1168 |
with hh show "homologous_rel n (subtopology X (S - U)) (T - U) c d" |
|
1169 |
apply (simp add: hom_induced_chain_map cont c d chain_map_ident [OF scc] chain_map_ident [OF scd]) |
|
1170 |
using homologous_rel_set_eq homologous_rel_def by metis |
|
1171 |
qed |
|
1172 |
next |
|
1173 |
have h: "homologous_rel_set n (subtopology X S) T a |
|
1174 |
\<in> (\<lambda>x. homologous_rel_set n (subtopology X S) T (chain_map n id x)) ` |
|
1175 |
singular_relcycle_set n (subtopology X (S - U)) (T - U)" |
|
1176 |
if a: "singular_relcycle n (subtopology X S) T a" for a |
|
1177 |
proof - |
|
1178 |
obtain c' where c': "singular_relcycle n (subtopology X (S - U)) (T - U) c'" |
|
1179 |
"homologous_rel n (subtopology X S) T a c'" |
|
1180 |
using a by (blast intro: excised_relcycle_exists [OF assms]) |
|
1181 |
then have scc': "singular_chain n (subtopology X S) c'" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1182 |
using homologous_rel_singular_chain that |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1183 |
by (force simp: singular_relcycle) |
70095 | 1184 |
then show ?thesis |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1185 |
using scc' chain_map_ident [of _ "subtopology X S"] c' homologous_rel_set_eq |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1186 |
by fastforce |
70095 | 1187 |
qed |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1188 |
have "(\<lambda>x. homologous_rel_set n (subtopology X S) T (chain_map n id x)) ` |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1189 |
singular_relcycle_set n (subtopology X (S - U)) (T - U) = |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1190 |
homologous_rel_set n (subtopology X S) T ` |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1191 |
singular_relcycle_set n (subtopology X S) T" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1192 |
by (force simp: cont h singular_relcycle_chain_map) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1193 |
then |
70095 | 1194 |
show "hom_induced n (subtopology X (S - U)) (T - U) (subtopology X S) T id ` |
1195 |
homologous_rel_set n (subtopology X (S - U)) (T - U) ` |
|
1196 |
singular_relcycle_set n (subtopology X (S - U)) (T - U) |
|
1197 |
= homologous_rel_set n (subtopology X S) T ` singular_relcycle_set n (subtopology X S) T" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1198 |
by (simp add: image_comp o_def hom_induced_chain_map_gen cont TU |
70095 | 1199 |
cong: image_cong_simp) |
1200 |
qed |
|
1201 |
qed |
|
1202 |
||
1203 |
||
1204 |
subsection\<open>Additivity axiom\<close> |
|
1205 |
||
1206 |
text\<open>Not in the original Eilenberg-Steenrod list but usually included nowadays, |
|
1207 |
following Milnor's "On Axiomatic Homology Theory".\<close> |
|
1208 |
||
1209 |
lemma iso_chain_group_sum: |
|
1210 |
assumes disj: "pairwise disjnt \<U>" and UU: "\<Union>\<U> = topspace X" |
|
1211 |
and subs: "\<And>C T. \<lbrakk>compactin X C; path_connectedin X C; T \<in> \<U>; ~ disjnt C T\<rbrakk> \<Longrightarrow> C \<subseteq> T" |
|
1212 |
shows "(\<lambda>f. sum' f \<U>) \<in> iso (sum_group \<U> (\<lambda>S. chain_group p (subtopology X S))) (chain_group p X)" |
|
1213 |
proof - |
|
1214 |
have pw: "pairwise (\<lambda>i j. disjnt (singular_simplex_set p (subtopology X i)) |
|
1215 |
(singular_simplex_set p (subtopology X j))) \<U>" |
|
1216 |
proof |
|
1217 |
fix S T |
|
1218 |
assume "S \<in> \<U>" "T \<in> \<U>" "S \<noteq> T" |
|
1219 |
then show "disjnt (singular_simplex_set p (subtopology X S)) |
|
1220 |
(singular_simplex_set p (subtopology X T))" |
|
1221 |
using nonempty_standard_simplex [of p] disj |
|
1222 |
by (fastforce simp: pairwise_def disjnt_def singular_simplex_subtopology image_subset_iff) |
|
1223 |
qed |
|
1224 |
have "\<exists>S\<in>\<U>. singular_simplex p (subtopology X S) f" |
|
1225 |
if f: "singular_simplex p X f" for f |
|
1226 |
proof - |
|
1227 |
obtain x where x: "x \<in> topspace X" "x \<in> f ` standard_simplex p" |
|
1228 |
using f nonempty_standard_simplex [of p] continuous_map_image_subset_topspace |
|
1229 |
unfolding singular_simplex_def by fastforce |
|
1230 |
then obtain S where "S \<in> \<U>" "x \<in> S" |
|
1231 |
using UU by auto |
|
1232 |
have "f ` standard_simplex p \<subseteq> S" |
|
1233 |
proof (rule subs) |
|
1234 |
have cont: "continuous_map (subtopology (powertop_real UNIV) |
|
1235 |
(standard_simplex p)) X f" |
|
1236 |
using f singular_simplex_def by auto |
|
1237 |
show "compactin X (f ` standard_simplex p)" |
|
1238 |
by (simp add: compactin_subtopology compactin_standard_simplex image_compactin [OF _ cont]) |
|
1239 |
show "path_connectedin X (f ` standard_simplex p)" |
|
1240 |
by (simp add: path_connectedin_subtopology path_connectedin_standard_simplex path_connectedin_continuous_map_image [OF cont]) |
|
1241 |
have "standard_simplex p \<noteq> {}" |
|
1242 |
by (simp add: nonempty_standard_simplex) |
|
1243 |
then |
|
1244 |
show "\<not> disjnt (f ` standard_simplex p) S" |
|
1245 |
using x \<open>x \<in> S\<close> by (auto simp: disjnt_def) |
|
1246 |
qed (auto simp: \<open>S \<in> \<U>\<close>) |
|
1247 |
then show ?thesis |
|
1248 |
by (meson \<open>S \<in> \<U>\<close> singular_simplex_subtopology that) |
|
1249 |
qed |
|
1250 |
then have "(\<Union>i\<in>\<U>. singular_simplex_set p (subtopology X i)) = singular_simplex_set p X" |
|
1251 |
by (auto simp: singular_simplex_subtopology) |
|
1252 |
then show ?thesis |
|
1253 |
using iso_free_Abelian_group_sum [OF pw] by (simp add: chain_group_def) |
|
1254 |
qed |
|
1255 |
||
1256 |
lemma relcycle_group_0_eq_chain_group: "relcycle_group 0 X {} = chain_group 0 X" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1257 |
proof (rule monoid.equality) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1258 |
show "carrier (relcycle_group 0 X {}) = carrier (chain_group 0 X)" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1259 |
by (simp add: Collect_mono chain_boundary_def singular_cycle subset_antisym) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1260 |
qed (simp_all add: relcycle_group_def chain_group_def) |
70095 | 1261 |
|
1262 |
proposition iso_cycle_group_sum: |
|
1263 |
assumes disj: "pairwise disjnt \<U>" and UU: "\<Union>\<U> = topspace X" |
|
1264 |
and subs: "\<And>C T. \<lbrakk>compactin X C; path_connectedin X C; T \<in> \<U>; \<not> disjnt C T\<rbrakk> \<Longrightarrow> C \<subseteq> T" |
|
1265 |
shows "(\<lambda>f. sum' f \<U>) \<in> iso (sum_group \<U> (\<lambda>T. relcycle_group p (subtopology X T) {})) |
|
1266 |
(relcycle_group p X {})" |
|
1267 |
proof (cases "p = 0") |
|
1268 |
case True |
|
1269 |
then show ?thesis |
|
1270 |
by (simp add: relcycle_group_0_eq_chain_group iso_chain_group_sum [OF assms]) |
|
1271 |
next |
|
1272 |
case False |
|
1273 |
let ?SG = "(sum_group \<U> (\<lambda>T. chain_group p (subtopology X T)))" |
|
1274 |
let ?PI = "(\<Pi>\<^sub>E T\<in>\<U>. singular_relcycle_set p (subtopology X T) {})" |
|
1275 |
have "(\<lambda>f. sum' f \<U>) \<in> Group.iso (subgroup_generated ?SG (carrier ?SG \<inter> ?PI)) |
|
1276 |
(subgroup_generated (chain_group p X) (singular_relcycle_set p X {}))" |
|
1277 |
proof (rule group_hom.iso_between_subgroups) |
|
1278 |
have iso: "(\<lambda>f. sum' f \<U>) \<in> Group.iso ?SG (chain_group p X)" |
|
1279 |
by (auto simp: assms iso_chain_group_sum) |
|
1280 |
then show "group_hom ?SG (chain_group p X) (\<lambda>f. sum' f \<U>)" |
|
1281 |
by (auto simp: iso_imp_homomorphism group_hom_def group_hom_axioms_def) |
|
1282 |
have B: "sum' f \<U> \<in> singular_relcycle_set p X {} \<longleftrightarrow> f \<in> (carrier ?SG \<inter> ?PI)" |
|
1283 |
if "f \<in> (carrier ?SG)" for f |
|
1284 |
proof - |
|
1285 |
have f: "\<And>S. S \<in> \<U> \<longrightarrow> singular_chain p (subtopology X S) (f S)" |
|
1286 |
"f \<in> extensional \<U>" "finite {i \<in> \<U>. f i \<noteq> 0}" |
|
1287 |
using that by (auto simp: carrier_sum_group PiE_def Pi_def) |
|
1288 |
then have rfin: "finite {S \<in> \<U>. restrict (chain_boundary p \<circ> f) \<U> S \<noteq> 0}" |
|
1289 |
by (auto elim: rev_finite_subset) |
|
1290 |
have "chain_boundary p ((\<Sum>x | x \<in> \<U> \<and> f x \<noteq> 0. f x)) = 0 |
|
1291 |
\<longleftrightarrow> (\<forall>S \<in> \<U>. chain_boundary p (f S) = 0)" (is "?cb = 0 \<longleftrightarrow> ?rhs") |
|
1292 |
proof |
|
1293 |
assume "?cb = 0" |
|
1294 |
moreover have "?cb = sum' (\<lambda>S. chain_boundary p (f S)) \<U>" |
|
1295 |
unfolding sum.G_def using rfin f |
|
1296 |
by (force simp: chain_boundary_sum intro: sum.mono_neutral_right cong: conj_cong) |
|
1297 |
ultimately have eq0: "sum' (\<lambda>S. chain_boundary p (f S)) \<U> = 0" |
|
1298 |
by simp |
|
1299 |
have "(\<lambda>f. sum' f \<U>) \<in> hom (sum_group \<U> (\<lambda>S. chain_group (p - Suc 0) (subtopology X S))) |
|
1300 |
(chain_group (p - Suc 0) X)" |
|
1301 |
and inj: "inj_on (\<lambda>f. sum' f \<U>) (carrier (sum_group \<U> (\<lambda>S. chain_group (p - Suc 0) (subtopology X S))))" |
|
1302 |
using iso_chain_group_sum [OF assms, of "p-1"] by (auto simp: iso_def bij_betw_def) |
|
1303 |
then have eq: "\<lbrakk>f \<in> (\<Pi>\<^sub>E i\<in>\<U>. singular_chain_set (p - Suc 0) (subtopology X i)); |
|
1304 |
finite {S \<in> \<U>. f S \<noteq> 0}; sum' f \<U> = 0; S \<in> \<U>\<rbrakk> \<Longrightarrow> f S = 0" for f S |
|
1305 |
apply (simp add: group_hom_def group_hom_axioms_def group_hom.inj_on_one_iff [of _ "chain_group (p-1) X"]) |
|
1306 |
apply (auto simp: carrier_sum_group fun_eq_iff that) |
|
1307 |
done |
|
1308 |
show ?rhs |
|
1309 |
proof clarify |
|
1310 |
fix S assume "S \<in> \<U>" |
|
1311 |
then show "chain_boundary p (f S) = 0" |
|
1312 |
using eq [of "restrict (chain_boundary p \<circ> f) \<U>" S] rfin f eq0 |
|
1313 |
by (simp add: singular_chain_boundary cong: conj_cong) |
|
1314 |
qed |
|
1315 |
next |
|
1316 |
assume ?rhs |
|
1317 |
then show "?cb = 0" |
|
1318 |
by (force simp: chain_boundary_sum intro: sum.mono_neutral_right) |
|
1319 |
qed |
|
1320 |
moreover |
|
1321 |
have "(\<And>S. S \<in> \<U> \<longrightarrow> singular_chain p (subtopology X S) (f S)) |
|
1322 |
\<Longrightarrow> singular_chain p X (\<Sum>x | x \<in> \<U> \<and> f x \<noteq> 0. f x)" |
|
1323 |
by (metis (no_types, lifting) mem_Collect_eq singular_chain_subtopology singular_chain_sum) |
|
1324 |
ultimately show ?thesis |
|
1325 |
using f by (auto simp: carrier_sum_group sum.G_def singular_cycle PiE_iff) |
|
1326 |
qed |
|
1327 |
have "singular_relcycle_set p X {} \<subseteq> carrier (chain_group p X)" |
|
1328 |
using subgroup.subset subgroup_singular_relcycle by blast |
|
1329 |
then show "(\<lambda>f. sum' f \<U>) ` (carrier ?SG \<inter> ?PI) = singular_relcycle_set p X {}" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1330 |
using iso B unfolding Group.iso_def |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1331 |
by (smt (verit, del_insts) Int_iff bij_betw_def image_iff mem_Collect_eq subset_antisym subset_iff) |
70095 | 1332 |
qed (auto simp: assms iso_chain_group_sum) |
1333 |
then show ?thesis |
|
1334 |
by (simp add: relcycle_group_def sum_group_subgroup_generated subgroup_singular_relcycle) |
|
1335 |
qed |
|
1336 |
||
1337 |
||
1338 |
proposition homology_additivity_axiom_gen: |
|
1339 |
assumes disj: "pairwise disjnt \<U>" and UU: "\<Union>\<U> = topspace X" |
|
1340 |
and subs: "\<And>C T. \<lbrakk>compactin X C; path_connectedin X C; T \<in> \<U>; \<not> disjnt C T\<rbrakk> \<Longrightarrow> C \<subseteq> T" |
|
1341 |
shows "(\<lambda>x. gfinprod (homology_group p X) |
|
1342 |
(\<lambda>V. hom_induced p (subtopology X V) {} X {} id (x V)) \<U>) |
|
1343 |
\<in> iso (sum_group \<U> (\<lambda>S. homology_group p (subtopology X S))) (homology_group p X)" |
|
1344 |
(is "?h \<in> iso ?SG ?HG") |
|
1345 |
proof (cases "p < 0") |
|
1346 |
case True |
|
1347 |
then have [simp]: "gfinprod (singleton_group undefined) (\<lambda>v. undefined) \<U> = undefined" |
|
1348 |
by (metis Pi_I carrier_singleton_group comm_group_def comm_monoid.gfinprod_closed singletonD singleton_abelian_group) |
|
1349 |
show ?thesis |
|
1350 |
using True |
|
1351 |
apply (simp add: iso_def relative_homology_group_def hom_induced_trivial carrier_sum_group) |
|
1352 |
apply (auto simp: singleton_group_def bij_betw_def inj_on_def fun_eq_iff) |
|
1353 |
done |
|
1354 |
next |
|
1355 |
case False |
|
1356 |
then obtain n where peq: "p = int n" |
|
1357 |
by (metis int_ops(1) linorder_neqE_linordered_idom pos_int_cases) |
|
1358 |
interpret comm_group "homology_group p X" |
|
1359 |
by (rule abelian_homology_group) |
|
1360 |
show ?thesis |
|
1361 |
proof (simp add: iso_def bij_betw_def, intro conjI) |
|
1362 |
show "?h \<in> hom ?SG ?HG" |
|
1363 |
by (rule hom_group_sum) (simp_all add: hom_induced_hom) |
|
1364 |
then interpret group_hom ?SG ?HG ?h |
|
1365 |
by (simp add: group_hom_def group_hom_axioms_def) |
|
1366 |
have carrSG: "carrier ?SG |
|
1367 |
= (\<lambda>x. \<lambda>S\<in>\<U>. homologous_rel_set n (subtopology X S) {} (x S)) |
|
1368 |
` (carrier (sum_group \<U> (\<lambda>S. relcycle_group n (subtopology X S) {})))" (is "?lhs = ?rhs") |
|
1369 |
proof |
|
1370 |
show "?lhs \<subseteq> ?rhs" |
|
1371 |
proof (clarsimp simp: carrier_sum_group carrier_relative_homology_group peq) |
|
1372 |
fix z |
|
1373 |
assume z: "z \<in> (\<Pi>\<^sub>E S\<in>\<U>. homologous_rel_set n (subtopology X S) {} ` singular_relcycle_set n (subtopology X S) {})" |
|
1374 |
and fin: "finite {S \<in> \<U>. z S \<noteq> singular_relboundary_set n (subtopology X S) {}}" |
|
1375 |
then obtain c where c: "\<forall>S\<in>\<U>. singular_relcycle n (subtopology X S) {} (c S) |
|
1376 |
\<and> z S = homologous_rel_set n (subtopology X S) {} (c S)" |
|
1377 |
by (simp add: PiE_def Pi_def image_def) metis |
|
1378 |
let ?f = "\<lambda>S\<in>\<U>. if singular_relboundary n (subtopology X S) {} (c S) then 0 else c S" |
|
1379 |
have "z = (\<lambda>S\<in>\<U>. homologous_rel_set n (subtopology X S) {} (?f S))" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1380 |
by (smt (verit) PiE_restrict c homologous_rel_eq_relboundary restrict_apply restrict_ext singular_relboundary_0 z) |
70095 | 1381 |
moreover have "?f \<in> (\<Pi>\<^sub>E i\<in>\<U>. singular_relcycle_set n (subtopology X i) {})" |
1382 |
by (simp add: c fun_eq_iff PiE_arb [OF z]) |
|
1383 |
moreover have "finite {i \<in> \<U>. ?f i \<noteq> 0}" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1384 |
using z c by (intro finite_subset [OF _ fin]) auto |
70095 | 1385 |
ultimately |
1386 |
show "z \<in> (\<lambda>x. \<lambda>S\<in>\<U>. homologous_rel_set n (subtopology X S) {} (x S)) ` |
|
1387 |
{x \<in> \<Pi>\<^sub>E i\<in>\<U>. singular_relcycle_set n (subtopology X i) {}. finite {i \<in> \<U>. x i \<noteq> 0}}" |
|
1388 |
by blast |
|
1389 |
qed |
|
1390 |
show "?rhs \<subseteq> ?lhs" |
|
1391 |
by (force simp: peq carrier_sum_group carrier_relative_homology_group homologous_rel_set_eq_relboundary |
|
1392 |
elim: rev_finite_subset) |
|
1393 |
qed |
|
1394 |
have gf: "gfinprod (homology_group p X) |
|
1395 |
(\<lambda>V. hom_induced n (subtopology X V) {} X {} id |
|
1396 |
((\<lambda>S\<in>\<U>. homologous_rel_set n (subtopology X S) {} (z S)) V)) \<U> |
|
1397 |
= homologous_rel_set n X {} (sum' z \<U>)" (is "?lhs = ?rhs") |
|
1398 |
if z: "z \<in> carrier (sum_group \<U> (\<lambda>S. relcycle_group n (subtopology X S) {}))" for z |
|
1399 |
proof - |
|
1400 |
have hom_pi: "(\<lambda>S. homologous_rel_set n X {} (z S)) \<in> \<U> \<rightarrow> carrier (homology_group p X)" |
|
1401 |
using z |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1402 |
by (intro Pi_I) (force simp: peq carrier_sum_group carrier_relative_homology_group singular_chain_subtopology singular_cycle) |
70095 | 1403 |
have fin: "finite {S \<in> \<U>. z S \<noteq> 0}" |
1404 |
using that by (force simp: carrier_sum_group) |
|
1405 |
have "?lhs = gfinprod (homology_group p X) (\<lambda>S. homologous_rel_set n X {} (z S)) \<U>" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1406 |
proof (rule gfinprod_cong [OF refl Pi_I]) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1407 |
fix i |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1408 |
show "i \<in> \<U> =simp=> hom_induced (int n) (subtopology X i) {} X {} id ((\<lambda>S\<in>\<U>. homologous_rel_set n (subtopology X S) {} (z S)) i) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1409 |
= homologous_rel_set n X {} (z i)" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1410 |
using that |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1411 |
by (auto simp: peq simp_implies_def carrier_sum_group PiE_def Pi_def chain_map_ident singular_cycle hom_induced_chain_map) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1412 |
qed (simp add: hom_induced_carrier peq) |
70095 | 1413 |
also have "\<dots> = gfinprod (homology_group p X) |
1414 |
(\<lambda>S. homologous_rel_set n X {} (z S)) {S \<in> \<U>. z S \<noteq> 0}" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1415 |
proof - |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1416 |
have "homologous_rel_set n X {} 0 = singular_relboundary_set n X {}" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1417 |
by (metis homologous_rel_eq_relboundary singular_relboundary_0) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1418 |
with hom_pi peq show ?thesis |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1419 |
by (intro gfinprod_mono_neutral_cong_right) auto |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1420 |
qed |
70095 | 1421 |
also have "\<dots> = ?rhs" |
1422 |
proof - |
|
1423 |
have "gfinprod (homology_group p X) (\<lambda>S. homologous_rel_set n X {} (z S)) \<F> |
|
1424 |
= homologous_rel_set n X {} (sum z \<F>)" |
|
1425 |
if "finite \<F>" "\<F> \<subseteq> {S \<in> \<U>. z S \<noteq> 0}" for \<F> |
|
1426 |
using that |
|
1427 |
proof (induction \<F>) |
|
1428 |
case empty |
|
1429 |
have "\<one>\<^bsub>homology_group p X\<^esub> = homologous_rel_set n X {} 0" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1430 |
by (metis homologous_rel_eq_relboundary one_relative_homology_group peq singular_relboundary_0) |
70095 | 1431 |
then show ?case |
1432 |
by simp |
|
1433 |
next |
|
1434 |
case (insert S \<F>) |
|
1435 |
with z have pi: "(\<lambda>S. homologous_rel_set n X {} (z S)) \<in> \<F> \<rightarrow> carrier (homology_group p X)" |
|
1436 |
"homologous_rel_set n X {} (z S) \<in> carrier (homology_group p X)" |
|
1437 |
by (force simp: peq carrier_sum_group carrier_relative_homology_group singular_chain_subtopology singular_cycle)+ |
|
1438 |
have hom: "homologous_rel_set n X {} (z S) \<in> carrier (homology_group p X)" |
|
1439 |
using insert z |
|
1440 |
by (force simp: peq carrier_sum_group carrier_relative_homology_group singular_chain_subtopology singular_cycle) |
|
1441 |
show ?case |
|
1442 |
using insert z |
|
1443 |
proof (simp add: pi) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1444 |
have "\<And>x. homologous_rel n X {} (z S + sum z \<F>) x |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1445 |
\<Longrightarrow> \<exists>u v. homologous_rel n X {} (z S) u \<and> homologous_rel n X {} (sum z \<F>) v \<and> x = u + v" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1446 |
by (metis (no_types, lifting) diff_add_cancel diff_diff_eq2 homologous_rel_def homologous_rel_refl) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1447 |
with insert z |
70095 | 1448 |
show "homologous_rel_set n X {} (z S) \<otimes>\<^bsub>homology_group p X\<^esub> homologous_rel_set n X {} (sum z \<F>) |
1449 |
= homologous_rel_set n X {} (z S + sum z \<F>)" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1450 |
using insert z by (auto simp: peq homologous_rel_add mult_relative_homology_group) |
70095 | 1451 |
qed |
1452 |
qed |
|
1453 |
with fin show ?thesis |
|
1454 |
by (simp add: sum.G_def) |
|
1455 |
qed |
|
1456 |
finally show ?thesis . |
|
1457 |
qed |
|
1458 |
show "inj_on ?h (carrier ?SG)" |
|
1459 |
proof (clarsimp simp add: inj_on_one_iff) |
|
1460 |
fix x |
|
1461 |
assume x: "x \<in> carrier (sum_group \<U> (\<lambda>S. homology_group p (subtopology X S)))" |
|
1462 |
and 1: "gfinprod (homology_group p X) (\<lambda>V. hom_induced p (subtopology X V) {} X {} id (x V)) \<U> |
|
1463 |
= \<one>\<^bsub>homology_group p X\<^esub>" |
|
1464 |
have feq: "(\<lambda>S\<in>\<U>. homologous_rel_set n (subtopology X S) {} (z S)) |
|
1465 |
= (\<lambda>S\<in>\<U>. \<one>\<^bsub>homology_group p (subtopology X S)\<^esub>)" |
|
1466 |
if z: "z \<in> carrier (sum_group \<U> (\<lambda>S. relcycle_group n (subtopology X S) {}))" |
|
1467 |
and eq: "homologous_rel_set n X {} (sum' z \<U>) = \<one>\<^bsub>homology_group p X\<^esub>" for z |
|
1468 |
proof - |
|
1469 |
have "z \<in> (\<Pi>\<^sub>E S\<in>\<U>. singular_relcycle_set n (subtopology X S) {})" "finite {S \<in> \<U>. z S \<noteq> 0}" |
|
1470 |
using z by (auto simp: carrier_sum_group) |
|
1471 |
have "singular_relboundary n X {} (sum' z \<U>)" |
|
1472 |
using eq singular_chain_imp_relboundary by (auto simp: relative_homology_group_def peq) |
|
1473 |
then obtain d where scd: "singular_chain (Suc n) X d" and cbd: "chain_boundary (Suc n) d = sum' z \<U>" |
|
1474 |
by (auto simp: singular_boundary) |
|
1475 |
have *: "\<exists>d. singular_chain (Suc n) (subtopology X S) d \<and> chain_boundary (Suc n) d = z S" |
|
1476 |
if "S \<in> \<U>" for S |
|
1477 |
proof - |
|
1478 |
have inj': "inj_on (\<lambda>f. sum' f \<U>) {x \<in> \<Pi>\<^sub>E S\<in>\<U>. singular_chain_set (Suc n) (subtopology X S). finite {S \<in> \<U>. x S \<noteq> 0}}" |
|
1479 |
using iso_chain_group_sum [OF assms, of "Suc n"] |
|
1480 |
by (simp add: iso_iff_mon_epi mon_def carrier_sum_group) |
|
1481 |
obtain w where w: "w \<in> (\<Pi>\<^sub>E S\<in>\<U>. singular_chain_set (Suc n) (subtopology X S))" |
|
1482 |
and finw: "finite {S \<in> \<U>. w S \<noteq> 0}" |
|
1483 |
and deq: "d = sum' w \<U>" |
|
1484 |
using iso_chain_group_sum [OF assms, of "Suc n"] scd |
|
1485 |
by (auto simp: iso_iff_mon_epi epi_def carrier_sum_group set_eq_iff) |
|
1486 |
with \<open>S \<in> \<U>\<close> have scwS: "singular_chain (Suc n) (subtopology X S) (w S)" |
|
1487 |
by blast |
|
1488 |
have "inj_on (\<lambda>f. sum' f \<U>) {x \<in> \<Pi>\<^sub>E S\<in>\<U>. singular_chain_set n (subtopology X S). finite {S \<in> \<U>. x S \<noteq> 0}}" |
|
1489 |
using iso_chain_group_sum [OF assms, of n] |
|
1490 |
by (simp add: iso_iff_mon_epi mon_def carrier_sum_group) |
|
1491 |
then have "(\<lambda>S\<in>\<U>. chain_boundary (Suc n) (w S)) = z" |
|
1492 |
proof (rule inj_onD) |
|
1493 |
have "sum' (\<lambda>S\<in>\<U>. chain_boundary (Suc n) (w S)) \<U> = sum' (chain_boundary (Suc n) \<circ> w) {S \<in> \<U>. w S \<noteq> 0}" |
|
1494 |
by (auto simp: o_def intro: sum.mono_neutral_right') |
|
1495 |
also have "\<dots> = chain_boundary (Suc n) d" |
|
1496 |
by (auto simp: sum.G_def deq chain_boundary_sum finw intro: finite_subset [OF _ finw] sum.mono_neutral_left) |
|
1497 |
finally show "sum' (\<lambda>S\<in>\<U>. chain_boundary (Suc n) (w S)) \<U> = sum' z \<U>" |
|
1498 |
by (simp add: cbd) |
|
1499 |
show "(\<lambda>S\<in>\<U>. chain_boundary (Suc n) (w S)) \<in> {x \<in> \<Pi>\<^sub>E S\<in>\<U>. singular_chain_set n (subtopology X S). finite {S \<in> \<U>. x S \<noteq> 0}}" |
|
1500 |
using w by (auto simp: PiE_iff singular_chain_boundary_alt cong: rev_conj_cong intro: finite_subset [OF _ finw]) |
|
1501 |
show "z \<in> {x \<in> \<Pi>\<^sub>E S\<in>\<U>. singular_chain_set n (subtopology X S). finite {S \<in> \<U>. x S \<noteq> 0}}" |
|
1502 |
using z by (simp_all add: carrier_sum_group PiE_iff singular_cycle) |
|
1503 |
qed |
|
1504 |
with \<open>S \<in> \<U>\<close> scwS show ?thesis |
|
1505 |
by force |
|
1506 |
qed |
|
1507 |
show ?thesis |
|
1508 |
using that * |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1509 |
by (force intro!: restrict_ext simp add: singular_boundary relative_homology_group_def homologous_rel_set_eq_relboundary peq) |
70095 | 1510 |
qed |
1511 |
show "x = (\<lambda>S\<in>\<U>. \<one>\<^bsub>homology_group p (subtopology X S)\<^esub>)" |
|
1512 |
using x 1 carrSG gf |
|
1513 |
by (auto simp: peq feq) |
|
1514 |
qed |
|
1515 |
show "?h ` carrier ?SG = carrier ?HG" |
|
1516 |
proof safe |
|
1517 |
fix A |
|
1518 |
assume "A \<in> carrier (homology_group p X)" |
|
1519 |
then obtain y where y: "singular_relcycle n X {} y" and xeq: "A = homologous_rel_set n X {} y" |
|
1520 |
by (auto simp: peq carrier_relative_homology_group) |
|
1521 |
then obtain x where "x \<in> carrier (sum_group \<U> (\<lambda>T. relcycle_group n (subtopology X T) {}))" |
|
1522 |
"y = sum' x \<U>" |
|
1523 |
using iso_cycle_group_sum [OF assms, of n] that by (force simp: iso_iff_mon_epi epi_def) |
|
1524 |
then show "A \<in> (\<lambda>x. gfinprod (homology_group p X) (\<lambda>V. hom_induced p (subtopology X V) {} X {} id (x V)) \<U>) ` |
|
1525 |
carrier (sum_group \<U> (\<lambda>S. homology_group p (subtopology X S)))" |
|
1526 |
apply (simp add: carrSG image_comp o_def xeq) |
|
1527 |
apply (simp add: hom_induced_carrier peq flip: gf cong: gfinprod_cong) |
|
1528 |
done |
|
1529 |
qed auto |
|
1530 |
qed |
|
1531 |
qed |
|
1532 |
||
1533 |
||
1534 |
corollary homology_additivity_axiom: |
|
1535 |
assumes disj: "pairwise disjnt \<U>" and UU: "\<Union>\<U> = topspace X" |
|
1536 |
and ope: "\<And>v. v \<in> \<U> \<Longrightarrow> openin X v" |
|
1537 |
shows "(\<lambda>x. gfinprod (homology_group p X) |
|
1538 |
(\<lambda>v. hom_induced p (subtopology X v) {} X {} id (x v)) \<U>) |
|
1539 |
\<in> iso (sum_group \<U> (\<lambda>S. homology_group p (subtopology X S))) (homology_group p X)" |
|
1540 |
proof (rule homology_additivity_axiom_gen [OF disj UU]) |
|
1541 |
fix C T |
|
1542 |
assume |
|
1543 |
"compactin X C" and |
|
1544 |
"path_connectedin X C" and |
|
1545 |
"T \<in> \<U>" and |
|
1546 |
"\<not> disjnt C T" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1547 |
then have *: "\<And>B. \<lbrakk>openin X T; T \<inter> B \<inter> C = {}; C \<subseteq> T \<union> B; openin X B\<rbrakk> \<Longrightarrow> B \<inter> C = {}" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1548 |
by (meson connectedin disjnt_def disjnt_sym path_connectedin_imp_connectedin) |
70095 | 1549 |
have "C \<subseteq> Union \<U>" |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1550 |
by (simp add: UU \<open>compactin X C\<close> compactin_subset_topspace) |
70095 | 1551 |
moreover have "\<Union> (\<U> - {T}) \<inter> C = {}" |
1552 |
proof (rule *) |
|
1553 |
show "T \<inter> \<Union> (\<U> - {T}) \<inter> C = {}" |
|
1554 |
using \<open>T \<in> \<U>\<close> disj disjointD by fastforce |
|
1555 |
show "C \<subseteq> T \<union> \<Union> (\<U> - {T})" |
|
1556 |
using \<open>C \<subseteq> \<Union> \<U>\<close> by fastforce |
|
1557 |
qed (auto simp: \<open>T \<in> \<U>\<close> ope) |
|
1558 |
ultimately show "C \<subseteq> T" |
|
1559 |
by blast |
|
1560 |
qed |
|
1561 |
||
1562 |
||
1563 |
subsection\<open>Special properties of singular homology\<close> |
|
1564 |
||
1565 |
text\<open>In particular: the zeroth homology group is isomorphic to the free abelian group |
|
1566 |
generated by the path components. So, the "coefficient group" is the integers.\<close> |
|
1567 |
||
1568 |
lemma iso_integer_zeroth_homology_group_aux: |
|
1569 |
assumes X: "path_connected_space X" and f: "singular_simplex 0 X f" and f': "singular_simplex 0 X f'" |
|
1570 |
shows "homologous_rel 0 X {} (frag_of f) (frag_of f')" |
|
1571 |
proof - |
|
1572 |
let ?p = "\<lambda>j. if j = 0 then 1 else 0" |
|
1573 |
have "f ?p \<in> topspace X" "f' ?p \<in> topspace X" |
|
1574 |
using assms by (auto simp: singular_simplex_def continuous_map_def) |
|
1575 |
then obtain g where g: "pathin X g" |
|
1576 |
and g0: "g 0 = f ?p" |
|
1577 |
and g1: "g 1 = f' ?p" |
|
1578 |
using assms by (force simp: path_connected_space_def) |
|
1579 |
then have contg: "continuous_map (subtopology euclideanreal {0..1}) X g" |
|
1580 |
by (simp add: pathin_def) |
|
1581 |
have "singular_chain (Suc 0) X (frag_of (restrict (g \<circ> (\<lambda>x. x 0)) (standard_simplex 1)))" |
|
1582 |
proof - |
|
1583 |
have "continuous_map (subtopology (powertop_real UNIV) (standard_simplex (Suc 0))) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1584 |
euclideanreal (\<lambda>x. x 0)" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1585 |
by (metis (mono_tags) UNIV_I continuous_map_from_subtopology continuous_map_product_projection) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1586 |
then have "continuous_map (subtopology (powertop_real UNIV) (standard_simplex (Suc 0))) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1587 |
(top_of_set {0..1}) (\<lambda>x. x 0)" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1588 |
unfolding continuous_map_in_subtopology g |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1589 |
by (auto simp: continuous_map_in_subtopology standard_simplex_def g) |
70095 | 1590 |
moreover have "continuous_map (top_of_set {0..1}) X g" |
1591 |
using contg by blast |
|
1592 |
ultimately show ?thesis |
|
1593 |
by (force simp: singular_chain_of chain_boundary_of singular_simplex_def continuous_map_compose) |
|
1594 |
qed |
|
1595 |
moreover |
|
1596 |
have "chain_boundary (Suc 0) (frag_of (restrict (g \<circ> (\<lambda>x. x 0)) (standard_simplex 1))) = |
|
1597 |
frag_of f - frag_of f'" |
|
1598 |
proof - |
|
1599 |
have "singular_face (Suc 0) 0 (g \<circ> (\<lambda>x. x 0)) = f" |
|
1600 |
"singular_face (Suc 0) (Suc 0) (g \<circ> (\<lambda>x. x 0)) = f'" |
|
1601 |
using assms |
|
1602 |
by (auto simp: singular_face_def singular_simplex_def extensional_def simplical_face_def standard_simplex_0 g0 g1) |
|
1603 |
then show ?thesis |
|
1604 |
by (simp add: singular_chain_of chain_boundary_of) |
|
1605 |
qed |
|
1606 |
ultimately |
|
1607 |
show ?thesis |
|
1608 |
by (auto simp: homologous_rel_def singular_boundary) |
|
1609 |
qed |
|
1610 |
||
1611 |
||
1612 |
proposition iso_integer_zeroth_homology_group: |
|
1613 |
assumes X: "path_connected_space X" and f: "singular_simplex 0 X f" |
|
1614 |
shows "pow (homology_group 0 X) (homologous_rel_set 0 X {} (frag_of f)) |
|
1615 |
\<in> iso integer_group (homology_group 0 X)" (is "pow ?H ?q \<in> iso _ ?H") |
|
1616 |
proof - |
|
1617 |
have srf: "singular_relcycle 0 X {} (frag_of f)" |
|
1618 |
by (simp add: chain_boundary_def f singular_chain_of singular_cycle) |
|
1619 |
then have qcarr: "?q \<in> carrier ?H" |
|
1620 |
by (simp add: carrier_relative_homology_group_0) |
|
1621 |
have 1: "homologous_rel_set 0 X {} a \<in> range (\<lambda>n. homologous_rel_set 0 X {} (frag_cmul n (frag_of f)))" |
|
1622 |
if "singular_relcycle 0 X {} a" for a |
|
1623 |
proof - |
|
1624 |
have "singular_chain 0 X d \<Longrightarrow> |
|
1625 |
homologous_rel_set 0 X {} d \<in> range (\<lambda>n. homologous_rel_set 0 X {} (frag_cmul n (frag_of f)))" for d |
|
1626 |
unfolding singular_chain_def |
|
1627 |
proof (induction d rule: frag_induction) |
|
1628 |
case zero |
|
1629 |
then show ?case |
|
1630 |
by (metis frag_cmul_zero rangeI) |
|
1631 |
next |
|
1632 |
case (one x) |
|
1633 |
then have "\<exists>i. homologous_rel_set 0 X {} (frag_cmul i (frag_of f)) |
|
1634 |
= homologous_rel_set 0 X {} (frag_of x)" |
|
1635 |
by (metis (no_types) iso_integer_zeroth_homology_group_aux [OF X] f frag_cmul_one homologous_rel_eq mem_Collect_eq) |
|
1636 |
with one show ?case |
|
1637 |
by auto |
|
1638 |
next |
|
1639 |
case (diff a b) |
|
1640 |
then obtain c d where |
|
1641 |
"homologous_rel 0 X {} (a - b) (frag_cmul c (frag_of f) - frag_cmul d (frag_of f))" |
|
1642 |
using homologous_rel_diff by (fastforce simp add: homologous_rel_set_eq) |
|
1643 |
then show ?case |
|
1644 |
by (rule_tac x="c-d" in image_eqI) (auto simp: homologous_rel_set_eq frag_cmul_diff_distrib) |
|
1645 |
qed |
|
1646 |
with that show ?thesis |
|
1647 |
unfolding singular_relcycle_def by blast |
|
1648 |
qed |
|
1649 |
have 2: "n = 0" |
|
1650 |
if "homologous_rel_set 0 X {} (frag_cmul n (frag_of f)) = \<one>\<^bsub>relative_homology_group 0 X {}\<^esub>" |
|
1651 |
for n |
|
1652 |
proof - |
|
1653 |
have "singular_chain (Suc 0) X d |
|
1654 |
\<Longrightarrow> frag_extend (\<lambda>x. frag_of f) (chain_boundary (Suc 0) d) = 0" for d |
|
1655 |
unfolding singular_chain_def |
|
1656 |
proof (induction d rule: frag_induction) |
|
1657 |
case (one x) |
|
1658 |
then show ?case |
|
1659 |
by (simp add: frag_extend_diff chain_boundary_of) |
|
1660 |
next |
|
1661 |
case (diff a b) |
|
1662 |
then show ?case |
|
1663 |
by (simp add: chain_boundary_diff frag_extend_diff) |
|
1664 |
qed auto |
|
1665 |
with that show ?thesis |
|
1666 |
by (force simp: singular_boundary relative_homology_group_def homologous_rel_set_eq_relboundary frag_extend_cmul) |
|
1667 |
qed |
|
1668 |
interpret GH : group_hom integer_group ?H "([^]\<^bsub>?H\<^esub>) ?q" |
|
1669 |
by (simp add: group_hom_def group_hom_axioms_def qcarr group.hom_integer_group_pow) |
|
1670 |
have eq: "pow ?H ?q = (\<lambda>n. homologous_rel_set 0 X {} (frag_cmul n (frag_of f)))" |
|
1671 |
proof |
|
1672 |
fix n |
|
1673 |
have "frag_of f |
|
1674 |
\<in> carrier (subgroup_generated |
|
1675 |
(free_Abelian_group (singular_simplex_set 0 X)) (singular_relcycle_set 0 X {}))" |
|
1676 |
by (metis carrier_relcycle_group chain_group_def mem_Collect_eq relcycle_group_def srf) |
|
1677 |
then have ff: "frag_of f [^]\<^bsub>relcycle_group 0 X {}\<^esub> n = frag_cmul n (frag_of f)" |
|
1678 |
by (simp add: relcycle_group_def chain_group_def group.int_pow_subgroup_generated f) |
|
1679 |
show "pow ?H ?q n = homologous_rel_set 0 X {} (frag_cmul n (frag_of f))" |
|
1680 |
apply (rule subst [OF right_coset_singular_relboundary]) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1681 |
by (simp add: ff normal.FactGroup_int_pow normal_subgroup_singular_relboundary_relcycle relative_homology_group_def srf) |
70095 | 1682 |
qed |
1683 |
show ?thesis |
|
1684 |
apply (subst GH.iso_iff) |
|
1685 |
apply (simp add: eq) |
|
1686 |
apply (auto simp: carrier_relative_homology_group_0 1 2) |
|
1687 |
done |
|
1688 |
qed |
|
1689 |
||
1690 |
||
1691 |
corollary isomorphic_integer_zeroth_homology_group: |
|
1692 |
assumes X: "path_connected_space X" "topspace X \<noteq> {}" |
|
1693 |
shows "homology_group 0 X \<cong> integer_group" |
|
1694 |
proof - |
|
1695 |
obtain a where a: "a \<in> topspace X" |
|
78336 | 1696 |
using assms by blast |
70095 | 1697 |
have "singular_simplex 0 X (restrict (\<lambda>x. a) (standard_simplex 0))" |
1698 |
by (simp add: singular_simplex_def a) |
|
1699 |
then show ?thesis |
|
1700 |
using X group.iso_sym group_integer_group is_isoI iso_integer_zeroth_homology_group by blast |
|
1701 |
qed |
|
1702 |
||
1703 |
||
1704 |
corollary homology_coefficients: |
|
1705 |
"topspace X = {a} \<Longrightarrow> homology_group 0 X \<cong> integer_group" |
|
1706 |
using isomorphic_integer_zeroth_homology_group path_connectedin_topspace by fastforce |
|
1707 |
||
1708 |
proposition zeroth_homology_group: |
|
1709 |
"homology_group 0 X \<cong> free_Abelian_group (path_components_of X)" |
|
1710 |
proof - |
|
1711 |
obtain h where h: "h \<in> iso (sum_group (path_components_of X) (\<lambda>S. homology_group 0 (subtopology X S))) |
|
1712 |
(homology_group 0 X)" |
|
1713 |
proof (rule that [OF homology_additivity_axiom_gen]) |
|
1714 |
show "disjoint (path_components_of X)" |
|
1715 |
by (simp add: pairwise_disjoint_path_components_of) |
|
1716 |
show "\<Union>(path_components_of X) = topspace X" |
|
1717 |
by (rule Union_path_components_of) |
|
1718 |
next |
|
1719 |
fix C T |
|
1720 |
assume "path_connectedin X C" "T \<in> path_components_of X" "\<not> disjnt C T" |
|
1721 |
then show "C \<subseteq> T" |
|
1722 |
by (metis path_components_of_maximal disjnt_sym)+ |
|
1723 |
qed |
|
1724 |
have "homology_group 0 X \<cong> sum_group (path_components_of X) (\<lambda>S. homology_group 0 (subtopology X S))" |
|
1725 |
by (rule group.iso_sym) (use h is_iso_def in auto) |
|
1726 |
also have "\<dots> \<cong> sum_group (path_components_of X) (\<lambda>i. integer_group)" |
|
1727 |
proof (rule iso_sum_groupI) |
|
1728 |
show "homology_group 0 (subtopology X i) \<cong> integer_group" if "i \<in> path_components_of X" for i |
|
1729 |
by (metis that isomorphic_integer_zeroth_homology_group nonempty_path_components_of |
|
1730 |
path_connectedin_def path_connectedin_path_components_of topspace_subtopology_subset) |
|
1731 |
qed auto |
|
1732 |
also have "\<dots> \<cong> free_Abelian_group (path_components_of X)" |
|
1733 |
using path_connectedin_path_components_of nonempty_path_components_of |
|
1734 |
by (simp add: isomorphic_sum_integer_group path_connectedin_def) |
|
1735 |
finally show ?thesis . |
|
1736 |
qed |
|
1737 |
||
1738 |
||
1739 |
lemma isomorphic_homology_imp_path_components: |
|
1740 |
assumes "homology_group 0 X \<cong> homology_group 0 Y" |
|
1741 |
shows "path_components_of X \<approx> path_components_of Y" |
|
1742 |
proof - |
|
1743 |
have "free_Abelian_group (path_components_of X) \<cong> homology_group 0 X" |
|
1744 |
by (rule group.iso_sym) (auto simp: zeroth_homology_group) |
|
1745 |
also have "\<dots> \<cong> homology_group 0 Y" |
|
1746 |
by (rule assms) |
|
1747 |
also have "\<dots> \<cong> free_Abelian_group (path_components_of Y)" |
|
1748 |
by (rule zeroth_homology_group) |
|
1749 |
finally have "free_Abelian_group (path_components_of X) \<cong> free_Abelian_group (path_components_of Y)" . |
|
1750 |
then show ?thesis |
|
1751 |
by (simp add: isomorphic_free_Abelian_groups) |
|
1752 |
qed |
|
1753 |
||
1754 |
||
1755 |
lemma isomorphic_homology_imp_path_connectedness: |
|
1756 |
assumes "homology_group 0 X \<cong> homology_group 0 Y" |
|
1757 |
shows "path_connected_space X \<longleftrightarrow> path_connected_space Y" |
|
1758 |
proof - |
|
1759 |
obtain h where h: "bij_betw h (path_components_of X) (path_components_of Y)" |
|
1760 |
using assms isomorphic_homology_imp_path_components eqpoll_def by blast |
|
1761 |
have 1: "path_components_of X \<subseteq> {a} \<Longrightarrow> path_components_of Y \<subseteq> {h a}" for a |
|
1762 |
using h unfolding bij_betw_def by blast |
|
1763 |
have 2: "path_components_of Y \<subseteq> {a} |
|
1764 |
\<Longrightarrow> path_components_of X \<subseteq> {inv_into (path_components_of X) h a}" for a |
|
1765 |
using h [THEN bij_betw_inv_into] unfolding bij_betw_def by blast |
|
1766 |
show ?thesis |
|
1767 |
unfolding path_connected_space_iff_components_subset_singleton |
|
1768 |
by (blast intro: dest: 1 2) |
|
1769 |
qed |
|
1770 |
||
1771 |
||
1772 |
subsection\<open>More basic properties of homology groups, deduced from the E-S axioms\<close> |
|
1773 |
||
1774 |
lemma trivial_homology_group: |
|
1775 |
"p < 0 \<Longrightarrow> trivial_group(homology_group p X)" |
|
1776 |
by simp |
|
1777 |
||
1778 |
lemma hom_induced_empty_hom: |
|
1779 |
"(hom_induced p X {} X' {} f) \<in> hom (homology_group p X) (homology_group p X')" |
|
1780 |
by (simp add: hom_induced_hom) |
|
1781 |
||
1782 |
lemma hom_induced_compose_empty: |
|
1783 |
"\<lbrakk>continuous_map X Y f; continuous_map Y Z g\<rbrakk> |
|
1784 |
\<Longrightarrow> hom_induced p X {} Z {} (g \<circ> f) = hom_induced p Y {} Z {} g \<circ> hom_induced p X {} Y {} f" |
|
1785 |
by (simp add: hom_induced_compose) |
|
1786 |
||
1787 |
lemma homology_homotopy_empty: |
|
1788 |
"homotopic_with (\<lambda>h. True) X Y f g \<Longrightarrow> hom_induced p X {} Y {} f = hom_induced p X {} Y {} g" |
|
1789 |
by (simp add: homology_homotopy_axiom) |
|
1790 |
||
1791 |
lemma homotopy_equivalence_relative_homology_group_isomorphisms: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1792 |
assumes contf: "continuous_map X Y f" and fim: "f \<in> S \<rightarrow> T" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1793 |
and contg: "continuous_map Y X g" and gim: "g \<in> T \<rightarrow> S" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1794 |
and gf: "homotopic_with (\<lambda>h. h \<in> S \<rightarrow> S) X X (g \<circ> f) id" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1795 |
and fg: "homotopic_with (\<lambda>k. k \<in> T \<rightarrow> T) Y Y (f \<circ> g) id" |
70095 | 1796 |
shows "group_isomorphisms (relative_homology_group p X S) (relative_homology_group p Y T) |
1797 |
(hom_induced p X S Y T f) (hom_induced p Y T X S g)" |
|
1798 |
unfolding group_isomorphisms_def |
|
1799 |
proof (intro conjI ballI) |
|
1800 |
fix x |
|
1801 |
assume x: "x \<in> carrier (relative_homology_group p X S)" |
|
1802 |
then show "hom_induced p Y T X S g (hom_induced p X S Y T f x) = x" |
|
1803 |
using homology_homotopy_axiom [OF gf, of p] |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1804 |
by (simp add: contf contg fim gim hom_induced_compose' hom_induced_id) |
70095 | 1805 |
next |
1806 |
fix y |
|
1807 |
assume "y \<in> carrier (relative_homology_group p Y T)" |
|
1808 |
then show "hom_induced p X S Y T f (hom_induced p Y T X S g y) = y" |
|
1809 |
using homology_homotopy_axiom [OF fg, of p] |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1810 |
by (simp add: contf contg fim gim hom_induced_compose' hom_induced_id) |
70095 | 1811 |
qed (auto simp: hom_induced_hom) |
1812 |
||
1813 |
||
1814 |
lemma homotopy_equivalence_relative_homology_group_isomorphism: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1815 |
assumes "continuous_map X Y f" and fim: "f \<in> S \<rightarrow> T" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1816 |
and "continuous_map Y X g" and gim: "g \<in> T \<rightarrow> S" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1817 |
and "homotopic_with (\<lambda>h. h \<in> S \<rightarrow> S) X X (g \<circ> f) id" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1818 |
and "homotopic_with (\<lambda>k. k \<in> T \<rightarrow> T) Y Y (f \<circ> g) id" |
70095 | 1819 |
shows "(hom_induced p X S Y T f) \<in> iso (relative_homology_group p X S) (relative_homology_group p Y T)" |
1820 |
using homotopy_equivalence_relative_homology_group_isomorphisms [OF assms] group_isomorphisms_imp_iso |
|
1821 |
by metis |
|
1822 |
||
1823 |
lemma homotopy_equivalence_homology_group_isomorphism: |
|
1824 |
assumes "continuous_map X Y f" |
|
1825 |
and "continuous_map Y X g" |
|
1826 |
and "homotopic_with (\<lambda>h. True) X X (g \<circ> f) id" |
|
1827 |
and "homotopic_with (\<lambda>k. True) Y Y (f \<circ> g) id" |
|
1828 |
shows "(hom_induced p X {} Y {} f) \<in> iso (homology_group p X) (homology_group p Y)" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1829 |
using assms by (intro homotopy_equivalence_relative_homology_group_isomorphism) auto |
70095 | 1830 |
|
1831 |
lemma homotopy_equivalent_space_imp_isomorphic_relative_homology_groups: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1832 |
assumes "continuous_map X Y f" and fim: "f \<in> S \<rightarrow> T" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1833 |
and "continuous_map Y X g" and gim: "g \<in> T \<rightarrow> S" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1834 |
and "homotopic_with (\<lambda>h. h \<in> S \<rightarrow> S) X X (g \<circ> f) id" |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1835 |
and "homotopic_with (\<lambda>k. k \<in> T \<rightarrow> T) Y Y (f \<circ> g) id" |
70095 | 1836 |
shows "relative_homology_group p X S \<cong> relative_homology_group p Y T" |
1837 |
using homotopy_equivalence_relative_homology_group_isomorphism [OF assms] |
|
1838 |
unfolding is_iso_def by blast |
|
1839 |
||
1840 |
lemma homotopy_equivalent_space_imp_isomorphic_homology_groups: |
|
1841 |
"X homotopy_equivalent_space Y \<Longrightarrow> homology_group p X \<cong> homology_group p Y" |
|
1842 |
unfolding homotopy_equivalent_space_def |
|
1843 |
by (auto intro: homotopy_equivalent_space_imp_isomorphic_relative_homology_groups) |
|
1844 |
||
1845 |
lemma homeomorphic_space_imp_isomorphic_homology_groups: |
|
1846 |
"X homeomorphic_space Y \<Longrightarrow> homology_group p X \<cong> homology_group p Y" |
|
1847 |
by (simp add: homeomorphic_imp_homotopy_equivalent_space homotopy_equivalent_space_imp_isomorphic_homology_groups) |
|
1848 |
||
1849 |
lemma trivial_relative_homology_group_gen: |
|
1850 |
assumes "continuous_map X (subtopology X S) f" |
|
1851 |
"homotopic_with (\<lambda>h. True) (subtopology X S) (subtopology X S) f id" |
|
1852 |
"homotopic_with (\<lambda>k. True) X X f id" |
|
1853 |
shows "trivial_group(relative_homology_group p X S)" |
|
1854 |
proof (rule exact_seq_imp_triviality) |
|
1855 |
show "exact_seq ([homology_group (p-1) X, |
|
1856 |
homology_group (p-1) (subtopology X S), |
|
1857 |
relative_homology_group p X S, homology_group p X, homology_group p (subtopology X S)], |
|
1858 |
[hom_induced (p-1) (subtopology X S) {} X {} id, |
|
1859 |
hom_boundary p X S, |
|
1860 |
hom_induced p X {} X S id, |
|
1861 |
hom_induced p (subtopology X S) {} X {} id])" |
|
1862 |
using homology_exactness_axiom_1 homology_exactness_axiom_2 homology_exactness_axiom_3 |
|
1863 |
by (metis exact_seq_cons_iff) |
|
1864 |
next |
|
1865 |
show "hom_induced p (subtopology X S) {} X {} id |
|
1866 |
\<in> iso (homology_group p (subtopology X S)) (homology_group p X)" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1867 |
"hom_induced (p-1) (subtopology X S) {} X {} id |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1868 |
\<in> iso (homology_group (p-1) (subtopology X S)) (homology_group (p-1) X)" |
70095 | 1869 |
using assms |
1870 |
by (auto intro: homotopy_equivalence_relative_homology_group_isomorphism) |
|
1871 |
qed |
|
1872 |
||
1873 |
||
1874 |
lemma trivial_relative_homology_group_topspace: |
|
1875 |
"trivial_group(relative_homology_group p X (topspace X))" |
|
1876 |
by (rule trivial_relative_homology_group_gen [where f=id]) auto |
|
1877 |
||
1878 |
lemma trivial_relative_homology_group_empty: |
|
1879 |
"topspace X = {} \<Longrightarrow> trivial_group(relative_homology_group p X S)" |
|
1880 |
by (metis Int_absorb2 empty_subsetI relative_homology_group_restrict trivial_relative_homology_group_topspace) |
|
1881 |
||
1882 |
lemma trivial_homology_group_empty: |
|
1883 |
"topspace X = {} \<Longrightarrow> trivial_group(homology_group p X)" |
|
1884 |
by (simp add: trivial_relative_homology_group_empty) |
|
1885 |
||
1886 |
lemma homeomorphic_maps_relative_homology_group_isomorphisms: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1887 |
assumes "homeomorphic_maps X Y f g" and im: "f \<in> S \<rightarrow> T" "g \<in> T \<rightarrow> S" |
70095 | 1888 |
shows "group_isomorphisms (relative_homology_group p X S) (relative_homology_group p Y T) |
1889 |
(hom_induced p X S Y T f) (hom_induced p Y T X S g)" |
|
1890 |
proof - |
|
1891 |
have fg: "continuous_map X Y f" "continuous_map Y X g" |
|
1892 |
"(\<forall>x\<in>topspace X. g (f x) = x)" "(\<forall>y\<in>topspace Y. f (g y) = y)" |
|
1893 |
using assms by (simp_all add: homeomorphic_maps_def) |
|
1894 |
have "group_isomorphisms |
|
1895 |
(relative_homology_group p X (topspace X \<inter> S)) |
|
1896 |
(relative_homology_group p Y (topspace Y \<inter> T)) |
|
1897 |
(hom_induced p X (topspace X \<inter> S) Y (topspace Y \<inter> T) f) |
|
1898 |
(hom_induced p Y (topspace Y \<inter> T) X (topspace X \<inter> S) g)" |
|
1899 |
proof (rule homotopy_equivalence_relative_homology_group_isomorphisms) |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1900 |
show "homotopic_with (\<lambda>h. h \<in> (topspace X \<inter> S) \<rightarrow> topspace X \<inter> S) X X (g \<circ> f) id" |
70095 | 1901 |
using fg im by (auto intro: homotopic_with_equal continuous_map_compose) |
1902 |
next |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
1903 |
show "homotopic_with (\<lambda>k. k \<in> (topspace Y \<inter> T) \<rightarrow> topspace Y \<inter> T) Y Y (f \<circ> g) id" |
70095 | 1904 |
using fg im by (auto intro: homotopic_with_equal continuous_map_compose) |
1905 |
qed (use im fg in \<open>auto simp: continuous_map_def\<close>) |
|
1906 |
then show ?thesis |
|
1907 |
by simp |
|
1908 |
qed |
|
1909 |
||
1910 |
lemma homeomorphic_map_relative_homology_iso: |
|
1911 |
assumes f: "homeomorphic_map X Y f" and S: "S \<subseteq> topspace X" "f ` S = T" |
|
1912 |
shows "(hom_induced p X S Y T f) \<in> iso (relative_homology_group p X S) (relative_homology_group p Y T)" |
|
1913 |
proof - |
|
1914 |
obtain g where g: "homeomorphic_maps X Y f g" |
|
1915 |
using homeomorphic_map_maps f by metis |
|
1916 |
then have "group_isomorphisms (relative_homology_group p X S) (relative_homology_group p Y T) |
|
1917 |
(hom_induced p X S Y T f) (hom_induced p Y T X S g)" |
|
1918 |
using S g by (auto simp: homeomorphic_maps_def intro!: homeomorphic_maps_relative_homology_group_isomorphisms) |
|
1919 |
then show ?thesis |
|
1920 |
by (rule group_isomorphisms_imp_iso) |
|
1921 |
qed |
|
1922 |
||
1923 |
lemma inj_on_hom_induced_section_map: |
|
1924 |
assumes "section_map X Y f" |
|
1925 |
shows "inj_on (hom_induced p X {} Y {} f) (carrier (homology_group p X))" |
|
1926 |
proof - |
|
1927 |
obtain g where cont: "continuous_map X Y f" "continuous_map Y X g" |
|
1928 |
and gf: "\<And>x. x \<in> topspace X \<Longrightarrow> g (f x) = x" |
|
1929 |
using assms by (auto simp: section_map_def retraction_maps_def) |
|
1930 |
show ?thesis |
|
1931 |
proof (rule inj_on_inverseI) |
|
1932 |
fix x |
|
1933 |
assume x: "x \<in> carrier (homology_group p X)" |
|
1934 |
have "continuous_map X X (\<lambda>x. g (f x))" |
|
1935 |
by (metis (no_types, lifting) continuous_map_eq continuous_map_id gf id_apply) |
|
1936 |
with x show "hom_induced p Y {} X {} g (hom_induced p X {} Y {} f x) = x" |
|
1937 |
using hom_induced_compose_empty [OF cont, symmetric] |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1938 |
by (metis comp_apply cont continuous_map_compose gf hom_induced_id_gen) |
70095 | 1939 |
qed |
1940 |
qed |
|
1941 |
||
1942 |
corollary mon_hom_induced_section_map: |
|
1943 |
assumes "section_map X Y f" |
|
1944 |
shows "(hom_induced p X {} Y {} f) \<in> mon (homology_group p X) (homology_group p Y)" |
|
1945 |
by (simp add: hom_induced_empty_hom inj_on_hom_induced_section_map [OF assms] mon_def) |
|
1946 |
||
1947 |
lemma surj_hom_induced_retraction_map: |
|
1948 |
assumes "retraction_map X Y f" |
|
1949 |
shows "carrier (homology_group p Y) = (hom_induced p X {} Y {} f) ` carrier (homology_group p X)" |
|
1950 |
(is "?lhs = ?rhs") |
|
1951 |
proof - |
|
1952 |
obtain g where cont: "continuous_map Y X g" "continuous_map X Y f" |
|
1953 |
and fg: "\<And>x. x \<in> topspace Y \<Longrightarrow> f (g x) = x" |
|
1954 |
using assms by (auto simp: retraction_map_def retraction_maps_def) |
|
1955 |
have "x = hom_induced p X {} Y {} f (hom_induced p Y {} X {} g x)" |
|
1956 |
if x: "x \<in> carrier (homology_group p Y)" for x |
|
1957 |
proof - |
|
1958 |
have "continuous_map Y Y (\<lambda>x. f (g x))" |
|
1959 |
by (metis (no_types, lifting) continuous_map_eq continuous_map_id fg id_apply) |
|
1960 |
with x show ?thesis |
|
1961 |
using hom_induced_compose_empty [OF cont, symmetric] |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1962 |
by (metis comp_def cont continuous_map_compose fg hom_induced_id_gen) |
70095 | 1963 |
qed |
1964 |
moreover |
|
1965 |
have "(hom_induced p Y {} X {} g x) \<in> carrier (homology_group p X)" |
|
1966 |
if "x \<in> carrier (homology_group p Y)" for x |
|
1967 |
by (metis hom_induced) |
|
1968 |
ultimately have "?lhs \<subseteq> ?rhs" |
|
1969 |
by auto |
|
1970 |
moreover have "?rhs \<subseteq> ?lhs" |
|
1971 |
using hom_induced_hom [of p X "{}" Y "{}" f] |
|
1972 |
by (simp add: hom_def flip: image_subset_iff_funcset) |
|
1973 |
ultimately show ?thesis |
|
1974 |
by auto |
|
1975 |
qed |
|
1976 |
||
1977 |
||
1978 |
corollary epi_hom_induced_retraction_map: |
|
1979 |
assumes "retraction_map X Y f" |
|
1980 |
shows "(hom_induced p X {} Y {} f) \<in> epi (homology_group p X) (homology_group p Y)" |
|
1981 |
using assms epi_iff_subset hom_induced_empty_hom surj_hom_induced_retraction_map by fastforce |
|
1982 |
||
1983 |
||
1984 |
lemma homeomorphic_map_homology_iso: |
|
1985 |
assumes "homeomorphic_map X Y f" |
|
1986 |
shows "(hom_induced p X {} Y {} f) \<in> iso (homology_group p X) (homology_group p Y)" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
1987 |
using assms by (simp add: homeomorphic_map_relative_homology_iso) |
70095 | 1988 |
|
1989 |
(*See also hom_hom_induced_inclusion*) |
|
1990 |
lemma inj_on_hom_induced_inclusion: |
|
1991 |
assumes "S = {} \<or> S retract_of_space X" |
|
1992 |
shows "inj_on (hom_induced p (subtopology X S) {} X {} id) (carrier (homology_group p (subtopology X S)))" |
|
1993 |
using assms |
|
1994 |
proof |
|
1995 |
assume "S = {}" |
|
1996 |
then have "trivial_group(homology_group p (subtopology X S))" |
|
1997 |
by (auto simp: topspace_subtopology intro: trivial_homology_group_empty) |
|
1998 |
then show ?thesis |
|
1999 |
by (auto simp: inj_on_def trivial_group_def) |
|
2000 |
next |
|
2001 |
assume "S retract_of_space X" |
|
2002 |
then show ?thesis |
|
2003 |
by (simp add: retract_of_space_section_map inj_on_hom_induced_section_map) |
|
2004 |
qed |
|
2005 |
||
2006 |
lemma trivial_homomorphism_hom_boundary_inclusion: |
|
2007 |
assumes "S = {} \<or> S retract_of_space X" |
|
2008 |
shows "trivial_homomorphism |
|
2009 |
(relative_homology_group p X S) (homology_group (p-1) (subtopology X S)) |
|
2010 |
(hom_boundary p X S)" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2011 |
using exact_seq_mon_eq_triviality inj_on_hom_induced_inclusion [OF assms] |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2012 |
by (metis exact_seq_cons_iff homology_exactness_axiom_1 homology_exactness_axiom_2) |
70095 | 2013 |
|
2014 |
lemma epi_hom_induced_relativization: |
|
2015 |
assumes "S = {} \<or> S retract_of_space X" |
|
2016 |
shows "(hom_induced p X {} X S id) ` carrier (homology_group p X) = carrier (relative_homology_group p X S)" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2017 |
using exact_seq_epi_eq_triviality trivial_homomorphism_hom_boundary_inclusion |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2018 |
by (metis assms exact_seq_cons_iff homology_exactness_axiom_1 homology_exactness_axiom_2) |
70095 | 2019 |
|
2020 |
(*different in HOL Light because we don't need short_exact_sequence*) |
|
2021 |
lemmas short_exact_sequence_hom_induced_inclusion = homology_exactness_axiom_3 |
|
2022 |
||
2023 |
lemma group_isomorphisms_homology_group_prod_retract: |
|
2024 |
assumes "S = {} \<or> S retract_of_space X" |
|
2025 |
obtains \<H> \<K> where |
|
2026 |
"subgroup \<H> (homology_group p X)" |
|
2027 |
"subgroup \<K> (homology_group p X)" |
|
2028 |
"(\<lambda>(x, y). x \<otimes>\<^bsub>homology_group p X\<^esub> y) |
|
2029 |
\<in> iso (DirProd (subgroup_generated (homology_group p X) \<H>) (subgroup_generated (homology_group p X) \<K>)) |
|
2030 |
(homology_group p X)" |
|
2031 |
"(hom_induced p (subtopology X S) {} X {} id) |
|
2032 |
\<in> iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group p X) \<H>)" |
|
2033 |
"(hom_induced p X {} X S id) |
|
2034 |
\<in> iso (subgroup_generated (homology_group p X) \<K>) (relative_homology_group p X S)" |
|
2035 |
using assms |
|
2036 |
proof |
|
2037 |
assume "S = {}" |
|
2038 |
show thesis |
|
2039 |
proof (rule splitting_lemma_left [OF homology_exactness_axiom_3 [of p]]) |
|
2040 |
let ?f = "\<lambda>x. one(homology_group p (subtopology X {}))" |
|
2041 |
show "?f \<in> hom (homology_group p X) (homology_group p (subtopology X {}))" |
|
2042 |
by (simp add: trivial_hom) |
|
2043 |
have tg: "trivial_group (homology_group p (subtopology X {}))" |
|
2044 |
by (auto simp: topspace_subtopology trivial_homology_group_empty) |
|
2045 |
then have [simp]: "carrier (homology_group p (subtopology X {})) = {one (homology_group p (subtopology X {}))}" |
|
2046 |
by (auto simp: trivial_group_def) |
|
2047 |
then show "?f (hom_induced p (subtopology X {}) {} X {} id x) = x" |
|
2048 |
if "x \<in> carrier (homology_group p (subtopology X {}))" for x |
|
2049 |
using that by auto |
|
2050 |
show "inj_on (hom_induced p (subtopology X {}) {} X {} id) |
|
2051 |
(carrier (homology_group p (subtopology X {})))" |
|
78336 | 2052 |
by (meson inj_on_hom_induced_inclusion) |
70095 | 2053 |
show "hom_induced p X {} X {} id ` carrier (homology_group p X) = carrier (homology_group p X)" |
2054 |
by (metis epi_hom_induced_relativization) |
|
2055 |
next |
|
2056 |
fix \<H> \<K> |
|
2057 |
assume *: "\<H> \<lhd> homology_group p X" "\<K> \<lhd> homology_group p X" |
|
2058 |
"\<H> \<inter> \<K> \<subseteq> {\<one>\<^bsub>homology_group p X\<^esub>}" |
|
2059 |
"hom_induced p (subtopology X {}) {} X {} id |
|
2060 |
\<in> Group.iso (homology_group p (subtopology X {})) (subgroup_generated (homology_group p X) \<H>)" |
|
2061 |
"hom_induced p X {} X {} id |
|
2062 |
\<in> Group.iso (subgroup_generated (homology_group p X) \<K>) (relative_homology_group p X {})" |
|
2063 |
"\<H> <#>\<^bsub>homology_group p X\<^esub> \<K> = carrier (homology_group p X)" |
|
2064 |
show thesis |
|
2065 |
proof (rule that) |
|
2066 |
show "(\<lambda>(x, y). x \<otimes>\<^bsub>homology_group p X\<^esub> y) |
|
2067 |
\<in> iso (subgroup_generated (homology_group p X) \<H> \<times>\<times> subgroup_generated (homology_group p X) \<K>) |
|
2068 |
(homology_group p X)" |
|
2069 |
using * by (simp add: group_disjoint_sum.iso_group_mul normal_def group_disjoint_sum_def) |
|
2070 |
qed (use \<open>S = {}\<close> * in \<open>auto simp: normal_def\<close>) |
|
2071 |
qed |
|
2072 |
next |
|
2073 |
assume "S retract_of_space X" |
|
2074 |
then obtain r where "S \<subseteq> topspace X" and r: "continuous_map X (subtopology X S) r" |
|
2075 |
and req: "\<forall>x \<in> S. r x = x" |
|
2076 |
by (auto simp: retract_of_space_def) |
|
2077 |
show thesis |
|
2078 |
proof (rule splitting_lemma_left [OF homology_exactness_axiom_3 [of p]]) |
|
2079 |
let ?f = "hom_induced p X {} (subtopology X S) {} r" |
|
2080 |
show "?f \<in> hom (homology_group p X) (homology_group p (subtopology X S))" |
|
2081 |
by (simp add: hom_induced_empty_hom) |
|
2082 |
show eqx: "?f (hom_induced p (subtopology X S) {} X {} id x) = x" |
|
2083 |
if "x \<in> carrier (homology_group p (subtopology X S))" for x |
|
2084 |
proof - |
|
2085 |
have "hom_induced p (subtopology X S) {} (subtopology X S) {} r x = x" |
|
2086 |
by (metis \<open>S \<subseteq> topspace X\<close> continuous_map_from_subtopology hom_induced_id_gen inf.absorb_iff2 r req that topspace_subtopology) |
|
2087 |
then show ?thesis |
|
2088 |
by (simp add: r hom_induced_compose [unfolded o_def fun_eq_iff, rule_format, symmetric]) |
|
2089 |
qed |
|
2090 |
then show "inj_on (hom_induced p (subtopology X S) {} X {} id) |
|
2091 |
(carrier (homology_group p (subtopology X S)))" |
|
2092 |
unfolding inj_on_def by metis |
|
2093 |
show "hom_induced p X {} X S id ` carrier (homology_group p X) = carrier (relative_homology_group p X S)" |
|
2094 |
by (simp add: \<open>S retract_of_space X\<close> epi_hom_induced_relativization) |
|
2095 |
next |
|
2096 |
fix \<H> \<K> |
|
2097 |
assume *: "\<H> \<lhd> homology_group p X" "\<K> \<lhd> homology_group p X" |
|
2098 |
"\<H> \<inter> \<K> \<subseteq> {\<one>\<^bsub>homology_group p X\<^esub>}" |
|
2099 |
"\<H> <#>\<^bsub>homology_group p X\<^esub> \<K> = carrier (homology_group p X)" |
|
2100 |
"hom_induced p (subtopology X S) {} X {} id |
|
2101 |
\<in> Group.iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group p X) \<H>)" |
|
2102 |
"hom_induced p X {} X S id |
|
2103 |
\<in> Group.iso (subgroup_generated (homology_group p X) \<K>) (relative_homology_group p X S)" |
|
2104 |
show "thesis" |
|
2105 |
proof (rule that) |
|
2106 |
show "(\<lambda>(x, y). x \<otimes>\<^bsub>homology_group p X\<^esub> y) |
|
2107 |
\<in> iso (subgroup_generated (homology_group p X) \<H> \<times>\<times> subgroup_generated (homology_group p X) \<K>) |
|
2108 |
(homology_group p X)" |
|
2109 |
using * |
|
2110 |
by (simp add: group_disjoint_sum.iso_group_mul normal_def group_disjoint_sum_def) |
|
2111 |
qed (use * in \<open>auto simp: normal_def\<close>) |
|
2112 |
qed |
|
2113 |
qed |
|
2114 |
||
2115 |
||
2116 |
||
2117 |
lemma isomorphic_group_homology_group_prod_retract: |
|
2118 |
assumes "S = {} \<or> S retract_of_space X" |
|
2119 |
shows "homology_group p X \<cong> homology_group p (subtopology X S) \<times>\<times> relative_homology_group p X S" |
|
2120 |
(is "?lhs \<cong> ?rhs") |
|
2121 |
proof - |
|
2122 |
obtain \<H> \<K> where |
|
2123 |
"subgroup \<H> (homology_group p X)" |
|
2124 |
"subgroup \<K> (homology_group p X)" |
|
2125 |
and 1: "(\<lambda>(x, y). x \<otimes>\<^bsub>homology_group p X\<^esub> y) |
|
2126 |
\<in> iso (DirProd (subgroup_generated (homology_group p X) \<H>) (subgroup_generated (homology_group p X) \<K>)) |
|
2127 |
(homology_group p X)" |
|
2128 |
"(hom_induced p (subtopology X S) {} X {} id) |
|
2129 |
\<in> iso (homology_group p (subtopology X S)) (subgroup_generated (homology_group p X) \<H>)" |
|
2130 |
"(hom_induced p X {} X S id) |
|
2131 |
\<in> iso (subgroup_generated (homology_group p X) \<K>) (relative_homology_group p X S)" |
|
2132 |
using group_isomorphisms_homology_group_prod_retract [OF assms] by blast |
|
2133 |
have "?lhs \<cong> subgroup_generated (homology_group p X) \<H> \<times>\<times> subgroup_generated (homology_group p X) \<K>" |
|
2134 |
by (meson DirProd_group 1 abelian_homology_group comm_group_def group.abelian_subgroup_generated group.iso_sym is_isoI) |
|
2135 |
also have "\<dots> \<cong> ?rhs" |
|
2136 |
by (meson "1"(2) "1"(3) abelian_homology_group comm_group_def group.DirProd_iso_trans group.abelian_subgroup_generated group.iso_sym is_isoI) |
|
2137 |
finally show ?thesis . |
|
2138 |
qed |
|
2139 |
||
2140 |
||
2141 |
lemma homology_additivity_explicit: |
|
2142 |
assumes "openin X S" "openin X T" "disjnt S T" and SUT: "S \<union> T = topspace X" |
|
2143 |
shows "(\<lambda>(a,b).(hom_induced p (subtopology X S) {} X {} id a) |
|
2144 |
\<otimes>\<^bsub>homology_group p X\<^esub> |
|
2145 |
(hom_induced p (subtopology X T) {} X {} id b)) |
|
2146 |
\<in> iso (DirProd (homology_group p (subtopology X S)) (homology_group p (subtopology X T))) |
|
2147 |
(homology_group p X)" |
|
2148 |
proof - |
|
2149 |
have "closedin X S" "closedin X T" |
|
2150 |
using assms Un_commute disjnt_sym |
|
2151 |
by (metis Diff_cancel Diff_triv Un_Diff disjnt_def openin_closedin_eq sup_bot.right_neutral)+ |
|
2152 |
with \<open>openin X S\<close> \<open>openin X T\<close> have SS: "X closure_of S \<subseteq> X interior_of S" and TT: "X closure_of T \<subseteq> X interior_of T" |
|
2153 |
by (simp_all add: closure_of_closedin interior_of_openin) |
|
2154 |
have [simp]: "S \<union> T - T = S" "S \<union> T - S = T" |
|
2155 |
using \<open>disjnt S T\<close> |
|
2156 |
by (auto simp: Diff_triv Un_Diff disjnt_def) |
|
2157 |
let ?f = "hom_induced p X {} X T id" |
|
2158 |
let ?g = "hom_induced p X {} X S id" |
|
2159 |
let ?h = "hom_induced p (subtopology X S) {} X T id" |
|
2160 |
let ?i = "hom_induced p (subtopology X S) {} X {} id" |
|
2161 |
let ?j = "hom_induced p (subtopology X T) {} X {} id" |
|
2162 |
let ?k = "hom_induced p (subtopology X T) {} X S id" |
|
2163 |
let ?A = "homology_group p (subtopology X S)" |
|
2164 |
let ?B = "homology_group p (subtopology X T)" |
|
2165 |
let ?C = "relative_homology_group p X T" |
|
2166 |
let ?D = "relative_homology_group p X S" |
|
2167 |
let ?G = "homology_group p X" |
|
2168 |
have h: "?h \<in> iso ?A ?C" and k: "?k \<in> iso ?B ?D" |
|
2169 |
using homology_excision_axiom [OF TT, of "S \<union> T" p] |
|
2170 |
using homology_excision_axiom [OF SS, of "S \<union> T" p] |
|
2171 |
by auto (simp_all add: SUT) |
|
2172 |
have 1: "\<And>x. (hom_induced p X {} X T id \<circ> hom_induced p (subtopology X S) {} X {} id) x |
|
2173 |
= hom_induced p (subtopology X S) {} X T id x" |
|
2174 |
by (simp flip: hom_induced_compose) |
|
2175 |
have 2: "\<And>x. (hom_induced p X {} X S id \<circ> hom_induced p (subtopology X T) {} X {} id) x |
|
2176 |
= hom_induced p (subtopology X T) {} X S id x" |
|
2177 |
by (simp flip: hom_induced_compose) |
|
2178 |
show ?thesis |
|
2179 |
using exact_sequence_sum_lemma |
|
2180 |
[OF abelian_homology_group h k homology_exactness_axiom_3 homology_exactness_axiom_3] 1 2 |
|
2181 |
by auto |
|
2182 |
qed |
|
2183 |
||
2184 |
||
2185 |
subsection\<open>Generalize exact homology sequence to triples\<close> |
|
2186 |
||
2187 |
definition hom_relboundary :: "[int,'a topology,'a set,'a set,'a chain set] \<Rightarrow> 'a chain set" |
|
2188 |
where |
|
2189 |
"hom_relboundary p X S T = |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2190 |
hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id \<circ> |
70095 | 2191 |
hom_boundary p X S" |
2192 |
||
2193 |
lemma group_homomorphism_hom_relboundary: |
|
2194 |
"hom_relboundary p X S T |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2195 |
\<in> hom (relative_homology_group p X S) (relative_homology_group (p-1) (subtopology X S) T)" |
70095 | 2196 |
unfolding hom_relboundary_def |
2197 |
proof (rule hom_compose) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2198 |
show "hom_boundary p X S \<in> hom (relative_homology_group p X S) (homology_group(p-1) (subtopology X S))" |
70095 | 2199 |
by (simp add: hom_boundary_hom) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2200 |
show "hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2201 |
\<in> hom (homology_group(p-1) (subtopology X S)) (relative_homology_group (p-1) (subtopology X S) T)" |
70095 | 2202 |
by (simp add: hom_induced_hom) |
2203 |
qed |
|
2204 |
||
2205 |
lemma hom_relboundary: |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2206 |
"hom_relboundary p X S T c \<in> carrier (relative_homology_group (p-1) (subtopology X S) T)" |
70095 | 2207 |
by (simp add: hom_relboundary_def hom_induced_carrier) |
2208 |
||
2209 |
lemma hom_relboundary_empty: "hom_relboundary p X S {} = hom_boundary p X S" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2210 |
by (simp add: ext hom_boundary_carrier hom_induced_id hom_relboundary_def) |
70095 | 2211 |
|
2212 |
lemma naturality_hom_induced_relboundary: |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2213 |
assumes "continuous_map X Y f" "f \<in> S \<rightarrow> U" "f \<in> T \<rightarrow> V" |
70095 | 2214 |
shows "hom_relboundary p Y U V \<circ> |
2215 |
hom_induced p X S Y (U) f = |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2216 |
hom_induced (p-1) (subtopology X S) T (subtopology Y U) V f \<circ> |
70095 | 2217 |
hom_relboundary p X S T" |
2218 |
proof - |
|
2219 |
have [simp]: "continuous_map (subtopology X S) (subtopology Y U) f" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2220 |
using assms continuous_map_from_subtopology continuous_map_in_subtopology topspace_subtopology |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2221 |
by (fastforce simp: Pi_iff) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2222 |
have "hom_induced (p-1) (subtopology Y U) {} (subtopology Y U) V id \<circ> |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2223 |
hom_induced (p-1) (subtopology X S) {} (subtopology Y U) {} f |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2224 |
= hom_induced (p-1) (subtopology X S) T (subtopology Y U) V f \<circ> |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2225 |
hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id" |
70095 | 2226 |
using assms by (simp flip: hom_induced_compose) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2227 |
with assms show ?thesis |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2228 |
unfolding hom_relboundary_def |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2229 |
by (metis (no_types, lifting) ext fun.map_comp naturality_hom_induced) |
70095 | 2230 |
qed |
2231 |
||
2232 |
proposition homology_exactness_triple_1: |
|
2233 |
assumes "T \<subseteq> S" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2234 |
shows "exact_seq ([relative_homology_group(p-1) (subtopology X S) T, |
70095 | 2235 |
relative_homology_group p X S, |
2236 |
relative_homology_group p X T], |
|
2237 |
[hom_relboundary p X S T, hom_induced p X T X S id])" |
|
2238 |
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])") |
|
2239 |
proof - |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2240 |
have iTS: "id \<in> T \<rightarrow> S" and [simp]: "S \<inter> T = T" |
70095 | 2241 |
using assms by auto |
2242 |
have "?h2 B \<in> kernel ?G2 ?G1 ?h1" for B |
|
2243 |
proof - |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2244 |
have "hom_boundary p X T B \<in> carrier (relative_homology_group (p-1) (subtopology X T) {})" |
70095 | 2245 |
by (metis (no_types) hom_boundary) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2246 |
then have *: "hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2247 |
(hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id |
70095 | 2248 |
(hom_boundary p X T B)) |
2249 |
= \<one>\<^bsub>?G1\<^esub>" |
|
2250 |
using homology_exactness_axiom_3 [of "p-1" "subtopology X S" T] |
|
2251 |
by (auto simp: subtopology_subtopology kernel_def) |
|
2252 |
show ?thesis |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2253 |
using naturality_hom_induced [OF continuous_map_id iTS] |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2254 |
by (smt (verit, best) * comp_apply hom_induced_carrier hom_relboundary_def kernel_def mem_Collect_eq) |
70095 | 2255 |
qed |
2256 |
moreover have "B \<in> ?h2 ` carrier ?G3" if "B \<in> kernel ?G2 ?G1 ?h1" for B |
|
2257 |
proof - |
|
2258 |
have Bcarr: "B \<in> carrier ?G2" |
|
2259 |
and Beq: "?h1 B = \<one>\<^bsub>?G1\<^esub>" |
|
2260 |
using that by (auto simp: kernel_def) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2261 |
have "\<exists>A' \<in> carrier (homology_group (p-1) (subtopology X T)). hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id A' = A" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2262 |
if "A \<in> carrier (homology_group (p-1) (subtopology X S))" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2263 |
"hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id A = |
70095 | 2264 |
\<one>\<^bsub>?G1\<^esub>" for A |
2265 |
using homology_exactness_axiom_3 [of "p-1" "subtopology X S" T] that |
|
2266 |
by (simp add: kernel_def subtopology_subtopology image_iff set_eq_iff) meson |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2267 |
then obtain C where Ccarr: "C \<in> carrier (homology_group (p-1) (subtopology X T))" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2268 |
and Ceq: "hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id C = hom_boundary p X S B" |
70095 | 2269 |
using Beq by (simp add: hom_relboundary_def) (metis hom_boundary_carrier) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2270 |
let ?hi_XT = "hom_induced (p-1) (subtopology X T) {} X {} id" |
70095 | 2271 |
have "?hi_XT |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2272 |
= hom_induced (p-1) (subtopology X S) {} X {} id |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2273 |
\<circ> (hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id)" |
70095 | 2274 |
by (metis assms comp_id continuous_map_id_subt hom_induced_compose_empty inf.absorb_iff2 subtopology_subtopology) |
2275 |
then have "?hi_XT C |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2276 |
= hom_induced (p-1) (subtopology X S) {} X {} id (hom_boundary p X S B)" |
70095 | 2277 |
by (simp add: Ceq) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2278 |
also have eq: "\<dots> = \<one>\<^bsub>homology_group (p-1) X\<^esub>" |
70095 | 2279 |
using homology_exactness_axiom_2 [of p X S] Bcarr by (auto simp: kernel_def) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2280 |
finally have "?hi_XT C = \<one>\<^bsub>homology_group (p-1) X\<^esub>" . |
70095 | 2281 |
then obtain D where Dcarr: "D \<in> carrier ?G3" and Deq: "hom_boundary p X T D = C" |
2282 |
using homology_exactness_axiom_2 [of p X T] Ccarr |
|
2283 |
by (auto simp: kernel_def image_iff set_eq_iff) meson |
|
2284 |
interpret hb: group_hom "?G2" "homology_group (p-1) (subtopology X S)" |
|
2285 |
"hom_boundary p X S" |
|
2286 |
using hom_boundary_hom group_hom_axioms_def group_hom_def by fastforce |
|
2287 |
let ?A = "B \<otimes>\<^bsub>?G2\<^esub> inv\<^bsub>?G2\<^esub> ?h2 D" |
|
2288 |
have "\<exists>A' \<in> carrier (homology_group p X). hom_induced p X {} X S id A' = A" |
|
2289 |
if "A \<in> carrier ?G2" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2290 |
"hom_boundary p X S A = one (homology_group (p-1) (subtopology X S))" for A |
70095 | 2291 |
using that homology_exactness_axiom_1 [of p X S] |
2292 |
by (simp add: kernel_def subtopology_subtopology image_iff set_eq_iff) meson |
|
2293 |
moreover |
|
2294 |
have "?A \<in> carrier ?G2" |
|
2295 |
by (simp add: Bcarr abelian_relative_homology_group comm_groupE(1) hom_induced_carrier) |
|
2296 |
moreover have "hom_boundary p X S (?h2 D) = hom_boundary p X S B" |
|
2297 |
by (metis (mono_tags, lifting) Ceq Deq comp_eq_dest continuous_map_id iTS naturality_hom_induced) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2298 |
then have "hom_boundary p X S ?A = one (homology_group (p-1) (subtopology X S))" |
70095 | 2299 |
by (simp add: hom_induced_carrier Bcarr) |
2300 |
ultimately obtain W where Wcarr: "W \<in> carrier (homology_group p X)" |
|
2301 |
and Weq: "hom_induced p X {} X S id W = ?A" |
|
2302 |
by blast |
|
2303 |
let ?W = "D \<otimes>\<^bsub>?G3\<^esub> hom_induced p X {} X T id W" |
|
2304 |
show ?thesis |
|
2305 |
proof |
|
2306 |
interpret comm_group "?G2" |
|
2307 |
by (rule abelian_relative_homology_group) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2308 |
have "hom_induced p X T X S id (hom_induced p X {} X T id W) = hom_induced p X {} X S id W" |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2309 |
using assms iTS by (simp add: hom_induced_compose') |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2310 |
then have "B = (?h2 \<circ> hom_induced p X {} X T id) W \<otimes>\<^bsub>?G2\<^esub> ?h2 D" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2311 |
by (simp add: Bcarr Weq hb.G.m_assoc hom_induced_carrier) |
70095 | 2312 |
then show "B = ?h2 ?W" |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2313 |
by (metis hom_mult [OF hom_induced_hom] Dcarr comp_apply hom_induced_carrier m_comm) |
70095 | 2314 |
show "?W \<in> carrier ?G3" |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2315 |
by (simp add: Dcarr comm_groupE(1) hom_induced_carrier) |
70095 | 2316 |
qed |
2317 |
qed |
|
2318 |
ultimately show ?thesis |
|
2319 |
by (auto simp: group_hom_def group_hom_axioms_def hom_induced_hom group_homomorphism_hom_relboundary) |
|
2320 |
qed |
|
2321 |
||
2322 |
||
2323 |
proposition homology_exactness_triple_2: |
|
2324 |
assumes "T \<subseteq> S" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2325 |
shows "exact_seq ([relative_homology_group(p-1) X T, |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2326 |
relative_homology_group(p-1) (subtopology X S) T, |
70095 | 2327 |
relative_homology_group p X S], |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2328 |
[hom_induced (p-1) (subtopology X S) T X T id, hom_relboundary p X S T])" |
70095 | 2329 |
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])") |
2330 |
proof - |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2331 |
let ?H2 = "homology_group (p-1) (subtopology X S)" |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2332 |
have iTS: "id \<in> T \<rightarrow> S" and [simp]: "S \<inter> T = T" |
70095 | 2333 |
using assms by auto |
2334 |
have "?h2 C \<in> kernel ?G2 ?G1 ?h1" for C |
|
2335 |
proof - |
|
2336 |
have "?h1 (?h2 C) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2337 |
= (hom_induced (p-1) X {} X T id \<circ> hom_induced (p-1) (subtopology X S) {} X {} id \<circ> hom_boundary p X S) C" |
70095 | 2338 |
unfolding hom_relboundary_def |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2339 |
by (metis Pi_empty comp_eq_dest_lhs continuous_map_id continuous_map_id_subt funcsetI hom_induced_compose' id_apply) |
70095 | 2340 |
also have "\<dots> = \<one>\<^bsub>?G1\<^esub>" |
2341 |
proof - |
|
2342 |
have *: "hom_boundary p X S C \<in> carrier ?H2" |
|
2343 |
by (simp add: hom_boundary_carrier) |
|
2344 |
moreover have "hom_boundary p X S C \<in> hom_boundary p X S ` carrier ?G3" |
|
2345 |
using homology_exactness_axiom_2 [of p X S] * |
|
2346 |
apply (simp add: kernel_def set_eq_iff) |
|
2347 |
by (metis group_relative_homology_group hom_boundary_default hom_one image_eqI) |
|
2348 |
ultimately |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2349 |
have 1: "hom_induced (p-1) (subtopology X S) {} X {} id (hom_boundary p X S C) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2350 |
= \<one>\<^bsub>homology_group (p-1) X\<^esub>" |
70095 | 2351 |
using homology_exactness_axiom_2 [of p X S] by (simp add: kernel_def) blast |
2352 |
show ?thesis |
|
2353 |
by (simp add: 1 hom_one [OF hom_induced_hom]) |
|
2354 |
qed |
|
2355 |
finally have "?h1 (?h2 C) = \<one>\<^bsub>?G1\<^esub>" . |
|
2356 |
then show ?thesis |
|
2357 |
by (simp add: kernel_def hom_relboundary_def hom_induced_carrier) |
|
2358 |
qed |
|
2359 |
moreover have "x \<in> ?h2 ` carrier ?G3" if "x \<in> kernel ?G2 ?G1 ?h1" for x |
|
2360 |
proof - |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2361 |
let ?homX = "hom_induced (p-1) (subtopology X S) {} X {} id" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2362 |
let ?homXS = "hom_induced (p-1) (subtopology X S) {} (subtopology X S) T id" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2363 |
have "x \<in> carrier (relative_homology_group (p-1) (subtopology X S) T)" |
70095 | 2364 |
using that by (simp add: kernel_def) |
2365 |
moreover |
|
2366 |
have "hom_boundary (p-1) X T \<circ> hom_induced (p-1) (subtopology X S) T X T id = hom_boundary (p-1) (subtopology X S) T" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2367 |
by (metis funcsetI \<open>S \<inter> T = T\<close> continuous_map_id_subt hom_relboundary_def |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2368 |
hom_relboundary_empty id_apply naturality_hom_induced subtopology_subtopology) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2369 |
then have "hom_boundary (p-1) (subtopology X S) T x = \<one>\<^bsub>homology_group (p - 2) (subtopology (subtopology X S) T)\<^esub>" |
70095 | 2370 |
using naturality_hom_induced [of "subtopology X S" X id T T "p-1"] that |
2371 |
hom_one [OF hom_boundary_hom group_relative_homology_group group_relative_homology_group, of "p-1" X T] |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2372 |
by (smt (verit) assms comp_apply inf.absorb_iff2 kernel_def mem_Collect_eq subtopology_subtopology) |
70095 | 2373 |
ultimately |
2374 |
obtain y where ycarr: "y \<in> carrier ?H2" |
|
2375 |
and yeq: "?homXS y = x" |
|
2376 |
using homology_exactness_axiom_1 [of "p-1" "subtopology X S" T] |
|
2377 |
by (simp add: kernel_def image_def set_eq_iff) meson |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2378 |
have "?homX y \<in> carrier (homology_group (p-1) X)" |
70095 | 2379 |
by (simp add: hom_induced_carrier) |
2380 |
moreover |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2381 |
have "(hom_induced (p-1) X {} X T id \<circ> ?homX) y = \<one>\<^bsub>relative_homology_group (p-1) X T\<^esub>" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2382 |
using that |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2383 |
apply (simp add: kernel_def flip: hom_induced_compose) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2384 |
using hom_induced_compose [of "subtopology X S" "subtopology X S" id "{}" T X id T "p-1"] yeq |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2385 |
by auto |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2386 |
then have "hom_induced (p-1) X {} X T id (?homX y) = \<one>\<^bsub>relative_homology_group (p-1) X T\<^esub>" |
70095 | 2387 |
by simp |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2388 |
ultimately obtain z where zcarr: "z \<in> carrier (homology_group (p-1) (subtopology X T))" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2389 |
and zeq: "hom_induced (p-1) (subtopology X T) {} X {} id z = ?homX y" |
70095 | 2390 |
using homology_exactness_axiom_3 [of "p-1" X T] |
2391 |
by (auto simp: kernel_def dest!: equalityD1 [of "Collect _"]) |
|
2392 |
have *: "\<And>t. \<lbrakk>t \<in> carrier ?H2; |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2393 |
hom_induced (p-1) (subtopology X S) {} X {} id t = \<one>\<^bsub>homology_group (p-1) X\<^esub>\<rbrakk> |
70095 | 2394 |
\<Longrightarrow> t \<in> hom_boundary p X S ` carrier ?G3" |
2395 |
using homology_exactness_axiom_2 [of p X S] |
|
2396 |
by (auto simp: kernel_def dest!: equalityD1 [of "Collect _"]) |
|
2397 |
interpret comm_group "?H2" |
|
2398 |
by (rule abelian_relative_homology_group) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2399 |
interpret gh: group_hom ?H2 "homology_group (p-1) X" "hom_induced (p-1) (subtopology X S) {} X {} id" |
70095 | 2400 |
by (meson group_hom_axioms_def group_hom_def group_relative_homology_group hom_induced) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2401 |
let ?yz = "y \<otimes>\<^bsub>?H2\<^esub> inv\<^bsub>?H2\<^esub> hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id z" |
70095 | 2402 |
have yzcarr: "?yz \<in> carrier ?H2" |
2403 |
by (simp add: hom_induced_carrier ycarr) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2404 |
have "hom_induced (p-1) (subtopology X S) {} X {} id y = |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2405 |
hom_induced (p-1) (subtopology X S) {} X {} id |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2406 |
(hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id z)" |
70095 | 2407 |
by (metis assms continuous_map_id_subt hom_induced_compose_empty inf.absorb_iff2 o_apply o_id subtopology_subtopology zeq) |
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2408 |
then have yzeq: "hom_induced (p-1) (subtopology X S) {} X {} id ?yz = \<one>\<^bsub>homology_group (p-1) X\<^esub>" |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2409 |
by (simp add: hom_induced_carrier ycarr gh.inv_solve_right') |
70095 | 2410 |
obtain w where wcarr: "w \<in> carrier ?G3" and weq: "hom_boundary p X S w = ?yz" |
2411 |
using * [OF yzcarr yzeq] by blast |
|
2412 |
interpret gh2: group_hom ?H2 ?G2 ?homXS |
|
2413 |
by (simp add: group_hom_axioms_def group_hom_def hom_induced_hom) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2414 |
have "?homXS (hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id z) |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2415 |
= \<one>\<^bsub>relative_homology_group (p-1) (subtopology X S) T\<^esub>" |
70095 | 2416 |
using homology_exactness_axiom_3 [of "p-1" "subtopology X S" T] zcarr |
2417 |
by (auto simp: kernel_def subtopology_subtopology) |
|
2418 |
then show ?thesis |
|
2419 |
apply (rule_tac x=w in image_eqI) |
|
2420 |
apply (simp_all add: hom_relboundary_def weq wcarr) |
|
2421 |
by (metis gh2.hom_inv gh2.hom_mult gh2.inv_one gh2.r_one group.inv_closed group_l_invI hom_induced_carrier l_inv_ex ycarr yeq) |
|
2422 |
qed |
|
2423 |
ultimately show ?thesis |
|
2424 |
by (auto simp: group_hom_axioms_def group_hom_def group_homomorphism_hom_relboundary hom_induced_hom) |
|
2425 |
qed |
|
2426 |
||
2427 |
proposition homology_exactness_triple_3: |
|
2428 |
assumes "T \<subseteq> S" |
|
2429 |
shows "exact_seq ([relative_homology_group p X S, |
|
2430 |
relative_homology_group p X T, |
|
2431 |
relative_homology_group p (subtopology X S) T], |
|
2432 |
[hom_induced p X T X S id, hom_induced p (subtopology X S) T X T id])" |
|
2433 |
(is "exact_seq ([?G1,?G2,?G3], [?h1,?h2])") |
|
2434 |
proof - |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2435 |
have iTS: "id \<in> T \<rightarrow> S" and [simp]: "S \<inter> T = T" |
70095 | 2436 |
using assms by auto |
2437 |
have 1: "?h2 x \<in> kernel ?G2 ?G1 ?h1" for x |
|
2438 |
proof - |
|
2439 |
have "?h1 (?h2 x) |
|
2440 |
= (hom_induced p (subtopology X S) S X S id \<circ> |
|
2441 |
hom_induced p (subtopology X S) T (subtopology X S) S id) x" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2442 |
by (simp add: hom_induced_compose' iTS) |
70095 | 2443 |
also have "\<dots> = \<one>\<^bsub>relative_homology_group p X S\<^esub>" |
2444 |
proof - |
|
2445 |
have "trivial_group (relative_homology_group p (subtopology X S) S)" |
|
2446 |
using trivial_relative_homology_group_topspace [of p "subtopology X S"] |
|
2447 |
by (metis inf_right_idem relative_homology_group_restrict topspace_subtopology) |
|
2448 |
then have 1: "hom_induced p (subtopology X S) T (subtopology X S) S id x |
|
2449 |
= \<one>\<^bsub>relative_homology_group p (subtopology X S) S\<^esub>" |
|
2450 |
using hom_induced_carrier by (fastforce simp add: trivial_group_def) |
|
2451 |
show ?thesis |
|
2452 |
by (simp add: 1 hom_one [OF hom_induced_hom]) |
|
2453 |
qed |
|
2454 |
finally have "?h1 (?h2 x) = \<one>\<^bsub>relative_homology_group p X S\<^esub>" . |
|
2455 |
then show ?thesis |
|
2456 |
by (simp add: hom_induced_carrier kernel_def) |
|
2457 |
qed |
|
2458 |
moreover have "x \<in> ?h2 ` carrier ?G3" if x: "x \<in> kernel ?G2 ?G1 ?h1" for x |
|
2459 |
proof - |
|
2460 |
have xcarr: "x \<in> carrier ?G2" |
|
2461 |
using that by (auto simp: kernel_def) |
|
2462 |
interpret G2: comm_group "?G2" |
|
2463 |
by (rule abelian_relative_homology_group) |
|
2464 |
let ?b = "hom_boundary p X T x" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2465 |
have bcarr: "?b \<in> carrier(homology_group(p-1) (subtopology X T))" |
70095 | 2466 |
by (simp add: hom_boundary_carrier) |
2467 |
have "hom_boundary p X S (hom_induced p X T X S id x) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2468 |
= hom_induced (p-1) (subtopology X T) {} (subtopology X S) {} id |
70095 | 2469 |
(hom_boundary p X T x)" |
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2470 |
using naturality_hom_induced [of X X id T S p] iTS |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2471 |
by (simp add: assms o_def) meson |
70095 | 2472 |
with bcarr have "hom_boundary p X T x \<in> hom_boundary p (subtopology X S) T ` carrier ?G3" |
2473 |
using homology_exactness_axiom_2 [of p "subtopology X S" T] x |
|
2474 |
apply (simp add: kernel_def set_eq_iff subtopology_subtopology) |
|
2475 |
by (metis group_relative_homology_group hom_boundary_hom hom_one set_eq_iff) |
|
2476 |
then obtain u where ucarr: "u \<in> carrier ?G3" |
|
2477 |
and ueq: "hom_boundary p X T x = hom_boundary p (subtopology X S) T u" |
|
2478 |
by (auto simp: kernel_def set_eq_iff subtopology_subtopology hom_boundary_carrier) |
|
2479 |
define y where "y = x \<otimes>\<^bsub>?G2\<^esub> inv\<^bsub>?G2\<^esub> ?h2 u" |
|
2480 |
have ycarr: "y \<in> carrier ?G2" |
|
2481 |
using x by (simp add: y_def kernel_def hom_induced_carrier) |
|
2482 |
interpret hb: group_hom ?G2 "homology_group (p-1) (subtopology X T)" "hom_boundary p X T" |
|
2483 |
by (simp add: group_hom_axioms_def group_hom_def hom_boundary_hom) |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2484 |
have yyy: "hom_boundary p X T y = \<one>\<^bsub>homology_group (p-1) (subtopology X T)\<^esub>" |
70095 | 2485 |
apply (simp add: y_def bcarr xcarr hom_induced_carrier hom_boundary_carrier hb.inv_solve_right') |
2486 |
using naturality_hom_induced [of concl: p X T "subtopology X S" T id] |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2487 |
by (metis \<open>S \<inter> T = T\<close> comp_eq_dest_lhs continuous_map_id_subt |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2488 |
hom_relboundary_def hom_relboundary_empty id_apply image_id |
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2489 |
image_subset_iff_funcset subsetI subtopology_subtopology ueq) |
70095 | 2490 |
then have "y \<in> hom_induced p X {} X T id ` carrier (homology_group p X)" |
2491 |
using homology_exactness_axiom_1 [of p X T] x ycarr by (auto simp: kernel_def) |
|
2492 |
then obtain z where zcarr: "z \<in> carrier (homology_group p X)" |
|
2493 |
and zeq: "hom_induced p X {} X T id z = y" |
|
2494 |
by auto |
|
2495 |
interpret gh1: group_hom ?G2 ?G1 ?h1 |
|
2496 |
by (meson group_hom_axioms_def group_hom_def group_relative_homology_group hom_induced) |
|
2497 |
||
2498 |
have "hom_induced p X {} X S id z = (hom_induced p X T X S id \<circ> hom_induced p X {} X T id) z" |
|
82323
b022c013b04b
Function space instead of image closure
paulson <lp15@cam.ac.uk>
parents:
80175
diff
changeset
|
2499 |
using iTS by (simp add: assms flip: hom_induced_compose) |
70095 | 2500 |
also have "\<dots> = \<one>\<^bsub>relative_homology_group p X S\<^esub>" |
2501 |
using x 1 by (simp add: kernel_def zeq y_def) |
|
2502 |
finally have "hom_induced p X {} X S id z = \<one>\<^bsub>relative_homology_group p X S\<^esub>" . |
|
2503 |
then have "z \<in> hom_induced p (subtopology X S) {} X {} id ` |
|
2504 |
carrier (homology_group p (subtopology X S))" |
|
2505 |
using homology_exactness_axiom_3 [of p X S] zcarr by (auto simp: kernel_def) |
|
2506 |
then obtain w where wcarr: "w \<in> carrier (homology_group p (subtopology X S))" |
|
2507 |
and weq: "hom_induced p (subtopology X S) {} X {} id w = z" |
|
2508 |
by blast |
|
2509 |
let ?u = "hom_induced p (subtopology X S) {} (subtopology X S) T id w \<otimes>\<^bsub>?G3\<^esub> u" |
|
2510 |
show ?thesis |
|
2511 |
proof |
|
2512 |
have *: "x = z \<otimes>\<^bsub>?G2\<^esub> u" |
|
2513 |
if "z = x \<otimes>\<^bsub>?G2\<^esub> inv\<^bsub>?G2\<^esub> u" "z \<in> carrier ?G2" "u \<in> carrier ?G2" for z u |
|
2514 |
using that by (simp add: group.inv_solve_right xcarr) |
|
2515 |
have eq: "?h2 \<circ> hom_induced p (subtopology X S) {} (subtopology X S) T id |
|
2516 |
= hom_induced p X {} X T id \<circ> hom_induced p (subtopology X S) {} X {} id" |
|
2517 |
by (simp flip: hom_induced_compose) |
|
2518 |
show "x = hom_induced p (subtopology X S) T X T id ?u" |
|
80101
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2519 |
using hom_mult [OF hom_induced_hom] hom_induced_carrier * |
2ff4cc7fa70a
More tidying and removal of "apply"
paulson <lp15@cam.ac.uk>
parents:
78336
diff
changeset
|
2520 |
by (smt (verit, best) comp_eq_dest eq ucarr weq y_def zeq) |
70095 | 2521 |
show "?u \<in> carrier (relative_homology_group p (subtopology X S) T)" |
2522 |
by (simp add: abelian_relative_homology_group comm_groupE(1) hom_induced_carrier ucarr) |
|
2523 |
qed |
|
2524 |
qed |
|
2525 |
ultimately show ?thesis |
|
2526 |
by (auto simp: group_hom_axioms_def group_hom_def hom_induced_hom) |
|
2527 |
qed |
|
2528 |
||
2529 |
end |
|
2530 |
||
2531 |