| author | schirmer |
| Thu, 06 Nov 2003 20:45:02 +0100 | |
| changeset 14255 | e6e3e3f0deed |
| parent 14208 | 144f45277d5a |
| child 14300 | bf8b8c9425c3 |
| permissions | -rw-r--r-- |
| 3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
| 13908 | 4 |
Copyright 1997-2003 TU Muenchen |
| 3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
| 13914 | 9 |
header {* Maps *}
|
10 |
||
| 13908 | 11 |
theory Map = List: |
| 3981 | 12 |
|
| 13908 | 13 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
|
| 14100 | 14 |
translations (type) "a ~=> b " <= (type) "a => b option" |
| 3981 | 15 |
|
16 |
consts |
|
| 5300 | 17 |
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)"
|
| 14100 | 18 |
map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100)
|
19 |
map_image::"('b => 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixr "`>" 90)
|
|
20 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_|'__" [90, 91] 90)
|
|
| 5300 | 21 |
dom :: "('a ~=> 'b) => 'a set"
|
22 |
ran :: "('a ~=> 'b) => 'b set"
|
|
23 |
map_of :: "('a * 'b)list => 'a ~=> 'b"
|
|
24 |
map_upds:: "('a ~=> 'b) => 'a list => 'b list =>
|
|
| 14180 | 25 |
('a ~=> 'b)"
|
| 14100 | 26 |
map_upd_s::"('a ~=> 'b) => 'a set => 'b =>
|
27 |
('a ~=> 'b)" ("_/'(_{|->}_/')" [900,0,0]900)
|
|
28 |
map_subst::"('a ~=> 'b) => 'b => 'b =>
|
|
29 |
('a ~=> 'b)" ("_/'(_~>_/')" [900,0,0]900)
|
|
| 13910 | 30 |
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50)
|
31 |
||
| 14180 | 32 |
nonterminals |
33 |
maplets maplet |
|
34 |
||
| 5300 | 35 |
syntax |
| 14180 | 36 |
empty :: "'a ~=> 'b" |
37 |
"_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _")
|
|
38 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _")
|
|
39 |
"" :: "maplet => maplets" ("_")
|
|
40 |
"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
|
|
41 |
"_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
|
|
42 |
"_Map" :: "maplets => 'a ~=> 'b" ("(1[_])")
|
|
| 3981 | 43 |
|
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
44 |
syntax (xsymbols) |
| 14180 | 45 |
"_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _")
|
46 |
"_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _")
|
|
47 |
||
| 14134 | 48 |
"~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0) |
| 14100 | 49 |
restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" ("_\<lfloor>_" [90, 91] 90)
|
50 |
map_upd_s :: "('a ~=> 'b) => 'a set => 'b => ('a ~=> 'b)"
|
|
51 |
("_/'(_/{\<mapsto>}/_')" [900,0,0]900)
|
|
52 |
map_subst :: "('a ~=> 'b) => 'b => 'b =>
|
|
53 |
('a ~=> 'b)" ("_/'(_\<leadsto>_/')" [900,0,0]900)
|
|
54 |
"@chg_map" :: "('a ~=> 'b) => 'a => ('b => 'b) => ('a ~=> 'b)"
|
|
55 |
("_/'(_/\<mapsto>\<lambda>_. _')" [900,0,0,0] 900)
|
|
| 5300 | 56 |
|
57 |
translations |
|
| 13890 | 58 |
"empty" => "_K None" |
59 |
"empty" <= "%x. None" |
|
| 5300 | 60 |
|
| 14100 | 61 |
"m(x\<mapsto>\<lambda>y. f)" == "chg_map (\<lambda>y. f) x m" |
| 3981 | 62 |
|
| 14180 | 63 |
"_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms" |
64 |
"_MapUpd m (_maplet x y)" == "m(x:=Some y)" |
|
65 |
"_MapUpd m (_maplets x y)" == "map_upds m x y" |
|
66 |
"_Map ms" == "_MapUpd empty ms" |
|
67 |
"_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2" |
|
68 |
"_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3" |
|
69 |
||
| 3981 | 70 |
defs |
| 13908 | 71 |
chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" |
| 3981 | 72 |
|
| 14100 | 73 |
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" |
74 |
map_image_def: "f`>m == option_map f o m" |
|
75 |
restrict_map_def: "m|_A == %x. if x : A then m x else None" |
|
| 14025 | 76 |
|
77 |
map_upds_def: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))" |
|
| 14100 | 78 |
map_upd_s_def: "m(as{|->}b) == %x. if x : as then Some b else m x"
|
79 |
map_subst_def: "m(a~>b) == %x. if m x = Some a then Some b else m x" |
|
| 3981 | 80 |
|
| 13908 | 81 |
dom_def: "dom(m) == {a. m a ~= None}"
|
| 14025 | 82 |
ran_def: "ran(m) == {b. EX a. m a = Some b}"
|
| 3981 | 83 |
|
| 13910 | 84 |
map_le_def: "m1 \<subseteq>\<^sub>m m2 == ALL a : dom m1. m1 a = m2 a" |
85 |
||
| 5183 | 86 |
primrec |
87 |
"map_of [] = empty" |
|
| 5300 | 88 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
89 |
||
| 13908 | 90 |
|
| 14100 | 91 |
subsection {* @{term empty} *}
|
| 13908 | 92 |
|
| 13910 | 93 |
lemma empty_upd_none[simp]: "empty(x := None) = empty" |
| 13908 | 94 |
apply (rule ext) |
95 |
apply (simp (no_asm)) |
|
96 |
done |
|
| 13910 | 97 |
|
| 13908 | 98 |
|
99 |
(* FIXME: what is this sum_case nonsense?? *) |
|
| 13910 | 100 |
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" |
| 13908 | 101 |
apply (rule ext) |
102 |
apply (simp (no_asm) split add: sum.split) |
|
103 |
done |
|
104 |
||
| 14100 | 105 |
subsection {* @{term map_upd} *}
|
| 13908 | 106 |
|
107 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
108 |
apply (rule ext) |
|
109 |
apply (simp (no_asm_simp)) |
|
110 |
done |
|
111 |
||
| 13910 | 112 |
lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" |
| 13908 | 113 |
apply safe |
| 14208 | 114 |
apply (drule_tac x = k in fun_cong) |
| 13908 | 115 |
apply (simp (no_asm_use)) |
116 |
done |
|
117 |
||
| 14100 | 118 |
lemma map_upd_eqD1: "m(a\<mapsto>x) = n(a\<mapsto>y) \<Longrightarrow> x = y" |
119 |
by (drule fun_cong [of _ _ a], auto) |
|
120 |
||
121 |
lemma map_upd_Some_unfold: |
|
122 |
"((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)" |
|
123 |
by auto |
|
124 |
||
| 13908 | 125 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
126 |
apply (unfold image_def) |
|
127 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
128 |
apply (rule finite_subset) |
|
| 14208 | 129 |
prefer 2 apply assumption |
| 13908 | 130 |
apply auto |
131 |
done |
|
132 |
||
133 |
||
134 |
(* FIXME: what is this sum_case nonsense?? *) |
|
| 14100 | 135 |
subsection {* @{term sum_case} and @{term empty}/@{term map_upd} *}
|
| 13908 | 136 |
|
| 13910 | 137 |
lemma sum_case_map_upd_empty[simp]: |
138 |
"sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" |
|
| 13908 | 139 |
apply (rule ext) |
140 |
apply (simp (no_asm) split add: sum.split) |
|
141 |
done |
|
142 |
||
| 13910 | 143 |
lemma sum_case_empty_map_upd[simp]: |
144 |
"sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" |
|
| 13908 | 145 |
apply (rule ext) |
146 |
apply (simp (no_asm) split add: sum.split) |
|
147 |
done |
|
148 |
||
| 13910 | 149 |
lemma sum_case_map_upd_map_upd[simp]: |
150 |
"sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" |
|
| 13908 | 151 |
apply (rule ext) |
152 |
apply (simp (no_asm) split add: sum.split) |
|
153 |
done |
|
154 |
||
155 |
||
| 14100 | 156 |
subsection {* @{term chg_map} *}
|
| 13908 | 157 |
|
| 13910 | 158 |
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" |
| 14208 | 159 |
by (unfold chg_map_def, auto) |
| 13908 | 160 |
|
| 13910 | 161 |
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" |
| 14208 | 162 |
by (unfold chg_map_def, auto) |
| 13908 | 163 |
|
164 |
||
| 14100 | 165 |
subsection {* @{term map_of} *}
|
| 13908 | 166 |
|
167 |
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs" |
|
| 14208 | 168 |
by (induct_tac "xs", auto) |
| 13908 | 169 |
|
170 |
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x --> |
|
171 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
172 |
apply (induct_tac "t") |
|
173 |
apply (auto simp add: inj_eq) |
|
174 |
done |
|
175 |
||
176 |
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)" |
|
| 14208 | 177 |
by (induct_tac "l", auto) |
| 13908 | 178 |
|
179 |
lemma map_of_filter_in: |
|
180 |
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" |
|
181 |
apply (rule mp) |
|
| 14208 | 182 |
prefer 2 apply assumption |
| 13908 | 183 |
apply (erule thin_rl) |
| 14208 | 184 |
apply (induct_tac "xs", auto) |
| 13908 | 185 |
done |
186 |
||
187 |
lemma finite_range_map_of: "finite (range (map_of l))" |
|
188 |
apply (induct_tac "l") |
|
189 |
apply (simp_all (no_asm) add: image_constant) |
|
190 |
apply (rule finite_subset) |
|
| 14208 | 191 |
prefer 2 apply assumption |
| 13908 | 192 |
apply auto |
193 |
done |
|
194 |
||
195 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
| 14208 | 196 |
by (induct_tac "xs", auto) |
| 13908 | 197 |
|
198 |
||
| 14100 | 199 |
subsection {* @{term option_map} related *}
|
| 13908 | 200 |
|
| 13910 | 201 |
lemma option_map_o_empty[simp]: "option_map f o empty = empty" |
| 13908 | 202 |
apply (rule ext) |
203 |
apply (simp (no_asm)) |
|
204 |
done |
|
205 |
||
| 13910 | 206 |
lemma option_map_o_map_upd[simp]: |
207 |
"option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
| 13908 | 208 |
apply (rule ext) |
209 |
apply (simp (no_asm)) |
|
210 |
done |
|
211 |
||
212 |
||
| 14100 | 213 |
subsection {* @{text "++"} *}
|
| 13908 | 214 |
|
| 14025 | 215 |
lemma map_add_empty[simp]: "m ++ empty = m" |
216 |
apply (unfold map_add_def) |
|
| 13908 | 217 |
apply (simp (no_asm)) |
218 |
done |
|
219 |
||
| 14025 | 220 |
lemma empty_map_add[simp]: "empty ++ m = m" |
221 |
apply (unfold map_add_def) |
|
| 13908 | 222 |
apply (rule ext) |
223 |
apply (simp split add: option.split) |
|
224 |
done |
|
225 |
||
| 14025 | 226 |
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" |
227 |
apply(rule ext) |
|
228 |
apply(simp add: map_add_def split:option.split) |
|
229 |
done |
|
230 |
||
231 |
lemma map_add_Some_iff: |
|
| 13908 | 232 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
| 14025 | 233 |
apply (unfold map_add_def) |
| 13908 | 234 |
apply (simp (no_asm) split add: option.split) |
235 |
done |
|
236 |
||
| 14025 | 237 |
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] |
238 |
declare map_add_SomeD [dest!] |
|
| 13908 | 239 |
|
| 14025 | 240 |
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
| 14208 | 241 |
by (subst map_add_Some_iff, fast) |
| 13908 | 242 |
|
| 14025 | 243 |
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" |
244 |
apply (unfold map_add_def) |
|
| 13908 | 245 |
apply (simp (no_asm) split add: option.split) |
246 |
done |
|
247 |
||
| 14025 | 248 |
lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
249 |
apply (unfold map_add_def) |
|
| 14208 | 250 |
apply (rule ext, auto) |
| 13908 | 251 |
done |
252 |
||
| 14186 | 253 |
lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)" |
254 |
by(simp add:map_upds_def) |
|
255 |
||
| 14025 | 256 |
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" |
257 |
apply (unfold map_add_def) |
|
| 13908 | 258 |
apply (induct_tac "xs") |
259 |
apply (simp (no_asm)) |
|
260 |
apply (rule ext) |
|
261 |
apply (simp (no_asm_simp) split add: option.split) |
|
262 |
done |
|
263 |
||
264 |
declare fun_upd_apply [simp del] |
|
| 14025 | 265 |
lemma finite_range_map_of_map_add: |
266 |
"finite (range f) ==> finite (range (f ++ map_of l))" |
|
| 14208 | 267 |
apply (induct_tac "l", auto) |
| 13908 | 268 |
apply (erule finite_range_updI) |
269 |
done |
|
270 |
declare fun_upd_apply [simp] |
|
271 |
||
| 14100 | 272 |
subsection {* @{term map_image} *}
|
| 13908 | 273 |
|
| 14100 | 274 |
lemma map_image_empty [simp]: "f`>empty = empty" |
275 |
by (auto simp: map_image_def empty_def) |
|
276 |
||
277 |
lemma map_image_upd [simp]: "f`>m(a|->b) = (f`>m)(a|->f b)" |
|
278 |
apply (auto simp: map_image_def fun_upd_def) |
|
279 |
by (rule ext, auto) |
|
280 |
||
281 |
subsection {* @{term restrict_map} *}
|
|
282 |
||
| 14186 | 283 |
lemma restrict_map_to_empty[simp]: "m\<lfloor>{} = empty"
|
284 |
by(simp add: restrict_map_def) |
|
285 |
||
286 |
lemma restrict_map_empty[simp]: "empty\<lfloor>D = empty" |
|
287 |
by(simp add: restrict_map_def) |
|
288 |
||
| 14100 | 289 |
lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m\<lfloor>A) x = m x" |
290 |
by (auto simp: restrict_map_def) |
|
291 |
||
292 |
lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m\<lfloor>A) x = None" |
|
293 |
by (auto simp: restrict_map_def) |
|
294 |
||
295 |
lemma ran_restrictD: "y \<in> ran (m\<lfloor>A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y" |
|
296 |
by (auto simp: restrict_map_def ran_def split: split_if_asm) |
|
297 |
||
| 14186 | 298 |
lemma dom_restrict [simp]: "dom (m\<lfloor>A) = dom m \<inter> A" |
| 14100 | 299 |
by (auto simp: restrict_map_def dom_def split: split_if_asm) |
300 |
||
301 |
lemma restrict_upd_same [simp]: "m(x\<mapsto>y)\<lfloor>(-{x}) = m\<lfloor>(-{x})"
|
|
302 |
by (rule ext, auto simp: restrict_map_def) |
|
303 |
||
304 |
lemma restrict_restrict [simp]: "m\<lfloor>A\<lfloor>B = m\<lfloor>(A\<inter>B)" |
|
305 |
by (rule ext, auto simp: restrict_map_def) |
|
306 |
||
| 14186 | 307 |
lemma restrict_fun_upd[simp]: |
308 |
"m(x := y)\<lfloor>D = (if x \<in> D then (m\<lfloor>(D-{x}))(x := y) else m\<lfloor>D)"
|
|
309 |
by(simp add: restrict_map_def expand_fun_eq) |
|
310 |
||
311 |
lemma fun_upd_None_restrict[simp]: |
|
312 |
"(m\<lfloor>D)(x := None) = (if x:D then m\<lfloor>(D - {x}) else m\<lfloor>D)"
|
|
313 |
by(simp add: restrict_map_def expand_fun_eq) |
|
314 |
||
315 |
lemma fun_upd_restrict: |
|
316 |
"(m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
|
|
317 |
by(simp add: restrict_map_def expand_fun_eq) |
|
318 |
||
319 |
lemma fun_upd_restrict_conv[simp]: |
|
320 |
"x \<in> D \<Longrightarrow> (m\<lfloor>D)(x := y) = (m\<lfloor>(D-{x}))(x := y)"
|
|
321 |
by(simp add: restrict_map_def expand_fun_eq) |
|
322 |
||
| 14100 | 323 |
|
324 |
subsection {* @{term map_upds} *}
|
|
| 14025 | 325 |
|
326 |
lemma map_upds_Nil1[simp]: "m([] [|->] bs) = m" |
|
327 |
by(simp add:map_upds_def) |
|
328 |
||
329 |
lemma map_upds_Nil2[simp]: "m(as [|->] []) = m" |
|
330 |
by(simp add:map_upds_def) |
|
331 |
||
332 |
lemma map_upds_Cons[simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)" |
|
333 |
by(simp add:map_upds_def) |
|
334 |
||
| 14187 | 335 |
lemma map_upds_append1[simp]: "\<And>ys m. size xs < size ys \<Longrightarrow> |
336 |
m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)" |
|
337 |
apply(induct xs) |
|
338 |
apply(clarsimp simp add:neq_Nil_conv) |
|
| 14208 | 339 |
apply (case_tac ys, simp, simp) |
| 14187 | 340 |
done |
341 |
||
342 |
lemma map_upds_list_update2_drop[simp]: |
|
343 |
"\<And>m ys i. \<lbrakk>size xs \<le> i; i < size ys\<rbrakk> |
|
344 |
\<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)" |
|
| 14208 | 345 |
apply (induct xs, simp) |
346 |
apply (case_tac ys, simp) |
|
| 14187 | 347 |
apply(simp split:nat.split) |
348 |
done |
|
| 14025 | 349 |
|
350 |
lemma map_upd_upds_conv_if: "!!x y ys f. |
|
351 |
(f(x|->y))(xs [|->] ys) = |
|
352 |
(if x : set(take (length ys) xs) then f(xs [|->] ys) |
|
353 |
else (f(xs [|->] ys))(x|->y))" |
|
| 14208 | 354 |
apply (induct xs, simp) |
| 14025 | 355 |
apply(case_tac ys) |
356 |
apply(auto split:split_if simp:fun_upd_twist) |
|
357 |
done |
|
358 |
||
359 |
lemma map_upds_twist [simp]: |
|
360 |
"a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" |
|
361 |
apply(insert set_take_subset) |
|
362 |
apply (fastsimp simp add: map_upd_upds_conv_if) |
|
363 |
done |
|
364 |
||
365 |
lemma map_upds_apply_nontin[simp]: |
|
366 |
"!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" |
|
| 14208 | 367 |
apply (induct xs, simp) |
| 14025 | 368 |
apply(case_tac ys) |
369 |
apply(auto simp: map_upd_upds_conv_if) |
|
370 |
done |
|
371 |
||
| 14186 | 372 |
lemma restrict_map_upds[simp]: "!!m ys. |
373 |
\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
|
374 |
\<Longrightarrow> m(xs [\<mapsto>] ys)\<lfloor>D = (m\<lfloor>(D - set xs))(xs [\<mapsto>] ys)" |
|
| 14208 | 375 |
apply (induct xs, simp) |
376 |
apply (case_tac ys, simp) |
|
| 14186 | 377 |
apply(simp add:Diff_insert[symmetric] insert_absorb) |
378 |
apply(simp add: map_upd_upds_conv_if) |
|
379 |
done |
|
380 |
||
381 |
||
| 14100 | 382 |
subsection {* @{term map_upd_s} *}
|
383 |
||
384 |
lemma map_upd_s_apply [simp]: |
|
385 |
"(m(as{|->}b)) x = (if x : as then Some b else m x)"
|
|
386 |
by (simp add: map_upd_s_def) |
|
387 |
||
388 |
lemma map_subst_apply [simp]: |
|
389 |
"(m(a~>b)) x = (if m x = Some a then Some b else m x)" |
|
390 |
by (simp add: map_subst_def) |
|
391 |
||
392 |
subsection {* @{term dom} *}
|
|
| 13908 | 393 |
|
394 |
lemma domI: "m a = Some b ==> a : dom m" |
|
| 14208 | 395 |
by (unfold dom_def, auto) |
| 14100 | 396 |
(* declare domI [intro]? *) |
| 13908 | 397 |
|
398 |
lemma domD: "a : dom m ==> ? b. m a = Some b" |
|
| 14208 | 399 |
by (unfold dom_def, auto) |
| 13908 | 400 |
|
| 13910 | 401 |
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" |
| 14208 | 402 |
by (unfold dom_def, auto) |
| 13908 | 403 |
declare domIff [simp del] |
404 |
||
| 13910 | 405 |
lemma dom_empty[simp]: "dom empty = {}"
|
| 13908 | 406 |
apply (unfold dom_def) |
407 |
apply (simp (no_asm)) |
|
408 |
done |
|
409 |
||
| 13910 | 410 |
lemma dom_fun_upd[simp]: |
411 |
"dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
|
|
412 |
by (simp add:dom_def) blast |
|
| 13908 | 413 |
|
| 13937 | 414 |
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
|
415 |
apply(induct xys) |
|
416 |
apply(auto simp del:fun_upd_apply) |
|
417 |
done |
|
418 |
||
| 13908 | 419 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
420 |
apply (unfold dom_def) |
|
421 |
apply (induct_tac "l") |
|
422 |
apply (auto simp add: insert_Collect [symmetric]) |
|
423 |
done |
|
424 |
||
| 14025 | 425 |
lemma dom_map_upds[simp]: |
426 |
"!!m ys. dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m" |
|
| 14208 | 427 |
apply (induct xs, simp) |
428 |
apply (case_tac ys, auto) |
|
| 14025 | 429 |
done |
| 13910 | 430 |
|
| 14025 | 431 |
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" |
| 14208 | 432 |
by (unfold dom_def, auto) |
| 13910 | 433 |
|
434 |
lemma dom_overwrite[simp]: |
|
435 |
"dom(f(g|A)) = (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}"
|
|
436 |
by(auto simp add: dom_def overwrite_def) |
|
| 13908 | 437 |
|
| 14027 | 438 |
lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
|
439 |
apply(rule ext) |
|
440 |
apply(fastsimp simp:map_add_def split:option.split) |
|
441 |
done |
|
442 |
||
| 14100 | 443 |
subsection {* @{term ran} *}
|
444 |
||
445 |
lemma ranI: "m a = Some b ==> b : ran m" |
|
446 |
by (auto simp add: ran_def) |
|
447 |
(* declare ranI [intro]? *) |
|
| 13908 | 448 |
|
| 13910 | 449 |
lemma ran_empty[simp]: "ran empty = {}"
|
| 13908 | 450 |
apply (unfold ran_def) |
451 |
apply (simp (no_asm)) |
|
452 |
done |
|
453 |
||
| 13910 | 454 |
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
| 14208 | 455 |
apply (unfold ran_def, auto) |
| 13908 | 456 |
apply (subgoal_tac "~ (aa = a) ") |
457 |
apply auto |
|
458 |
done |
|
| 13910 | 459 |
|
| 14100 | 460 |
subsection {* @{text "map_le"} *}
|
| 13910 | 461 |
|
| 13912 | 462 |
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" |
| 13910 | 463 |
by(simp add:map_le_def) |
464 |
||
| 14187 | 465 |
lemma [simp]: "f(x := None) \<subseteq>\<^sub>m f" |
466 |
by(force simp add:map_le_def) |
|
467 |
||
| 13910 | 468 |
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" |
469 |
by(fastsimp simp add:map_le_def) |
|
470 |
||
| 14187 | 471 |
lemma [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)" |
472 |
by(force simp add:map_le_def) |
|
473 |
||
| 13910 | 474 |
lemma map_le_upds[simp]: |
475 |
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)" |
|
| 14208 | 476 |
apply (induct as, simp) |
477 |
apply (case_tac bs, auto) |
|
| 14025 | 478 |
done |
| 13908 | 479 |
|
| 14033 | 480 |
lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)" |
481 |
by (fastsimp simp add: map_le_def dom_def) |
|
482 |
||
483 |
lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f" |
|
484 |
by (simp add: map_le_def) |
|
485 |
||
| 14187 | 486 |
lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3" |
487 |
by(force simp add:map_le_def) |
|
| 14033 | 488 |
|
489 |
lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g" |
|
490 |
apply (unfold map_le_def) |
|
491 |
apply (rule ext) |
|
| 14208 | 492 |
apply (case_tac "x \<in> dom f", simp) |
493 |
apply (case_tac "x \<in> dom g", simp, fastsimp) |
|
| 14033 | 494 |
done |
495 |
||
496 |
lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)" |
|
497 |
by (fastsimp simp add: map_le_def) |
|
498 |
||
| 3981 | 499 |
end |