author  haftmann 
Thu, 04 Oct 2007 19:41:55 +0200  
changeset 24841  df8448bc7a8b 
parent 23467  d1b97708d5eb 
child 26391  6e8aa5a4eb82 
permissions  rwrr 
17441  1 
(* Title: CTT/CTT.thy 
0  2 
ID: $Id$ 
3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 

4 
Copyright 1993 University of Cambridge 

5 
*) 

6 

17441  7 
header {* Constructive Type Theory *} 
0  8 

17441  9 
theory CTT 
10 
imports Pure 

19761  11 
uses "~~/src/Provers/typedsimp.ML" ("rew.ML") 
17441  12 
begin 
13 

14 
typedecl i 

15 
typedecl t 

16 
typedecl o 

0  17 

18 
consts 

19 
(*Types*) 

17441  20 
F :: "t" 
21 
T :: "t" (*F is empty, T contains one element*) 

0  22 
contr :: "i=>i" 
23 
tt :: "i" 

24 
(*Natural numbers*) 

25 
N :: "t" 

26 
succ :: "i=>i" 

27 
rec :: "[i, i, [i,i]=>i] => i" 

28 
(*Unions*) 

17441  29 
inl :: "i=>i" 
30 
inr :: "i=>i" 

0  31 
when :: "[i, i=>i, i=>i]=>i" 
32 
(*General Sum and Binary Product*) 

33 
Sum :: "[t, i=>t]=>t" 

17441  34 
fst :: "i=>i" 
35 
snd :: "i=>i" 

0  36 
split :: "[i, [i,i]=>i] =>i" 
37 
(*General Product and Function Space*) 

38 
Prod :: "[t, i=>t]=>t" 

14765  39 
(*Types*) 
22808  40 
Plus :: "[t,t]=>t" (infixr "+" 40) 
0  41 
(*Equality type*) 
42 
Eq :: "[t,i,i]=>t" 

43 
eq :: "i" 

44 
(*Judgements*) 

45 
Type :: "t => prop" ("(_ type)" [10] 5) 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

46 
Eqtype :: "[t,t]=>prop" ("(_ =/ _)" [10,10] 5) 
0  47 
Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5) 
10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

48 
Eqelem :: "[i,i,t]=>prop" ("(_ =/ _ :/ _)" [10,10,10] 5) 
0  49 
Reduce :: "[i,i]=>prop" ("Reduce[_,_]") 
50 
(*Types*) 

14765  51 

0  52 
(*Functions*) 
53 
lambda :: "(i => i) => i" (binder "lam " 10) 

22808  54 
app :: "[i,i]=>i" (infixl "`" 60) 
0  55 
(*Natural numbers*) 
56 
"0" :: "i" ("0") 

57 
(*Pairing*) 

58 
pair :: "[i,i]=>i" ("(1<_,/_>)") 

59 

14765  60 
syntax 
19761  61 
"_PROD" :: "[idt,t,t]=>t" ("(3PROD _:_./ _)" 10) 
62 
"_SUM" :: "[idt,t,t]=>t" ("(3SUM _:_./ _)" 10) 

0  63 
translations 
19761  64 
"PROD x:A. B" == "Prod(A, %x. B)" 
65 
"SUM x:A. B" == "Sum(A, %x. B)" 

66 

67 
abbreviation 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

68 
Arrow :: "[t,t]=>t" (infixr ">" 30) where 
19761  69 
"A > B == PROD _:A. B" 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

70 
abbreviation 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

71 
Times :: "[t,t]=>t" (infixr "*" 50) where 
19761  72 
"A * B == SUM _:A. B" 
0  73 

21210  74 
notation (xsymbols) 
21524  75 
lambda (binder "\<lambda>\<lambda>" 10) and 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

76 
Elem ("(_ /\<in> _)" [10,10] 5) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

77 
Eqelem ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

78 
Arrow (infixr "\<longrightarrow>" 30) and 
19761  79 
Times (infixr "\<times>" 50) 
17441  80 

21210  81 
notation (HTML output) 
21524  82 
lambda (binder "\<lambda>\<lambda>" 10) and 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

83 
Elem ("(_ /\<in> _)" [10,10] 5) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

84 
Eqelem ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and 
19761  85 
Times (infixr "\<times>" 50) 
17441  86 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

87 
syntax (xsymbols) 
21524  88 
"_PROD" :: "[idt,t,t] => t" ("(3\<Pi> _\<in>_./ _)" 10) 
89 
"_SUM" :: "[idt,t,t] => t" ("(3\<Sigma> _\<in>_./ _)" 10) 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

90 

14565  91 
syntax (HTML output) 
21524  92 
"_PROD" :: "[idt,t,t] => t" ("(3\<Pi> _\<in>_./ _)" 10) 
93 
"_SUM" :: "[idt,t,t] => t" ("(3\<Sigma> _\<in>_./ _)" 10) 

14565  94 

17441  95 
axioms 
0  96 

97 
(*Reduction: a weaker notion than equality; a hack for simplification. 

98 
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" 

99 
are textually identical.*) 

100 

101 
(*does not verify a:A! Sound because only trans_red uses a Reduce premise 

102 
No new theorems can be proved about the standard judgements.*) 

17441  103 
refl_red: "Reduce[a,a]" 
104 
red_if_equal: "a = b : A ==> Reduce[a,b]" 

105 
trans_red: "[ a = b : A; Reduce[b,c] ] ==> a = c : A" 

0  106 

107 
(*Reflexivity*) 

108 

17441  109 
refl_type: "A type ==> A = A" 
110 
refl_elem: "a : A ==> a = a : A" 

0  111 

112 
(*Symmetry*) 

113 

17441  114 
sym_type: "A = B ==> B = A" 
115 
sym_elem: "a = b : A ==> b = a : A" 

0  116 

117 
(*Transitivity*) 

118 

17441  119 
trans_type: "[ A = B; B = C ] ==> A = C" 
120 
trans_elem: "[ a = b : A; b = c : A ] ==> a = c : A" 

0  121 

17441  122 
equal_types: "[ a : A; A = B ] ==> a : B" 
123 
equal_typesL: "[ a = b : A; A = B ] ==> a = b : B" 

0  124 

125 
(*Substitution*) 

126 

17441  127 
subst_type: "[ a : A; !!z. z:A ==> B(z) type ] ==> B(a) type" 
128 
subst_typeL: "[ a = c : A; !!z. z:A ==> B(z) = D(z) ] ==> B(a) = D(c)" 

0  129 

17441  130 
subst_elem: "[ a : A; !!z. z:A ==> b(z):B(z) ] ==> b(a):B(a)" 
131 
subst_elemL: 

0  132 
"[ a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) ] ==> b(a)=d(c) : B(a)" 
133 

134 

135 
(*The type N  natural numbers*) 

136 

17441  137 
NF: "N type" 
138 
NI0: "0 : N" 

139 
NI_succ: "a : N ==> succ(a) : N" 

140 
NI_succL: "a = b : N ==> succ(a) = succ(b) : N" 

0  141 

17441  142 
NE: 
143 
"[ p: N; a: C(0); !!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] 

3837  144 
==> rec(p, a, %u v. b(u,v)) : C(p)" 
0  145 

17441  146 
NEL: 
147 
"[ p = q : N; a = c : C(0); 

148 
!!u v. [ u: N; v: C(u) ] ==> b(u,v) = d(u,v): C(succ(u)) ] 

3837  149 
==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)" 
0  150 

17441  151 
NC0: 
152 
"[ a: C(0); !!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] 

3837  153 
==> rec(0, a, %u v. b(u,v)) = a : C(0)" 
0  154 

17441  155 
NC_succ: 
156 
"[ p: N; a: C(0); 

157 
!!u v. [ u: N; v: C(u) ] ==> b(u,v): C(succ(u)) ] ==> 

3837  158 
rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))" 
0  159 

160 
(*The fourth Peano axiom. See page 91 of MartinLof's book*) 

17441  161 
zero_ne_succ: 
0  162 
"[ a: N; 0 = succ(a) : N ] ==> 0: F" 
163 

164 

165 
(*The Product of a family of types*) 

166 

17441  167 
ProdF: "[ A type; !!x. x:A ==> B(x) type ] ==> PROD x:A. B(x) type" 
0  168 

17441  169 
ProdFL: 
170 
"[ A = C; !!x. x:A ==> B(x) = D(x) ] ==> 

3837  171 
PROD x:A. B(x) = PROD x:C. D(x)" 
0  172 

17441  173 
ProdI: 
3837  174 
"[ A type; !!x. x:A ==> b(x):B(x)] ==> lam x. b(x) : PROD x:A. B(x)" 
0  175 

17441  176 
ProdIL: 
177 
"[ A type; !!x. x:A ==> b(x) = c(x) : B(x)] ==> 

3837  178 
lam x. b(x) = lam x. c(x) : PROD x:A. B(x)" 
0  179 

17441  180 
ProdE: "[ p : PROD x:A. B(x); a : A ] ==> p`a : B(a)" 
181 
ProdEL: "[ p=q: PROD x:A. B(x); a=b : A ] ==> p`a = q`b : B(a)" 

0  182 

17441  183 
ProdC: 
184 
"[ a : A; !!x. x:A ==> b(x) : B(x)] ==> 

3837  185 
(lam x. b(x)) ` a = b(a) : B(a)" 
0  186 

17441  187 
ProdC2: 
3837  188 
"p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)" 
0  189 

190 

191 
(*The Sum of a family of types*) 

192 

17441  193 
SumF: "[ A type; !!x. x:A ==> B(x) type ] ==> SUM x:A. B(x) type" 
194 
SumFL: 

3837  195 
"[ A = C; !!x. x:A ==> B(x) = D(x) ] ==> SUM x:A. B(x) = SUM x:C. D(x)" 
0  196 

17441  197 
SumI: "[ a : A; b : B(a) ] ==> <a,b> : SUM x:A. B(x)" 
198 
SumIL: "[ a=c:A; b=d:B(a) ] ==> <a,b> = <c,d> : SUM x:A. B(x)" 

0  199 

17441  200 
SumE: 
201 
"[ p: SUM x:A. B(x); !!x y. [ x:A; y:B(x) ] ==> c(x,y): C(<x,y>) ] 

3837  202 
==> split(p, %x y. c(x,y)) : C(p)" 
0  203 

17441  204 
SumEL: 
205 
"[ p=q : SUM x:A. B(x); 

206 
!!x y. [ x:A; y:B(x) ] ==> c(x,y)=d(x,y): C(<x,y>)] 

3837  207 
==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)" 
0  208 

17441  209 
SumC: 
210 
"[ a: A; b: B(a); !!x y. [ x:A; y:B(x) ] ==> c(x,y): C(<x,y>) ] 

3837  211 
==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)" 
0  212 

17441  213 
fst_def: "fst(a) == split(a, %x y. x)" 
214 
snd_def: "snd(a) == split(a, %x y. y)" 

0  215 

216 

217 
(*The sum of two types*) 

218 

17441  219 
PlusF: "[ A type; B type ] ==> A+B type" 
220 
PlusFL: "[ A = C; B = D ] ==> A+B = C+D" 

0  221 

17441  222 
PlusI_inl: "[ a : A; B type ] ==> inl(a) : A+B" 
223 
PlusI_inlL: "[ a = c : A; B type ] ==> inl(a) = inl(c) : A+B" 

0  224 

17441  225 
PlusI_inr: "[ A type; b : B ] ==> inr(b) : A+B" 
226 
PlusI_inrL: "[ A type; b = d : B ] ==> inr(b) = inr(d) : A+B" 

0  227 

17441  228 
PlusE: 
229 
"[ p: A+B; !!x. x:A ==> c(x): C(inl(x)); 

230 
!!y. y:B ==> d(y): C(inr(y)) ] 

3837  231 
==> when(p, %x. c(x), %y. d(y)) : C(p)" 
0  232 

17441  233 
PlusEL: 
234 
"[ p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); 

235 
!!y. y: B ==> d(y) = f(y) : C(inr(y)) ] 

3837  236 
==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)" 
0  237 

17441  238 
PlusC_inl: 
239 
"[ a: A; !!x. x:A ==> c(x): C(inl(x)); 

240 
!!y. y:B ==> d(y): C(inr(y)) ] 

3837  241 
==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))" 
0  242 

17441  243 
PlusC_inr: 
244 
"[ b: B; !!x. x:A ==> c(x): C(inl(x)); 

245 
!!y. y:B ==> d(y): C(inr(y)) ] 

3837  246 
==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))" 
0  247 

248 

249 
(*The type Eq*) 

250 

17441  251 
EqF: "[ A type; a : A; b : A ] ==> Eq(A,a,b) type" 
252 
EqFL: "[ A=B; a=c: A; b=d : A ] ==> Eq(A,a,b) = Eq(B,c,d)" 

253 
EqI: "a = b : A ==> eq : Eq(A,a,b)" 

254 
EqE: "p : Eq(A,a,b) ==> a = b : A" 

0  255 

256 
(*By equality of types, can prove C(p) from C(eq), an elimination rule*) 

17441  257 
EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" 
0  258 

259 
(*The type F*) 

260 

17441  261 
FF: "F type" 
262 
FE: "[ p: F; C type ] ==> contr(p) : C" 

263 
FEL: "[ p = q : F; C type ] ==> contr(p) = contr(q) : C" 

0  264 

265 
(*The type T 

266 
MartinLof's book (page 68) discusses elimination and computation. 

267 
Elimination can be derived by computation and equality of types, 

268 
but with an extra premise C(x) type x:T. 

269 
Also computation can be derived from elimination. *) 

270 

17441  271 
TF: "T type" 
272 
TI: "tt : T" 

273 
TE: "[ p : T; c : C(tt) ] ==> c : C(p)" 

274 
TEL: "[ p = q : T; c = d : C(tt) ] ==> c = d : C(p)" 

275 
TC: "p : T ==> p = tt : T" 

0  276 

19761  277 

278 
subsection "Tactics and derived rules for Constructive Type Theory" 

279 

280 
(*Formation rules*) 

281 
lemmas form_rls = NF ProdF SumF PlusF EqF FF TF 

282 
and formL_rls = ProdFL SumFL PlusFL EqFL 

283 

284 
(*Introduction rules 

285 
OMITTED: EqI, because its premise is an eqelem, not an elem*) 

286 
lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI 

287 
and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL 

288 

289 
(*Elimination rules 

290 
OMITTED: EqE, because its conclusion is an eqelem, not an elem 

291 
TE, because it does not involve a constructor *) 

292 
lemmas elim_rls = NE ProdE SumE PlusE FE 

293 
and elimL_rls = NEL ProdEL SumEL PlusEL FEL 

294 

295 
(*OMITTED: eqC are TC because they make rewriting loop: p = un = un = ... *) 

296 
lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr 

297 

298 
(*rules with conclusion a:A, an elem judgement*) 

299 
lemmas element_rls = intr_rls elim_rls 

300 

301 
(*Definitions are (meta)equality axioms*) 

302 
lemmas basic_defs = fst_def snd_def 

303 

304 
(*Compare with standard version: B is applied to UNSIMPLIFIED expression! *) 

305 
lemma SumIL2: "[ c=a : A; d=b : B(a) ] ==> <c,d> = <a,b> : Sum(A,B)" 

306 
apply (rule sym_elem) 

307 
apply (rule SumIL) 

308 
apply (rule_tac [!] sym_elem) 

309 
apply assumption+ 

310 
done 

311 

312 
lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL 

313 

314 
(*Exploit p:Prod(A,B) to create the assumption z:B(a). 

315 
A more natural form of product elimination. *) 

316 
lemma subst_prodE: 

317 
assumes "p: Prod(A,B)" 

318 
and "a: A" 

319 
and "!!z. z: B(a) ==> c(z): C(z)" 

320 
shows "c(p`a): C(p`a)" 

321 
apply (rule prems ProdE)+ 

322 
done 

323 

324 

325 
subsection {* Tactics for type checking *} 

326 

327 
ML {* 

328 

329 
local 

330 

331 
fun is_rigid_elem (Const("CTT.Elem",_) $ a $ _) = not(is_Var (head_of a)) 

332 
 is_rigid_elem (Const("CTT.Eqelem",_) $ a $ _ $ _) = not(is_Var (head_of a)) 

333 
 is_rigid_elem (Const("CTT.Type",_) $ a) = not(is_Var (head_of a)) 

334 
 is_rigid_elem _ = false 

335 

336 
in 

337 

338 
(*Try solving a:A or a=b:A by assumption provided a is rigid!*) 

339 
val test_assume_tac = SUBGOAL(fn (prem,i) => 

340 
if is_rigid_elem (Logic.strip_assums_concl prem) 

341 
then assume_tac i else no_tac) 

342 

343 
fun ASSUME tf i = test_assume_tac i ORELSE tf i 

344 

345 
end; 

346 

347 
*} 

348 

349 
(*For simplification: type formation and checking, 

350 
but no equalities between terms*) 

351 
lemmas routine_rls = form_rls formL_rls refl_type element_rls 

352 

353 
ML {* 

354 
local 

355 
val routine_rls = thms "routine_rls"; 

356 
val form_rls = thms "form_rls"; 

357 
val intr_rls = thms "intr_rls"; 

358 
val element_rls = thms "element_rls"; 

359 
val equal_rls = form_rls @ element_rls @ thms "intrL_rls" @ 

360 
thms "elimL_rls" @ thms "refl_elem" 

361 
in 

362 

363 
fun routine_tac rls prems = ASSUME (filt_resolve_tac (prems @ rls) 4); 

364 

365 
(*Solve all subgoals "A type" using formation rules. *) 

366 
val form_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(form_rls) 1)); 

367 

368 
(*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *) 

369 
fun typechk_tac thms = 

370 
let val tac = filt_resolve_tac (thms @ form_rls @ element_rls) 3 

371 
in REPEAT_FIRST (ASSUME tac) end 

372 

373 
(*Solve a:A (a flexible, A rigid) by introduction rules. 

374 
Cannot use stringtrees (filt_resolve_tac) since 

375 
goals like ?a:SUM(A,B) have a trivial headstring *) 

376 
fun intr_tac thms = 

377 
let val tac = filt_resolve_tac(thms@form_rls@intr_rls) 1 

378 
in REPEAT_FIRST (ASSUME tac) end 

379 

380 
(*Equality proving: solve a=b:A (where a is rigid) by long rules. *) 

381 
fun equal_tac thms = 

382 
REPEAT_FIRST (ASSUME (filt_resolve_tac (thms @ equal_rls) 3)) 

0  383 

17441  384 
end 
19761  385 

386 
*} 

387 

388 

389 
subsection {* Simplification *} 

390 

391 
(*To simplify the type in a goal*) 

392 
lemma replace_type: "[ B = A; a : A ] ==> a : B" 

393 
apply (rule equal_types) 

394 
apply (rule_tac [2] sym_type) 

395 
apply assumption+ 

396 
done 

397 

398 
(*Simplify the parameter of a unary type operator.*) 

399 
lemma subst_eqtyparg: 

23467  400 
assumes 1: "a=c : A" 
401 
and 2: "!!z. z:A ==> B(z) type" 

19761  402 
shows "B(a)=B(c)" 
403 
apply (rule subst_typeL) 

404 
apply (rule_tac [2] refl_type) 

23467  405 
apply (rule 1) 
406 
apply (erule 2) 

19761  407 
done 
408 

409 
(*Simplification rules for Constructive Type Theory*) 

410 
lemmas reduction_rls = comp_rls [THEN trans_elem] 

411 

412 
ML {* 

413 
local 

414 
val EqI = thm "EqI"; 

415 
val EqE = thm "EqE"; 

416 
val NE = thm "NE"; 

417 
val FE = thm "FE"; 

418 
val ProdI = thm "ProdI"; 

419 
val SumI = thm "SumI"; 

420 
val SumE = thm "SumE"; 

421 
val PlusE = thm "PlusE"; 

422 
val PlusI_inl = thm "PlusI_inl"; 

423 
val PlusI_inr = thm "PlusI_inr"; 

424 
val subst_prodE = thm "subst_prodE"; 

425 
val intr_rls = thms "intr_rls"; 

426 
in 

427 

428 
(*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification. 

429 
Uses other intro rules to avoid changing flexible goals.*) 

430 
val eqintr_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(EqI::intr_rls) 1)) 

431 

432 
(** Tactics that instantiate CTTrules. 

433 
Vars in the given terms will be incremented! 

434 
The (rtac EqE i) lets them apply to equality judgements. **) 

435 

436 
fun NE_tac (sp: string) i = 

437 
TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] NE i 

438 

439 
fun SumE_tac (sp: string) i = 

440 
TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] SumE i 

441 

442 
fun PlusE_tac (sp: string) i = 

443 
TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] PlusE i 

444 

445 
(** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **) 

446 

447 
(*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *) 

448 
fun add_mp_tac i = 

449 
rtac subst_prodE i THEN assume_tac i THEN assume_tac i 

450 

451 
(*Finds P>Q and P in the assumptions, replaces implication by Q *) 

452 
fun mp_tac i = etac subst_prodE i THEN assume_tac i 

453 

454 
(*"safe" when regarded as predicate calculus rules*) 

455 
val safe_brls = sort (make_ord lessb) 

456 
[ (true,FE), (true,asm_rl), 

457 
(false,ProdI), (true,SumE), (true,PlusE) ] 

458 

459 
val unsafe_brls = 

460 
[ (false,PlusI_inl), (false,PlusI_inr), (false,SumI), 

461 
(true,subst_prodE) ] 

462 

463 
(*0 subgoals vs 1 or more*) 

464 
val (safe0_brls, safep_brls) = 

465 
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls 

466 

467 
fun safestep_tac thms i = 

468 
form_tac ORELSE 

469 
resolve_tac thms i ORELSE 

470 
biresolve_tac safe0_brls i ORELSE mp_tac i ORELSE 

471 
DETERM (biresolve_tac safep_brls i) 

472 

473 
fun safe_tac thms i = DEPTH_SOLVE_1 (safestep_tac thms i) 

474 

475 
fun step_tac thms = safestep_tac thms ORELSE' biresolve_tac unsafe_brls 

476 

477 
(*Fails unless it solves the goal!*) 

478 
fun pc_tac thms = DEPTH_SOLVE_1 o (step_tac thms) 

479 

480 
end 

481 
*} 

482 

483 
use "rew.ML" 

484 

485 

486 
subsection {* The elimination rules for fst/snd *} 

487 

488 
lemma SumE_fst: "p : Sum(A,B) ==> fst(p) : A" 

489 
apply (unfold basic_defs) 

490 
apply (erule SumE) 

491 
apply assumption 

492 
done 

493 

494 
(*The first premise must be p:Sum(A,B) !!*) 

495 
lemma SumE_snd: 

496 
assumes major: "p: Sum(A,B)" 

497 
and "A type" 

498 
and "!!x. x:A ==> B(x) type" 

499 
shows "snd(p) : B(fst(p))" 

500 
apply (unfold basic_defs) 

501 
apply (rule major [THEN SumE]) 

502 
apply (rule SumC [THEN subst_eqtyparg, THEN replace_type]) 

503 
apply (tactic {* typechk_tac (thms "prems") *}) 

504 
done 

505 

506 
end 