src/ZF/Tools/inductive_package.ML
author wenzelm
Sat Oct 06 16:50:04 2007 +0200 (2007-10-06)
changeset 24867 e5b55d7be9bb
parent 24861 cc669ca5f382
child 24893 b8ef7afe3a6b
permissions -rw-r--r--
simplified interfaces for outer syntax;
wenzelm@12191
     1
(*  Title:      ZF/Tools/inductive_package.ML
paulson@6051
     2
    ID:         $Id$
paulson@6051
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@6051
     4
    Copyright   1994  University of Cambridge
paulson@6051
     5
paulson@6051
     6
Fixedpoint definition module -- for Inductive/Coinductive Definitions
paulson@6051
     7
paulson@6051
     8
The functor will be instantiated for normal sums/products (inductive defs)
paulson@6051
     9
                         and non-standard sums/products (coinductive defs)
paulson@6051
    10
paulson@6051
    11
Sums are used only for mutual recursion;
paulson@6051
    12
Products are used only to derive "streamlined" induction rules for relations
paulson@6051
    13
*)
paulson@6051
    14
paulson@6051
    15
type inductive_result =
paulson@6051
    16
   {defs       : thm list,             (*definitions made in thy*)
paulson@6051
    17
    bnd_mono   : thm,                  (*monotonicity for the lfp definition*)
paulson@6051
    18
    dom_subset : thm,                  (*inclusion of recursive set in dom*)
paulson@6051
    19
    intrs      : thm list,             (*introduction rules*)
paulson@6051
    20
    elim       : thm,                  (*case analysis theorem*)
paulson@6141
    21
    mk_cases   : string -> thm,        (*generates case theorems*)
paulson@6051
    22
    induct     : thm,                  (*main induction rule*)
paulson@6051
    23
    mutual_induct : thm};              (*mutual induction rule*)
paulson@6051
    24
paulson@6051
    25
paulson@6051
    26
(*Functor's result signature*)
paulson@6051
    27
signature INDUCTIVE_PACKAGE =
wenzelm@12132
    28
sig
paulson@6051
    29
  (*Insert definitions for the recursive sets, which
paulson@6051
    30
     must *already* be declared as constants in parent theory!*)
wenzelm@12132
    31
  val add_inductive_i: bool -> term list * term ->
wenzelm@18728
    32
    ((bstring * term) * attribute list) list ->
wenzelm@12132
    33
    thm list * thm list * thm list * thm list -> theory -> theory * inductive_result
wenzelm@12132
    34
  val add_inductive: string list * string ->
wenzelm@15703
    35
    ((bstring * string) * Attrib.src list) list ->
wenzelm@15703
    36
    (thmref * Attrib.src list) list * (thmref * Attrib.src list) list *
wenzelm@15703
    37
    (thmref * Attrib.src list) list * (thmref * Attrib.src list) list ->
wenzelm@12132
    38
    theory -> theory * inductive_result
wenzelm@12132
    39
end;
paulson@6051
    40
paulson@6051
    41
paulson@6051
    42
(*Declares functions to add fixedpoint/constructor defs to a theory.
paulson@6051
    43
  Recursive sets must *already* be declared as constants.*)
wenzelm@12132
    44
functor Add_inductive_def_Fun
wenzelm@12132
    45
    (structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU val coind: bool)
paulson@6051
    46
 : INDUCTIVE_PACKAGE =
paulson@6051
    47
struct
wenzelm@12183
    48
wenzelm@16855
    49
open Ind_Syntax;
paulson@6051
    50
wenzelm@12227
    51
val co_prefix = if coind then "co" else "";
wenzelm@12227
    52
wenzelm@7695
    53
wenzelm@7695
    54
(* utils *)
wenzelm@7695
    55
wenzelm@7695
    56
(*make distinct individual variables a1, a2, a3, ..., an. *)
wenzelm@7695
    57
fun mk_frees a [] = []
wenzelm@12902
    58
  | mk_frees a (T::Ts) = Free(a,T) :: mk_frees (Symbol.bump_string a) Ts;
wenzelm@7695
    59
wenzelm@7695
    60
wenzelm@7695
    61
(* add_inductive(_i) *)
wenzelm@7695
    62
paulson@6051
    63
(*internal version, accepting terms*)
wenzelm@12132
    64
fun add_inductive_i verbose (rec_tms, dom_sum)
wenzelm@12132
    65
  intr_specs (monos, con_defs, type_intrs, type_elims) thy =
wenzelm@12132
    66
let
wenzelm@12132
    67
  val _ = Theory.requires thy "Inductive" "(co)inductive definitions";
paulson@6051
    68
wenzelm@12191
    69
  val (intr_names, intr_tms) = split_list (map fst intr_specs);
wenzelm@12191
    70
  val case_names = RuleCases.case_names intr_names;
paulson@6051
    71
paulson@6051
    72
  (*recT and rec_params should agree for all mutually recursive components*)
paulson@6051
    73
  val rec_hds = map head_of rec_tms;
paulson@6051
    74
paulson@6051
    75
  val dummy = assert_all is_Const rec_hds
wenzelm@12132
    76
          (fn t => "Recursive set not previously declared as constant: " ^
wenzelm@20342
    77
                   Sign.string_of_term thy t);
paulson@6051
    78
paulson@6051
    79
  (*Now we know they are all Consts, so get their names, type and params*)
paulson@6051
    80
  val rec_names = map (#1 o dest_Const) rec_hds
paulson@6051
    81
  and (Const(_,recT),rec_params) = strip_comb (hd rec_tms);
paulson@6051
    82
paulson@6051
    83
  val rec_base_names = map Sign.base_name rec_names;
paulson@6051
    84
  val dummy = assert_all Syntax.is_identifier rec_base_names
paulson@6051
    85
    (fn a => "Base name of recursive set not an identifier: " ^ a);
paulson@6051
    86
paulson@6051
    87
  local (*Checking the introduction rules*)
wenzelm@20342
    88
    val intr_sets = map (#2 o rule_concl_msg thy) intr_tms;
paulson@6051
    89
    fun intr_ok set =
wenzelm@12132
    90
        case head_of set of Const(a,recT) => a mem rec_names | _ => false;
paulson@6051
    91
  in
paulson@6051
    92
    val dummy =  assert_all intr_ok intr_sets
wenzelm@12132
    93
       (fn t => "Conclusion of rule does not name a recursive set: " ^
wenzelm@20342
    94
                Sign.string_of_term thy t);
paulson@6051
    95
  end;
paulson@6051
    96
paulson@6051
    97
  val dummy = assert_all is_Free rec_params
paulson@6051
    98
      (fn t => "Param in recursion term not a free variable: " ^
wenzelm@20342
    99
               Sign.string_of_term thy t);
paulson@6051
   100
paulson@6051
   101
  (*** Construct the fixedpoint definition ***)
wenzelm@20071
   102
  val mk_variant = Name.variant (foldr add_term_names [] intr_tms);
paulson@6051
   103
paulson@6051
   104
  val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w";
paulson@6051
   105
paulson@6051
   106
  fun dest_tprop (Const("Trueprop",_) $ P) = P
wenzelm@12132
   107
    | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^
wenzelm@20342
   108
                            Sign.string_of_term thy Q);
paulson@6051
   109
paulson@6051
   110
  (*Makes a disjunct from an introduction rule*)
paulson@6051
   111
  fun fp_part intr = (*quantify over rule's free vars except parameters*)
wenzelm@16855
   112
    let val prems = map dest_tprop (Logic.strip_imp_prems intr)
skalberg@15570
   113
        val dummy = List.app (fn rec_hd => List.app (chk_prem rec_hd) prems) rec_hds
wenzelm@12132
   114
        val exfrees = term_frees intr \\ rec_params
wenzelm@12132
   115
        val zeq = FOLogic.mk_eq (Free(z',iT), #1 (rule_concl intr))
skalberg@15574
   116
    in foldr FOLogic.mk_exists
wenzelm@23419
   117
             (BalancedTree.make FOLogic.mk_conj (zeq::prems)) exfrees
paulson@6051
   118
    end;
paulson@6051
   119
paulson@6051
   120
  (*The Part(A,h) terms -- compose injections to make h*)
paulson@6051
   121
  fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)
paulson@6051
   122
    | mk_Part h         = Part_const $ Free(X',iT) $ Abs(w',iT,h);
paulson@6051
   123
paulson@6051
   124
  (*Access to balanced disjoint sums via injections*)
wenzelm@23419
   125
  val parts = map mk_Part
wenzelm@23419
   126
    (BalancedTree.accesses {left = fn t => Su.inl $ t, right = fn t => Su.inr $ t, init = Bound 0}
wenzelm@23419
   127
      (length rec_tms));
paulson@6051
   128
paulson@6051
   129
  (*replace each set by the corresponding Part(A,h)*)
paulson@6051
   130
  val part_intrs = map (subst_free (rec_tms ~~ parts) o fp_part) intr_tms;
paulson@6051
   131
wenzelm@12132
   132
  val fp_abs = absfree(X', iT,
wenzelm@12132
   133
                   mk_Collect(z', dom_sum,
wenzelm@23419
   134
                              BalancedTree.make FOLogic.mk_disj part_intrs));
paulson@6051
   135
paulson@6051
   136
  val fp_rhs = Fp.oper $ dom_sum $ fp_abs
paulson@6051
   137
wenzelm@22567
   138
  val dummy = List.app (fn rec_hd => (Logic.occs (rec_hd, fp_rhs) andalso
wenzelm@22567
   139
                             error "Illegal occurrence of recursion operator"; ()))
wenzelm@12132
   140
           rec_hds;
paulson@6051
   141
paulson@6051
   142
  (*** Make the new theory ***)
paulson@6051
   143
paulson@6051
   144
  (*A key definition:
paulson@6051
   145
    If no mutual recursion then it equals the one recursive set.
paulson@6051
   146
    If mutual recursion then it differs from all the recursive sets. *)
paulson@6051
   147
  val big_rec_base_name = space_implode "_" rec_base_names;
wenzelm@20342
   148
  val big_rec_name = Sign.intern_const thy big_rec_base_name;
paulson@6051
   149
wenzelm@12132
   150
wenzelm@21962
   151
  val _ =
wenzelm@21962
   152
    if verbose then
wenzelm@21962
   153
      writeln ((if coind then "Coind" else "Ind") ^ "uctive definition " ^ quote big_rec_name)
wenzelm@21962
   154
    else ();
paulson@6051
   155
paulson@6051
   156
  (*Big_rec... is the union of the mutually recursive sets*)
paulson@6051
   157
  val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
paulson@6051
   158
paulson@6051
   159
  (*The individual sets must already be declared*)
wenzelm@24255
   160
  val axpairs = map PrimitiveDefs.mk_defpair
wenzelm@12132
   161
        ((big_rec_tm, fp_rhs) ::
wenzelm@12132
   162
         (case parts of
wenzelm@12132
   163
             [_] => []                        (*no mutual recursion*)
wenzelm@12132
   164
           | _ => rec_tms ~~          (*define the sets as Parts*)
wenzelm@12132
   165
                  map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
paulson@6051
   166
paulson@6051
   167
  (*tracing: print the fixedpoint definition*)
paulson@6051
   168
  val dummy = if !Ind_Syntax.trace then
wenzelm@20342
   169
              List.app (writeln o Sign.string_of_term thy o #2) axpairs
wenzelm@12132
   170
          else ()
paulson@6051
   171
paulson@6051
   172
  (*add definitions of the inductive sets*)
haftmann@18377
   173
  val (_, thy1) =
haftmann@18377
   174
    thy
wenzelm@24712
   175
    |> Sign.add_path big_rec_base_name
haftmann@18377
   176
    |> PureThy.add_defs_i false (map Thm.no_attributes axpairs)
paulson@6051
   177
paulson@6051
   178
paulson@6051
   179
  (*fetch fp definitions from the theory*)
wenzelm@12132
   180
  val big_rec_def::part_rec_defs =
paulson@6051
   181
    map (get_def thy1)
wenzelm@12132
   182
        (case rec_names of [_] => rec_names
wenzelm@12132
   183
                         | _   => big_rec_base_name::rec_names);
paulson@6051
   184
paulson@6051
   185
paulson@6051
   186
  (********)
paulson@6051
   187
  val dummy = writeln "  Proving monotonicity...";
paulson@6051
   188
wenzelm@12132
   189
  val bnd_mono =
wenzelm@20342
   190
    Goal.prove_global thy1 [] [] (FOLogic.mk_Trueprop (Fp.bnd_mono $ dom_sum $ fp_abs))
wenzelm@17985
   191
      (fn _ => EVERY
wenzelm@17985
   192
        [rtac (Collect_subset RS bnd_monoI) 1,
wenzelm@20046
   193
         REPEAT (ares_tac (basic_monos @ monos) 1)]);
paulson@6051
   194
paulson@6051
   195
  val dom_subset = standard (big_rec_def RS Fp.subs);
paulson@6051
   196
paulson@6051
   197
  val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski);
paulson@6051
   198
paulson@6051
   199
  (********)
paulson@6051
   200
  val dummy = writeln "  Proving the introduction rules...";
paulson@6051
   201
wenzelm@12132
   202
  (*Mutual recursion?  Helps to derive subset rules for the
paulson@6051
   203
    individual sets.*)
paulson@6051
   204
  val Part_trans =
paulson@6051
   205
      case rec_names of
wenzelm@12132
   206
           [_] => asm_rl
wenzelm@12132
   207
         | _   => standard (Part_subset RS subset_trans);
paulson@6051
   208
paulson@6051
   209
  (*To type-check recursive occurrences of the inductive sets, possibly
paulson@6051
   210
    enclosed in some monotonic operator M.*)
wenzelm@12132
   211
  val rec_typechecks =
wenzelm@12132
   212
     [dom_subset] RL (asm_rl :: ([Part_trans] RL monos))
paulson@6051
   213
     RL [subsetD];
paulson@6051
   214
paulson@6051
   215
  (*Type-checking is hardest aspect of proof;
paulson@6051
   216
    disjIn selects the correct disjunct after unfolding*)
wenzelm@17985
   217
  fun intro_tacsf disjIn =
wenzelm@17985
   218
    [DETERM (stac unfold 1),
paulson@6051
   219
     REPEAT (resolve_tac [Part_eqI,CollectI] 1),
paulson@6051
   220
     (*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*)
paulson@6051
   221
     rtac disjIn 2,
paulson@6051
   222
     (*Not ares_tac, since refl must be tried before equality assumptions;
paulson@6051
   223
       backtracking may occur if the premises have extra variables!*)
paulson@6051
   224
     DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2),
paulson@6051
   225
     (*Now solve the equations like Tcons(a,f) = Inl(?b4)*)
paulson@6051
   226
     rewrite_goals_tac con_defs,
paulson@6051
   227
     REPEAT (rtac refl 2),
paulson@6051
   228
     (*Typechecking; this can fail*)
paulson@6172
   229
     if !Ind_Syntax.trace then print_tac "The type-checking subgoal:"
paulson@6051
   230
     else all_tac,
paulson@6051
   231
     REPEAT (FIRSTGOAL (        dresolve_tac rec_typechecks
wenzelm@12132
   232
                        ORELSE' eresolve_tac (asm_rl::PartE::SigmaE2::
wenzelm@12132
   233
                                              type_elims)
wenzelm@12132
   234
                        ORELSE' hyp_subst_tac)),
paulson@6051
   235
     if !Ind_Syntax.trace then print_tac "The subgoal after monos, type_elims:"
paulson@6051
   236
     else all_tac,
paulson@6051
   237
     DEPTH_SOLVE (swap_res_tac (SigmaI::subsetI::type_intrs) 1)];
paulson@6051
   238
paulson@6051
   239
  (*combines disjI1 and disjI2 to get the corresponding nested disjunct...*)
wenzelm@23419
   240
  val mk_disj_rls = BalancedTree.accesses
wenzelm@23419
   241
    {left = fn rl => rl RS disjI1, right = fn rl => rl RS disjI2, init = asm_rl};
paulson@6051
   242
wenzelm@17985
   243
  val intrs =
wenzelm@17985
   244
    (intr_tms, map intro_tacsf (mk_disj_rls (length intr_tms)))
wenzelm@17985
   245
    |> ListPair.map (fn (t, tacs) =>
wenzelm@20342
   246
      Goal.prove_global thy1 [] [] t
wenzelm@20046
   247
        (fn _ => EVERY (rewrite_goals_tac part_rec_defs :: tacs)))
wenzelm@17985
   248
    handle MetaSimplifier.SIMPLIFIER (msg, thm) => (print_thm thm; error msg);
paulson@6051
   249
paulson@6051
   250
  (********)
paulson@6051
   251
  val dummy = writeln "  Proving the elimination rule...";
paulson@6051
   252
paulson@6051
   253
  (*Breaks down logical connectives in the monotonic function*)
paulson@6051
   254
  val basic_elim_tac =
paulson@6051
   255
      REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs)
wenzelm@12132
   256
                ORELSE' bound_hyp_subst_tac))
paulson@6051
   257
      THEN prune_params_tac
wenzelm@12132
   258
          (*Mutual recursion: collapse references to Part(D,h)*)
paulson@6051
   259
      THEN fold_tac part_rec_defs;
paulson@6051
   260
paulson@6051
   261
  (*Elimination*)
wenzelm@12132
   262
  val elim = rule_by_tactic basic_elim_tac
wenzelm@12132
   263
                 (unfold RS Ind_Syntax.equals_CollectD)
paulson@6051
   264
paulson@6051
   265
  (*Applies freeness of the given constructors, which *must* be unfolded by
wenzelm@12132
   266
      the given defs.  Cannot simply use the local con_defs because
wenzelm@12132
   267
      con_defs=[] for inference systems.
wenzelm@12175
   268
    Proposition A should have the form t:Si where Si is an inductive set*)
wenzelm@12175
   269
  fun make_cases ss A =
wenzelm@12175
   270
    rule_by_tactic
wenzelm@12175
   271
      (basic_elim_tac THEN ALLGOALS (asm_full_simp_tac ss) THEN basic_elim_tac)
wenzelm@12175
   272
      (Thm.assume A RS elim)
wenzelm@12175
   273
      |> Drule.standard';
wenzelm@12175
   274
  fun mk_cases a = make_cases (*delayed evaluation of body!*)
wenzelm@22675
   275
    (simpset ()) (Thm.read_cterm (Thm.theory_of_thm elim) (a, propT));
paulson@6051
   276
paulson@6051
   277
  fun induction_rules raw_induct thy =
paulson@6051
   278
   let
paulson@6051
   279
     val dummy = writeln "  Proving the induction rule...";
paulson@6051
   280
paulson@6051
   281
     (*** Prove the main induction rule ***)
paulson@6051
   282
paulson@6051
   283
     val pred_name = "P";            (*name for predicate variables*)
paulson@6051
   284
paulson@6051
   285
     (*Used to make induction rules;
wenzelm@12132
   286
        ind_alist = [(rec_tm1,pred1),...] associates predicates with rec ops
wenzelm@12132
   287
        prem is a premise of an intr rule*)
wenzelm@12132
   288
     fun add_induct_prem ind_alist (prem as Const("Trueprop",_) $
wenzelm@24826
   289
                      (Const(@{const_name mem},_)$t$X), iprems) =
haftmann@17314
   290
          (case AList.lookup (op aconv) ind_alist X of
skalberg@15531
   291
               SOME pred => prem :: FOLogic.mk_Trueprop (pred $ t) :: iprems
skalberg@15531
   292
             | NONE => (*possibly membership in M(rec_tm), for M monotone*)
wenzelm@12132
   293
                 let fun mk_sb (rec_tm,pred) =
wenzelm@12132
   294
                             (rec_tm, Ind_Syntax.Collect_const$rec_tm$pred)
wenzelm@12132
   295
                 in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
paulson@6051
   296
       | add_induct_prem ind_alist (prem,iprems) = prem :: iprems;
paulson@6051
   297
paulson@6051
   298
     (*Make a premise of the induction rule.*)
paulson@6051
   299
     fun induct_prem ind_alist intr =
paulson@6051
   300
       let val quantfrees = map dest_Free (term_frees intr \\ rec_params)
skalberg@15574
   301
           val iprems = foldr (add_induct_prem ind_alist) []
skalberg@15574
   302
                              (Logic.strip_imp_prems intr)
wenzelm@12132
   303
           val (t,X) = Ind_Syntax.rule_concl intr
haftmann@17314
   304
           val (SOME pred) = AList.lookup (op aconv) ind_alist X
wenzelm@12132
   305
           val concl = FOLogic.mk_Trueprop (pred $ t)
paulson@6051
   306
       in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end
paulson@6051
   307
       handle Bind => error"Recursion term not found in conclusion";
paulson@6051
   308
paulson@6051
   309
     (*Minimizes backtracking by delivering the correct premise to each goal.
paulson@6051
   310
       Intro rules with extra Vars in premises still cause some backtracking *)
paulson@6051
   311
     fun ind_tac [] 0 = all_tac
wenzelm@12132
   312
       | ind_tac(prem::prems) i =
paulson@13747
   313
             DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN ind_tac prems (i-1);
paulson@6051
   314
paulson@6051
   315
     val pred = Free(pred_name, Ind_Syntax.iT --> FOLogic.oT);
paulson@6051
   316
wenzelm@12132
   317
     val ind_prems = map (induct_prem (map (rpair pred) rec_tms))
wenzelm@12132
   318
                         intr_tms;
paulson@6051
   319
wenzelm@12132
   320
     val dummy = if !Ind_Syntax.trace then
wenzelm@12132
   321
                 (writeln "ind_prems = ";
wenzelm@20342
   322
                  List.app (writeln o Sign.string_of_term thy1) ind_prems;
wenzelm@12132
   323
                  writeln "raw_induct = "; print_thm raw_induct)
wenzelm@12132
   324
             else ();
paulson@6051
   325
paulson@6051
   326
wenzelm@12132
   327
     (*We use a MINIMAL simpset. Even FOL_ss contains too many simpules.
paulson@6051
   328
       If the premises get simplified, then the proofs could fail.*)
wenzelm@17892
   329
     val min_ss = Simplifier.theory_context thy empty_ss
wenzelm@12725
   330
           setmksimps (map mk_eq o ZF_atomize o gen_all)
wenzelm@12132
   331
           setSolver (mk_solver "minimal"
wenzelm@12132
   332
                      (fn prems => resolve_tac (triv_rls@prems)
wenzelm@12132
   333
                                   ORELSE' assume_tac
wenzelm@12132
   334
                                   ORELSE' etac FalseE));
paulson@6051
   335
wenzelm@12132
   336
     val quant_induct =
wenzelm@20342
   337
       Goal.prove_global thy1 [] ind_prems
wenzelm@17985
   338
         (FOLogic.mk_Trueprop (Ind_Syntax.mk_all_imp (big_rec_tm, pred)))
wenzelm@17985
   339
         (fn prems => EVERY
wenzelm@17985
   340
           [rewrite_goals_tac part_rec_defs,
wenzelm@17985
   341
            rtac (impI RS allI) 1,
wenzelm@17985
   342
            DETERM (etac raw_induct 1),
wenzelm@17985
   343
            (*Push Part inside Collect*)
wenzelm@17985
   344
            full_simp_tac (min_ss addsimps [Part_Collect]) 1,
wenzelm@17985
   345
            (*This CollectE and disjE separates out the introduction rules*)
wenzelm@17985
   346
            REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE])),
wenzelm@17985
   347
            (*Now break down the individual cases.  No disjE here in case
wenzelm@17985
   348
              some premise involves disjunction.*)
wenzelm@17985
   349
            REPEAT (FIRSTGOAL (eresolve_tac [CollectE, exE, conjE]
wenzelm@17985
   350
                               ORELSE' bound_hyp_subst_tac)),
wenzelm@20046
   351
            ind_tac (rev (map (rewrite_rule part_rec_defs) prems)) (length prems)]);
paulson@6051
   352
wenzelm@12132
   353
     val dummy = if !Ind_Syntax.trace then
wenzelm@12132
   354
                 (writeln "quant_induct = "; print_thm quant_induct)
wenzelm@12132
   355
             else ();
paulson@6051
   356
paulson@6051
   357
paulson@6051
   358
     (*** Prove the simultaneous induction rule ***)
paulson@6051
   359
paulson@6051
   360
     (*Make distinct predicates for each inductive set*)
paulson@6051
   361
paulson@6051
   362
     (*The components of the element type, several if it is a product*)
paulson@6051
   363
     val elem_type = CP.pseudo_type dom_sum;
paulson@6051
   364
     val elem_factors = CP.factors elem_type;
paulson@6051
   365
     val elem_frees = mk_frees "za" elem_factors;
paulson@6051
   366
     val elem_tuple = CP.mk_tuple Pr.pair elem_type elem_frees;
paulson@6051
   367
paulson@6051
   368
     (*Given a recursive set and its domain, return the "fsplit" predicate
paulson@6051
   369
       and a conclusion for the simultaneous induction rule.
paulson@6051
   370
       NOTE.  This will not work for mutually recursive predicates.  Previously
paulson@6051
   371
       a summand 'domt' was also an argument, but this required the domain of
paulson@6051
   372
       mutual recursion to invariably be a disjoint sum.*)
wenzelm@12132
   373
     fun mk_predpair rec_tm =
paulson@6051
   374
       let val rec_name = (#1 o dest_Const o head_of) rec_tm
wenzelm@12132
   375
           val pfree = Free(pred_name ^ "_" ^ Sign.base_name rec_name,
wenzelm@12132
   376
                            elem_factors ---> FOLogic.oT)
wenzelm@12132
   377
           val qconcl =
skalberg@15574
   378
             foldr FOLogic.mk_all
skalberg@15574
   379
               (FOLogic.imp $
wenzelm@12132
   380
                (Ind_Syntax.mem_const $ elem_tuple $ rec_tm)
skalberg@15574
   381
                      $ (list_comb (pfree, elem_frees))) elem_frees
wenzelm@12132
   382
       in  (CP.ap_split elem_type FOLogic.oT pfree,
wenzelm@12132
   383
            qconcl)
paulson@6051
   384
       end;
paulson@6051
   385
paulson@6051
   386
     val (preds,qconcls) = split_list (map mk_predpair rec_tms);
paulson@6051
   387
paulson@6051
   388
     (*Used to form simultaneous induction lemma*)
wenzelm@12132
   389
     fun mk_rec_imp (rec_tm,pred) =
wenzelm@12132
   390
         FOLogic.imp $ (Ind_Syntax.mem_const $ Bound 0 $ rec_tm) $
wenzelm@12132
   391
                          (pred $ Bound 0);
paulson@6051
   392
paulson@6051
   393
     (*To instantiate the main induction rule*)
wenzelm@12132
   394
     val induct_concl =
wenzelm@12132
   395
         FOLogic.mk_Trueprop
wenzelm@12132
   396
           (Ind_Syntax.mk_all_imp
wenzelm@12132
   397
            (big_rec_tm,
wenzelm@12132
   398
             Abs("z", Ind_Syntax.iT,
wenzelm@23419
   399
                 BalancedTree.make FOLogic.mk_conj
wenzelm@12132
   400
                 (ListPair.map mk_rec_imp (rec_tms, preds)))))
paulson@6051
   401
     and mutual_induct_concl =
wenzelm@23419
   402
      FOLogic.mk_Trueprop(BalancedTree.make FOLogic.mk_conj qconcls);
paulson@6051
   403
wenzelm@12132
   404
     val dummy = if !Ind_Syntax.trace then
wenzelm@12132
   405
                 (writeln ("induct_concl = " ^
wenzelm@20342
   406
                           Sign.string_of_term thy1 induct_concl);
wenzelm@12132
   407
                  writeln ("mutual_induct_concl = " ^
wenzelm@20342
   408
                           Sign.string_of_term thy1 mutual_induct_concl))
wenzelm@12132
   409
             else ();
paulson@6051
   410
paulson@6051
   411
paulson@6051
   412
     val lemma_tac = FIRST' [eresolve_tac [asm_rl, conjE, PartE, mp],
wenzelm@12132
   413
                             resolve_tac [allI, impI, conjI, Part_eqI],
wenzelm@12132
   414
                             dresolve_tac [spec, mp, Pr.fsplitD]];
paulson@6051
   415
paulson@6051
   416
     val need_mutual = length rec_names > 1;
paulson@6051
   417
paulson@6051
   418
     val lemma = (*makes the link between the two induction rules*)
paulson@6051
   419
       if need_mutual then
wenzelm@12132
   420
          (writeln "  Proving the mutual induction rule...";
wenzelm@20342
   421
           Goal.prove_global thy1 [] []
wenzelm@17985
   422
             (Logic.mk_implies (induct_concl, mutual_induct_concl))
wenzelm@17985
   423
             (fn _ => EVERY
wenzelm@17985
   424
               [rewrite_goals_tac part_rec_defs,
wenzelm@20046
   425
                REPEAT (rewrite_goals_tac [Pr.split_eq] THEN lemma_tac 1)]))
wenzelm@17985
   426
       else (writeln "  [ No mutual induction rule needed ]"; TrueI);
paulson@6051
   427
wenzelm@12132
   428
     val dummy = if !Ind_Syntax.trace then
wenzelm@12132
   429
                 (writeln "lemma = "; print_thm lemma)
wenzelm@12132
   430
             else ();
paulson@6051
   431
paulson@6051
   432
paulson@6051
   433
     (*Mutual induction follows by freeness of Inl/Inr.*)
paulson@6051
   434
wenzelm@12132
   435
     (*Simplification largely reduces the mutual induction rule to the
paulson@6051
   436
       standard rule*)
wenzelm@12132
   437
     val mut_ss =
wenzelm@12132
   438
         min_ss addsimps [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff];
paulson@6051
   439
paulson@6051
   440
     val all_defs = con_defs @ part_rec_defs;
paulson@6051
   441
paulson@6051
   442
     (*Removes Collects caused by M-operators in the intro rules.  It is very
paulson@6051
   443
       hard to simplify
wenzelm@12132
   444
         list({v: tf. (v : t --> P_t(v)) & (v : f --> P_f(v))})
paulson@6051
   445
       where t==Part(tf,Inl) and f==Part(tf,Inr) to  list({v: tf. P_t(v)}).
paulson@6051
   446
       Instead the following rules extract the relevant conjunct.
paulson@6051
   447
     *)
paulson@6051
   448
     val cmonos = [subset_refl RS Collect_mono] RL monos
wenzelm@12132
   449
                   RLN (2,[rev_subsetD]);
paulson@6051
   450
paulson@6051
   451
     (*Minimizes backtracking by delivering the correct premise to each goal*)
paulson@6051
   452
     fun mutual_ind_tac [] 0 = all_tac
wenzelm@12132
   453
       | mutual_ind_tac(prem::prems) i =
wenzelm@12132
   454
           DETERM
wenzelm@12132
   455
            (SELECT_GOAL
wenzelm@12132
   456
               (
wenzelm@12132
   457
                (*Simplify the assumptions and goal by unfolding Part and
wenzelm@12132
   458
                  using freeness of the Sum constructors; proves all but one
wenzelm@12132
   459
                  conjunct by contradiction*)
wenzelm@12132
   460
                rewrite_goals_tac all_defs  THEN
wenzelm@12132
   461
                simp_tac (mut_ss addsimps [Part_iff]) 1  THEN
wenzelm@12132
   462
                IF_UNSOLVED (*simp_tac may have finished it off!*)
wenzelm@12132
   463
                  ((*simplify assumptions*)
wenzelm@12132
   464
                   (*some risk of excessive simplification here -- might have
wenzelm@12132
   465
                     to identify the bare minimum set of rewrites*)
wenzelm@12132
   466
                   full_simp_tac
wenzelm@12132
   467
                      (mut_ss addsimps conj_simps @ imp_simps @ quant_simps) 1
wenzelm@12132
   468
                   THEN
wenzelm@12132
   469
                   (*unpackage and use "prem" in the corresponding place*)
wenzelm@12132
   470
                   REPEAT (rtac impI 1)  THEN
wenzelm@12132
   471
                   rtac (rewrite_rule all_defs prem) 1  THEN
wenzelm@12132
   472
                   (*prem must not be REPEATed below: could loop!*)
wenzelm@12132
   473
                   DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE'
wenzelm@12132
   474
                                           eresolve_tac (conjE::mp::cmonos))))
wenzelm@12132
   475
               ) i)
wenzelm@12132
   476
            THEN mutual_ind_tac prems (i-1);
paulson@6051
   477
wenzelm@12132
   478
     val mutual_induct_fsplit =
paulson@6051
   479
       if need_mutual then
wenzelm@20342
   480
         Goal.prove_global thy1 [] (map (induct_prem (rec_tms~~preds)) intr_tms)
wenzelm@17985
   481
           mutual_induct_concl
wenzelm@17985
   482
           (fn prems => EVERY
wenzelm@17985
   483
             [rtac (quant_induct RS lemma) 1,
wenzelm@20046
   484
              mutual_ind_tac (rev prems) (length prems)])
paulson@6051
   485
       else TrueI;
paulson@6051
   486
paulson@6051
   487
     (** Uncurrying the predicate in the ordinary induction rule **)
paulson@6051
   488
paulson@6051
   489
     (*instantiate the variable to a tuple, if it is non-trivial, in order to
paulson@6051
   490
       allow the predicate to be "opened up".
paulson@6051
   491
       The name "x.1" comes from the "RS spec" !*)
wenzelm@12132
   492
     val inst =
wenzelm@12132
   493
         case elem_frees of [_] => I
wenzelm@20342
   494
            | _ => instantiate ([], [(cterm_of thy1 (Var(("x",1), Ind_Syntax.iT)),
wenzelm@20342
   495
                                      cterm_of thy1 elem_tuple)]);
paulson@6051
   496
paulson@6051
   497
     (*strip quantifier and the implication*)
paulson@6051
   498
     val induct0 = inst (quant_induct RS spec RSN (2,rev_mp));
paulson@6051
   499
paulson@6051
   500
     val Const ("Trueprop", _) $ (pred_var $ _) = concl_of induct0
paulson@6051
   501
wenzelm@12132
   502
     val induct = CP.split_rule_var(pred_var, elem_type-->FOLogic.oT, induct0)
wenzelm@12132
   503
                  |> standard
paulson@6051
   504
     and mutual_induct = CP.remove_split mutual_induct_fsplit
wenzelm@8438
   505
haftmann@18377
   506
     val ([induct', mutual_induct'], thy') =
haftmann@18377
   507
       thy
wenzelm@18643
   508
       |> PureThy.add_thms [((co_prefix ^ "induct", induct),
wenzelm@24861
   509
             [case_names, Induct.induct_pred big_rec_name]),
wenzelm@18643
   510
           (("mutual_induct", mutual_induct), [case_names])];
wenzelm@12227
   511
    in ((thy', induct'), mutual_induct')
paulson@6051
   512
    end;  (*of induction_rules*)
paulson@6051
   513
paulson@6051
   514
  val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct)
paulson@6051
   515
wenzelm@12227
   516
  val ((thy2, induct), mutual_induct) =
wenzelm@12227
   517
    if not coind then induction_rules raw_induct thy1
haftmann@18377
   518
    else
haftmann@18377
   519
      (thy1
haftmann@18377
   520
      |> PureThy.add_thms [((co_prefix ^ "induct", raw_induct), [])]
haftmann@18377
   521
      |> apfst hd |> Library.swap, TrueI)
paulson@6051
   522
  and defs = big_rec_def :: part_rec_defs
paulson@6051
   523
paulson@6051
   524
haftmann@18377
   525
  val (([bnd_mono', dom_subset', elim'], [defs', intrs']), thy3) =
wenzelm@8438
   526
    thy2
wenzelm@12183
   527
    |> IndCases.declare big_rec_name make_cases
wenzelm@12132
   528
    |> PureThy.add_thms
wenzelm@12132
   529
      [(("bnd_mono", bnd_mono), []),
wenzelm@12132
   530
       (("dom_subset", dom_subset), []),
wenzelm@24861
   531
       (("cases", elim), [case_names, Induct.cases_pred big_rec_name])]
haftmann@18377
   532
    ||>> (PureThy.add_thmss o map Thm.no_attributes)
wenzelm@8438
   533
        [("defs", defs),
wenzelm@12175
   534
         ("intros", intrs)];
haftmann@18377
   535
  val (intrs'', thy4) =
haftmann@18377
   536
    thy3
haftmann@18377
   537
    |> PureThy.add_thms ((intr_names ~~ intrs') ~~ map #2 intr_specs)
wenzelm@24712
   538
    ||> Sign.parent_path;
wenzelm@8438
   539
  in
wenzelm@12132
   540
    (thy4,
wenzelm@8438
   541
      {defs = defs',
wenzelm@8438
   542
       bnd_mono = bnd_mono',
wenzelm@8438
   543
       dom_subset = dom_subset',
wenzelm@12132
   544
       intrs = intrs'',
wenzelm@8438
   545
       elim = elim',
wenzelm@8438
   546
       mk_cases = mk_cases,
wenzelm@8438
   547
       induct = induct,
wenzelm@8438
   548
       mutual_induct = mutual_induct})
wenzelm@8438
   549
  end;
paulson@6051
   550
wenzelm@12132
   551
(*source version*)
wenzelm@12132
   552
fun add_inductive (srec_tms, sdom_sum) intr_srcs
wenzelm@12132
   553
    (raw_monos, raw_con_defs, raw_type_intrs, raw_type_elims) thy =
wenzelm@12132
   554
  let
wenzelm@24726
   555
    val ctxt = ProofContext.init thy;
wenzelm@24726
   556
    val read_terms = map (Syntax.parse_term ctxt #> TypeInfer.constrain Ind_Syntax.iT)
wenzelm@24726
   557
      #> Syntax.check_terms ctxt;
wenzelm@24726
   558
wenzelm@18728
   559
    val intr_atts = map (map (Attrib.attribute thy) o snd) intr_srcs;
wenzelm@17937
   560
    val sintrs = map fst intr_srcs ~~ intr_atts;
wenzelm@24726
   561
    val rec_tms = read_terms srec_tms;
wenzelm@24726
   562
    val dom_sum = singleton read_terms sdom_sum;
wenzelm@24726
   563
    val intr_tms = Syntax.read_props ctxt (map (snd o fst) sintrs);
wenzelm@17937
   564
    val intr_specs = (map (fst o fst) sintrs ~~ intr_tms) ~~ map snd sintrs;
wenzelm@24726
   565
    val monos = Attrib.eval_thms ctxt raw_monos;
wenzelm@24726
   566
    val con_defs = Attrib.eval_thms ctxt raw_con_defs;
wenzelm@24726
   567
    val type_intrs = Attrib.eval_thms ctxt raw_type_intrs;
wenzelm@24726
   568
    val type_elims = Attrib.eval_thms ctxt raw_type_elims;
wenzelm@12132
   569
  in
haftmann@18418
   570
    thy
wenzelm@24726
   571
    |> add_inductive_i true (rec_tms, dom_sum) intr_specs (monos, con_defs, type_intrs, type_elims)
haftmann@18418
   572
  end;
wenzelm@12132
   573
wenzelm@12132
   574
wenzelm@12132
   575
(* outer syntax *)
wenzelm@12132
   576
wenzelm@17057
   577
local structure P = OuterParse and K = OuterKeyword in
wenzelm@12132
   578
wenzelm@24867
   579
val _ = OuterSyntax.keywords
wenzelm@24867
   580
  ["domains", "intros", "monos", "con_defs", "type_intros", "type_elims"];
wenzelm@24867
   581
wenzelm@12132
   582
fun mk_ind (((((doms, intrs), monos), con_defs), type_intrs), type_elims) =
wenzelm@12132
   583
  #1 o add_inductive doms (map P.triple_swap intrs) (monos, con_defs, type_intrs, type_elims);
wenzelm@12132
   584
wenzelm@12132
   585
val ind_decl =
wenzelm@12132
   586
  (P.$$$ "domains" |-- P.!!! (P.enum1 "+" P.term --
wenzelm@12876
   587
      ((P.$$$ "\\<subseteq>" || P.$$$ "<=") |-- P.term))) --
wenzelm@12132
   588
  (P.$$$ "intros" |--
wenzelm@22101
   589
    P.!!! (Scan.repeat1 (SpecParse.opt_thm_name ":" -- P.prop))) --
wenzelm@22101
   590
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) [] --
wenzelm@22101
   591
  Scan.optional (P.$$$ "con_defs" |-- P.!!! SpecParse.xthms1) [] --
wenzelm@22101
   592
  Scan.optional (P.$$$ "type_intros" |-- P.!!! SpecParse.xthms1) [] --
wenzelm@22101
   593
  Scan.optional (P.$$$ "type_elims" |-- P.!!! SpecParse.xthms1) []
wenzelm@12132
   594
  >> (Toplevel.theory o mk_ind);
wenzelm@12132
   595
wenzelm@24867
   596
val _ = OuterSyntax.command (co_prefix ^ "inductive")
wenzelm@12227
   597
  ("define " ^ co_prefix ^ "inductive sets") K.thy_decl ind_decl;
wenzelm@12132
   598
paulson@6051
   599
end;
wenzelm@12132
   600
wenzelm@12132
   601
end;
wenzelm@15705
   602