clasohm@1460
|
1 |
(* Title: tactic
|
clasohm@0
|
2 |
ID: $Id$
|
clasohm@1460
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
4 |
Copyright 1991 University of Cambridge
|
clasohm@0
|
5 |
|
clasohm@0
|
6 |
Tactics
|
clasohm@0
|
7 |
*)
|
clasohm@0
|
8 |
|
clasohm@0
|
9 |
signature TACTIC =
|
paulson@1501
|
10 |
sig
|
clasohm@0
|
11 |
val ares_tac: thm list -> int -> tactic
|
clasohm@0
|
12 |
val asm_rewrite_goal_tac:
|
nipkow@214
|
13 |
bool*bool -> (meta_simpset -> tactic) -> meta_simpset -> int -> tactic
|
clasohm@0
|
14 |
val assume_tac: int -> tactic
|
clasohm@0
|
15 |
val atac: int ->tactic
|
lcp@670
|
16 |
val bimatch_from_nets_tac:
|
paulson@1501
|
17 |
(int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
|
clasohm@0
|
18 |
val bimatch_tac: (bool*thm)list -> int -> tactic
|
lcp@670
|
19 |
val biresolve_from_nets_tac:
|
paulson@1501
|
20 |
(int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
|
clasohm@0
|
21 |
val biresolve_tac: (bool*thm)list -> int -> tactic
|
paulson@1501
|
22 |
val build_net: thm list -> (int*thm) Net.net
|
paulson@1501
|
23 |
val build_netpair: (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
|
paulson@1501
|
24 |
(bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
|
clasohm@0
|
25 |
val compose_inst_tac: (string*string)list -> (bool*thm*int) -> int -> tactic
|
clasohm@0
|
26 |
val compose_tac: (bool * thm * int) -> int -> tactic
|
clasohm@0
|
27 |
val cut_facts_tac: thm list -> int -> tactic
|
lcp@270
|
28 |
val cut_inst_tac: (string*string)list -> thm -> int -> tactic
|
paulson@2029
|
29 |
val defer_tac : int -> tactic
|
clasohm@0
|
30 |
val dmatch_tac: thm list -> int -> tactic
|
clasohm@0
|
31 |
val dresolve_tac: thm list -> int -> tactic
|
clasohm@0
|
32 |
val dres_inst_tac: (string*string)list -> thm -> int -> tactic
|
clasohm@0
|
33 |
val dtac: thm -> int ->tactic
|
clasohm@0
|
34 |
val etac: thm -> int ->tactic
|
clasohm@0
|
35 |
val eq_assume_tac: int -> tactic
|
clasohm@0
|
36 |
val ematch_tac: thm list -> int -> tactic
|
clasohm@0
|
37 |
val eresolve_tac: thm list -> int -> tactic
|
clasohm@0
|
38 |
val eres_inst_tac: (string*string)list -> thm -> int -> tactic
|
clasohm@0
|
39 |
val filter_thms: (term*term->bool) -> int*term*thm list -> thm list
|
clasohm@0
|
40 |
val filt_resolve_tac: thm list -> int -> int -> tactic
|
clasohm@0
|
41 |
val flexflex_tac: tactic
|
clasohm@0
|
42 |
val fold_goals_tac: thm list -> tactic
|
clasohm@0
|
43 |
val fold_tac: thm list -> tactic
|
clasohm@0
|
44 |
val forward_tac: thm list -> int -> tactic
|
clasohm@0
|
45 |
val forw_inst_tac: (string*string)list -> thm -> int -> tactic
|
paulson@2029
|
46 |
val freeze_thaw: thm -> thm * (thm -> thm)
|
lcp@1077
|
47 |
val insert_tagged_brl: ('a*(bool*thm)) *
|
paulson@1501
|
48 |
(('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net) ->
|
paulson@1501
|
49 |
('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net
|
paulson@1801
|
50 |
val delete_tagged_brl: (bool*thm) *
|
paulson@1801
|
51 |
((int*(bool*thm))Net.net * (int*(bool*thm))Net.net) ->
|
paulson@1801
|
52 |
(int*(bool*thm))Net.net * (int*(bool*thm))Net.net
|
clasohm@0
|
53 |
val is_fact: thm -> bool
|
clasohm@0
|
54 |
val lessb: (bool * thm) * (bool * thm) -> bool
|
clasohm@0
|
55 |
val lift_inst_rule: thm * int * (string*string)list * thm -> thm
|
clasohm@0
|
56 |
val make_elim: thm -> thm
|
paulson@1501
|
57 |
val match_from_net_tac: (int*thm) Net.net -> int -> tactic
|
clasohm@0
|
58 |
val match_tac: thm list -> int -> tactic
|
clasohm@0
|
59 |
val metacut_tac: thm -> int -> tactic
|
clasohm@0
|
60 |
val net_bimatch_tac: (bool*thm) list -> int -> tactic
|
clasohm@0
|
61 |
val net_biresolve_tac: (bool*thm) list -> int -> tactic
|
clasohm@0
|
62 |
val net_match_tac: thm list -> int -> tactic
|
clasohm@0
|
63 |
val net_resolve_tac: thm list -> int -> tactic
|
clasohm@0
|
64 |
val PRIMITIVE: (thm -> thm) -> tactic
|
clasohm@0
|
65 |
val PRIMSEQ: (thm -> thm Sequence.seq) -> tactic
|
clasohm@0
|
66 |
val prune_params_tac: tactic
|
clasohm@0
|
67 |
val rename_tac: string -> int -> tactic
|
clasohm@0
|
68 |
val rename_last_tac: string -> string list -> int -> tactic
|
paulson@1501
|
69 |
val resolve_from_net_tac: (int*thm) Net.net -> int -> tactic
|
clasohm@0
|
70 |
val resolve_tac: thm list -> int -> tactic
|
clasohm@0
|
71 |
val res_inst_tac: (string*string)list -> thm -> int -> tactic
|
clasohm@0
|
72 |
val rewrite_goals_tac: thm list -> tactic
|
clasohm@0
|
73 |
val rewrite_tac: thm list -> tactic
|
clasohm@0
|
74 |
val rewtac: thm -> tactic
|
nipkow@1209
|
75 |
val rotate_tac: int -> int -> tactic
|
clasohm@0
|
76 |
val rtac: thm -> int -> tactic
|
clasohm@0
|
77 |
val rule_by_tactic: tactic -> thm -> thm
|
lcp@439
|
78 |
val subgoal_tac: string -> int -> tactic
|
lcp@439
|
79 |
val subgoals_tac: string list -> int -> tactic
|
clasohm@0
|
80 |
val subgoals_of_brl: bool * thm -> int
|
nipkow@1975
|
81 |
val term_lift_inst_rule:
|
nipkow@1975
|
82 |
thm * int * (indexname*typ)list * ((indexname*typ)*term)list * thm
|
nipkow@1975
|
83 |
-> thm
|
paulson@1955
|
84 |
val thin_tac: string -> int -> tactic
|
clasohm@0
|
85 |
val trace_goalno_tac: (int -> tactic) -> int -> tactic
|
paulson@1501
|
86 |
end;
|
clasohm@0
|
87 |
|
clasohm@0
|
88 |
|
paulson@1501
|
89 |
structure Tactic : TACTIC =
|
clasohm@0
|
90 |
struct
|
clasohm@0
|
91 |
|
paulson@1501
|
92 |
(*Discover which goal is chosen: SOMEGOAL(trace_goalno_tac tac) *)
|
paulson@1501
|
93 |
fun trace_goalno_tac tac i st =
|
paulson@1501
|
94 |
case Sequence.pull(tac i st) of
|
clasohm@1460
|
95 |
None => Sequence.null
|
clasohm@0
|
96 |
| seqcell => (prs("Subgoal " ^ string_of_int i ^ " selected\n");
|
paulson@1501
|
97 |
Sequence.seqof(fn()=> seqcell));
|
clasohm@0
|
98 |
|
clasohm@0
|
99 |
|
paulson@2029
|
100 |
(*Convert all Vars in a theorem to Frees. Also return a function for
|
paulson@2029
|
101 |
reversing that operation. DOES NOT WORK FOR TYPE VARIABLES.*)
|
paulson@2029
|
102 |
local
|
paulson@2029
|
103 |
fun string_of (a,0) = a
|
paulson@2029
|
104 |
| string_of (a,i) = a ^ "_" ^ string_of_int i;
|
paulson@2029
|
105 |
in
|
paulson@2029
|
106 |
fun freeze_thaw th =
|
paulson@2029
|
107 |
let val fth = freezeT th
|
paulson@2029
|
108 |
val {prop,sign,...} = rep_thm fth
|
paulson@2029
|
109 |
fun mk_inst (Var(v,T)) =
|
paulson@2029
|
110 |
(cterm_of sign (Var(v,T)),
|
paulson@2029
|
111 |
cterm_of sign (Free(string_of v, T)))
|
paulson@2029
|
112 |
val insts = map mk_inst (term_vars prop)
|
paulson@2029
|
113 |
fun thaw th' =
|
paulson@2029
|
114 |
th' |> forall_intr_list (map #2 insts)
|
paulson@2029
|
115 |
|> forall_elim_list (map #1 insts)
|
paulson@2029
|
116 |
in (instantiate ([],insts) fth, thaw) end;
|
paulson@2029
|
117 |
end;
|
paulson@2029
|
118 |
|
paulson@2029
|
119 |
|
paulson@2029
|
120 |
(*Rotates the given subgoal to be the last. Useful when re-playing
|
paulson@2029
|
121 |
an old proof script, when the proof of an early subgoal fails.
|
paulson@2029
|
122 |
DOES NOT WORK FOR TYPE VARIABLES.*)
|
paulson@2029
|
123 |
fun defer_tac i state =
|
paulson@2029
|
124 |
let val (state',thaw) = freeze_thaw state
|
paulson@2029
|
125 |
val hyps = Drule.strip_imp_prems (adjust_maxidx (cprop_of state'))
|
paulson@2029
|
126 |
val hyp::hyps' = drop(i-1,hyps)
|
paulson@2029
|
127 |
in implies_intr hyp (implies_elim_list state' (map assume hyps))
|
paulson@2029
|
128 |
|> implies_intr_list (take(i-1,hyps) @ hyps')
|
paulson@2029
|
129 |
|> thaw
|
paulson@2029
|
130 |
|> Sequence.single
|
paulson@2029
|
131 |
end
|
paulson@2029
|
132 |
handle _ => Sequence.null;
|
paulson@2029
|
133 |
|
clasohm@0
|
134 |
|
clasohm@0
|
135 |
(*Makes a rule by applying a tactic to an existing rule*)
|
paulson@1501
|
136 |
fun rule_by_tactic tac rl =
|
paulson@2029
|
137 |
case rl |> standard |> freeze_thaw |> #1 |> tac |> Sequence.pull of
|
clasohm@1460
|
138 |
None => raise THM("rule_by_tactic", 0, [rl])
|
clasohm@0
|
139 |
| Some(rl',_) => standard rl';
|
clasohm@0
|
140 |
|
clasohm@0
|
141 |
(*** Basic tactics ***)
|
clasohm@0
|
142 |
|
clasohm@0
|
143 |
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*)
|
paulson@1501
|
144 |
fun PRIMSEQ thmfun st = thmfun st handle THM _ => Sequence.null;
|
clasohm@0
|
145 |
|
clasohm@0
|
146 |
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*)
|
clasohm@0
|
147 |
fun PRIMITIVE thmfun = PRIMSEQ (Sequence.single o thmfun);
|
clasohm@0
|
148 |
|
clasohm@0
|
149 |
(*** The following fail if the goal number is out of range:
|
clasohm@0
|
150 |
thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
|
clasohm@0
|
151 |
|
clasohm@0
|
152 |
(*Solve subgoal i by assumption*)
|
clasohm@0
|
153 |
fun assume_tac i = PRIMSEQ (assumption i);
|
clasohm@0
|
154 |
|
clasohm@0
|
155 |
(*Solve subgoal i by assumption, using no unification*)
|
clasohm@0
|
156 |
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
|
clasohm@0
|
157 |
|
clasohm@0
|
158 |
(** Resolution/matching tactics **)
|
clasohm@0
|
159 |
|
clasohm@0
|
160 |
(*The composition rule/state: no lifting or var renaming.
|
clasohm@0
|
161 |
The arg = (bires_flg, orule, m) ; see bicompose for explanation.*)
|
clasohm@0
|
162 |
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
|
clasohm@0
|
163 |
|
clasohm@0
|
164 |
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
|
clasohm@0
|
165 |
like [| P&Q; P==>R |] ==> R *)
|
clasohm@0
|
166 |
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
|
clasohm@0
|
167 |
|
clasohm@0
|
168 |
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
|
clasohm@0
|
169 |
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
|
clasohm@0
|
170 |
|
clasohm@0
|
171 |
(*Resolution: the simple case, works for introduction rules*)
|
clasohm@0
|
172 |
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
|
clasohm@0
|
173 |
|
clasohm@0
|
174 |
(*Resolution with elimination rules only*)
|
clasohm@0
|
175 |
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
|
clasohm@0
|
176 |
|
clasohm@0
|
177 |
(*Forward reasoning using destruction rules.*)
|
clasohm@0
|
178 |
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
|
clasohm@0
|
179 |
|
clasohm@0
|
180 |
(*Like forward_tac, but deletes the assumption after use.*)
|
clasohm@0
|
181 |
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
|
clasohm@0
|
182 |
|
clasohm@0
|
183 |
(*Shorthand versions: for resolution with a single theorem*)
|
clasohm@1460
|
184 |
fun rtac rl = resolve_tac [rl];
|
clasohm@1460
|
185 |
fun etac rl = eresolve_tac [rl];
|
clasohm@1460
|
186 |
fun dtac rl = dresolve_tac [rl];
|
clasohm@0
|
187 |
val atac = assume_tac;
|
clasohm@0
|
188 |
|
clasohm@0
|
189 |
(*Use an assumption or some rules ... A popular combination!*)
|
clasohm@0
|
190 |
fun ares_tac rules = assume_tac ORELSE' resolve_tac rules;
|
clasohm@0
|
191 |
|
clasohm@0
|
192 |
(*Matching tactics -- as above, but forbid updating of state*)
|
clasohm@0
|
193 |
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
|
clasohm@0
|
194 |
fun match_tac rules = bimatch_tac (map (pair false) rules);
|
clasohm@0
|
195 |
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
|
clasohm@0
|
196 |
fun dmatch_tac rls = ematch_tac (map make_elim rls);
|
clasohm@0
|
197 |
|
clasohm@0
|
198 |
(*Smash all flex-flex disagreement pairs in the proof state.*)
|
clasohm@0
|
199 |
val flexflex_tac = PRIMSEQ flexflex_rule;
|
clasohm@0
|
200 |
|
clasohm@0
|
201 |
(*Lift and instantiate a rule wrt the given state and subgoal number *)
|
paulson@1501
|
202 |
fun lift_inst_rule (st, i, sinsts, rule) =
|
paulson@1501
|
203 |
let val {maxidx,sign,...} = rep_thm st
|
paulson@1501
|
204 |
val (_, _, Bi, _) = dest_state(st,i)
|
clasohm@1460
|
205 |
val params = Logic.strip_params Bi (*params of subgoal i*)
|
clasohm@0
|
206 |
val params = rev(rename_wrt_term Bi params) (*as they are printed*)
|
clasohm@0
|
207 |
val paramTs = map #2 params
|
clasohm@0
|
208 |
and inc = maxidx+1
|
clasohm@0
|
209 |
fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
|
clasohm@0
|
210 |
| liftvar t = raise TERM("Variable expected", [t]);
|
clasohm@0
|
211 |
fun liftterm t = list_abs_free (params,
|
clasohm@1460
|
212 |
Logic.incr_indexes(paramTs,inc) t)
|
clasohm@0
|
213 |
(*Lifts instantiation pair over params*)
|
lcp@230
|
214 |
fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
|
clasohm@0
|
215 |
fun lifttvar((a,i),ctyp) =
|
clasohm@1460
|
216 |
let val {T,sign} = rep_ctyp ctyp
|
clasohm@1460
|
217 |
in ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
|
paulson@1501
|
218 |
val rts = types_sorts rule and (types,sorts) = types_sorts st
|
clasohm@0
|
219 |
fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
|
clasohm@0
|
220 |
| types'(ixn) = types ixn;
|
nipkow@949
|
221 |
val used = add_term_tvarnames
|
paulson@1501
|
222 |
(#prop(rep_thm st) $ #prop(rep_thm rule),[])
|
nipkow@949
|
223 |
val (Tinsts,insts) = read_insts sign rts (types',sorts) used sinsts
|
clasohm@0
|
224 |
in instantiate (map lifttvar Tinsts, map liftpair insts)
|
paulson@1501
|
225 |
(lift_rule (st,i) rule)
|
clasohm@0
|
226 |
end;
|
clasohm@0
|
227 |
|
nipkow@1966
|
228 |
(*Like lift_inst_rule but takes cterms, not strings.
|
nipkow@1966
|
229 |
The cterms must be functions of the parameters of the subgoal,
|
nipkow@1966
|
230 |
i.e. they are assumed to be lifted already!
|
nipkow@1966
|
231 |
Also: types of Vars must be fully instantiated already *)
|
nipkow@1975
|
232 |
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
|
nipkow@1966
|
233 |
let val {maxidx,sign,...} = rep_thm st
|
nipkow@1966
|
234 |
val (_, _, Bi, _) = dest_state(st,i)
|
nipkow@1966
|
235 |
val params = Logic.strip_params Bi (*params of subgoal i*)
|
nipkow@1966
|
236 |
val paramTs = map #2 params
|
nipkow@1966
|
237 |
and inc = maxidx+1
|
nipkow@1975
|
238 |
fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
|
nipkow@1975
|
239 |
(*lift only Var, not term, which must be lifted already*)
|
nipkow@1975
|
240 |
fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
|
nipkow@1975
|
241 |
fun liftTpair((a,i),T) = ((a,i+inc), ctyp_of sign (incr_tvar inc T))
|
nipkow@1975
|
242 |
in instantiate (map liftTpair Tinsts, map liftpair insts)
|
nipkow@1966
|
243 |
(lift_rule (st,i) rule)
|
nipkow@1966
|
244 |
end;
|
clasohm@0
|
245 |
|
clasohm@0
|
246 |
(*** Resolve after lifting and instantation; may refer to parameters of the
|
clasohm@0
|
247 |
subgoal. Fails if "i" is out of range. ***)
|
clasohm@0
|
248 |
|
clasohm@0
|
249 |
(*compose version: arguments are as for bicompose.*)
|
clasohm@0
|
250 |
fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i =
|
paulson@1501
|
251 |
STATE ( fn st =>
|
paulson@1501
|
252 |
compose_tac (bires_flg, lift_inst_rule (st, i, sinsts, rule),
|
clasohm@1460
|
253 |
nsubgoal) i
|
clasohm@1460
|
254 |
handle TERM (msg,_) => (writeln msg; no_tac)
|
clasohm@1460
|
255 |
| THM (msg,_,_) => (writeln msg; no_tac) );
|
clasohm@0
|
256 |
|
lcp@761
|
257 |
(*"Resolve" version. Note: res_inst_tac cannot behave sensibly if the
|
lcp@761
|
258 |
terms that are substituted contain (term or type) unknowns from the
|
lcp@761
|
259 |
goal, because it is unable to instantiate goal unknowns at the same time.
|
lcp@761
|
260 |
|
paulson@2029
|
261 |
The type checker is instructed not to freeze flexible type vars that
|
nipkow@952
|
262 |
were introduced during type inference and still remain in the term at the
|
nipkow@952
|
263 |
end. This increases flexibility but can introduce schematic type vars in
|
nipkow@952
|
264 |
goals.
|
lcp@761
|
265 |
*)
|
clasohm@0
|
266 |
fun res_inst_tac sinsts rule i =
|
clasohm@0
|
267 |
compose_inst_tac sinsts (false, rule, nprems_of rule) i;
|
clasohm@0
|
268 |
|
paulson@1501
|
269 |
(*eresolve elimination version*)
|
clasohm@0
|
270 |
fun eres_inst_tac sinsts rule i =
|
clasohm@0
|
271 |
compose_inst_tac sinsts (true, rule, nprems_of rule) i;
|
clasohm@0
|
272 |
|
lcp@270
|
273 |
(*For forw_inst_tac and dres_inst_tac. Preserve Var indexes of rl;
|
lcp@270
|
274 |
increment revcut_rl instead.*)
|
clasohm@0
|
275 |
fun make_elim_preserve rl =
|
lcp@270
|
276 |
let val {maxidx,...} = rep_thm rl
|
clasohm@922
|
277 |
fun cvar ixn = cterm_of Sign.proto_pure (Var(ixn,propT));
|
lcp@270
|
278 |
val revcut_rl' =
|
clasohm@1460
|
279 |
instantiate ([], [(cvar("V",0), cvar("V",maxidx+1)),
|
clasohm@1460
|
280 |
(cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
|
clasohm@0
|
281 |
val arg = (false, rl, nprems_of rl)
|
clasohm@0
|
282 |
val [th] = Sequence.list_of_s (bicompose false arg 1 revcut_rl')
|
clasohm@0
|
283 |
in th end
|
clasohm@0
|
284 |
handle Bind => raise THM("make_elim_preserve", 1, [rl]);
|
clasohm@0
|
285 |
|
lcp@270
|
286 |
(*instantiate and cut -- for a FACT, anyway...*)
|
lcp@270
|
287 |
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
|
clasohm@0
|
288 |
|
lcp@270
|
289 |
(*forward tactic applies a RULE to an assumption without deleting it*)
|
lcp@270
|
290 |
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
|
lcp@270
|
291 |
|
lcp@270
|
292 |
(*dresolve tactic applies a RULE to replace an assumption*)
|
clasohm@0
|
293 |
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
|
clasohm@0
|
294 |
|
paulson@1951
|
295 |
(*Deletion of an assumption*)
|
paulson@1951
|
296 |
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
|
paulson@1951
|
297 |
|
lcp@270
|
298 |
(*** Applications of cut_rl ***)
|
clasohm@0
|
299 |
|
clasohm@0
|
300 |
(*Used by metacut_tac*)
|
clasohm@0
|
301 |
fun bires_cut_tac arg i =
|
clasohm@1460
|
302 |
resolve_tac [cut_rl] i THEN biresolve_tac arg (i+1) ;
|
clasohm@0
|
303 |
|
clasohm@0
|
304 |
(*The conclusion of the rule gets assumed in subgoal i,
|
clasohm@0
|
305 |
while subgoal i+1,... are the premises of the rule.*)
|
clasohm@0
|
306 |
fun metacut_tac rule = bires_cut_tac [(false,rule)];
|
clasohm@0
|
307 |
|
clasohm@0
|
308 |
(*Recognizes theorems that are not rules, but simple propositions*)
|
clasohm@0
|
309 |
fun is_fact rl =
|
clasohm@0
|
310 |
case prems_of rl of
|
clasohm@1460
|
311 |
[] => true | _::_ => false;
|
clasohm@0
|
312 |
|
clasohm@0
|
313 |
(*"Cut" all facts from theorem list into the goal as assumptions. *)
|
clasohm@0
|
314 |
fun cut_facts_tac ths i =
|
clasohm@0
|
315 |
EVERY (map (fn th => metacut_tac th i) (filter is_fact ths));
|
clasohm@0
|
316 |
|
clasohm@0
|
317 |
(*Introduce the given proposition as a lemma and subgoal*)
|
clasohm@0
|
318 |
fun subgoal_tac sprop = res_inst_tac [("psi", sprop)] cut_rl;
|
clasohm@0
|
319 |
|
lcp@439
|
320 |
(*Introduce a list of lemmas and subgoals*)
|
lcp@439
|
321 |
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
|
lcp@439
|
322 |
|
clasohm@0
|
323 |
|
clasohm@0
|
324 |
(**** Indexing and filtering of theorems ****)
|
clasohm@0
|
325 |
|
clasohm@0
|
326 |
(*Returns the list of potentially resolvable theorems for the goal "prem",
|
clasohm@1460
|
327 |
using the predicate could(subgoal,concl).
|
clasohm@0
|
328 |
Resulting list is no longer than "limit"*)
|
clasohm@0
|
329 |
fun filter_thms could (limit, prem, ths) =
|
clasohm@0
|
330 |
let val pb = Logic.strip_assums_concl prem; (*delete assumptions*)
|
clasohm@0
|
331 |
fun filtr (limit, []) = []
|
clasohm@1460
|
332 |
| filtr (limit, th::ths) =
|
clasohm@1460
|
333 |
if limit=0 then []
|
clasohm@1460
|
334 |
else if could(pb, concl_of th) then th :: filtr(limit-1, ths)
|
clasohm@1460
|
335 |
else filtr(limit,ths)
|
clasohm@0
|
336 |
in filtr(limit,ths) end;
|
clasohm@0
|
337 |
|
clasohm@0
|
338 |
|
clasohm@0
|
339 |
(*** biresolution and resolution using nets ***)
|
clasohm@0
|
340 |
|
clasohm@0
|
341 |
(** To preserve the order of the rules, tag them with increasing integers **)
|
clasohm@0
|
342 |
|
clasohm@0
|
343 |
(*insert tags*)
|
clasohm@0
|
344 |
fun taglist k [] = []
|
clasohm@0
|
345 |
| taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
|
clasohm@0
|
346 |
|
clasohm@0
|
347 |
(*remove tags and suppress duplicates -- list is assumed sorted!*)
|
clasohm@0
|
348 |
fun untaglist [] = []
|
clasohm@0
|
349 |
| untaglist [(k:int,x)] = [x]
|
clasohm@0
|
350 |
| untaglist ((k,x) :: (rest as (k',x')::_)) =
|
clasohm@0
|
351 |
if k=k' then untaglist rest
|
clasohm@0
|
352 |
else x :: untaglist rest;
|
clasohm@0
|
353 |
|
clasohm@0
|
354 |
(*return list elements in original order*)
|
paulson@2228
|
355 |
fun orderlist kbrls = untaglist (sort (fn(x,y)=> #1 x < #1 y) kbrls);
|
clasohm@0
|
356 |
|
clasohm@0
|
357 |
(*insert one tagged brl into the pair of nets*)
|
lcp@1077
|
358 |
fun insert_tagged_brl (kbrl as (k,(eres,th)), (inet,enet)) =
|
clasohm@0
|
359 |
if eres then
|
clasohm@1460
|
360 |
case prems_of th of
|
clasohm@1460
|
361 |
prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false))
|
clasohm@1460
|
362 |
| [] => error"insert_tagged_brl: elimination rule with no premises"
|
clasohm@0
|
363 |
else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
|
clasohm@0
|
364 |
|
clasohm@0
|
365 |
(*build a pair of nets for biresolution*)
|
lcp@670
|
366 |
fun build_netpair netpair brls =
|
lcp@1077
|
367 |
foldr insert_tagged_brl (taglist 1 brls, netpair);
|
clasohm@0
|
368 |
|
paulson@1801
|
369 |
(*delete one kbrl from the pair of nets;
|
paulson@1801
|
370 |
we don't know the value of k, so we use 0 and ignore it in the comparison*)
|
paulson@1801
|
371 |
local
|
paulson@1801
|
372 |
fun eq_kbrl ((k,(eres,th)), (k',(eres',th'))) = eq_thm (th,th')
|
paulson@1801
|
373 |
in
|
paulson@1801
|
374 |
fun delete_tagged_brl (brl as (eres,th), (inet,enet)) =
|
paulson@1801
|
375 |
if eres then
|
paulson@1801
|
376 |
case prems_of th of
|
paulson@1801
|
377 |
prem::_ => (inet, Net.delete_term ((prem, (0,brl)), enet, eq_kbrl))
|
paulson@1801
|
378 |
| [] => error"delete_brl: elimination rule with no premises"
|
paulson@1801
|
379 |
else (Net.delete_term ((concl_of th, (0,brl)), inet, eq_kbrl), enet);
|
paulson@1801
|
380 |
end;
|
paulson@1801
|
381 |
|
paulson@1801
|
382 |
|
clasohm@0
|
383 |
(*biresolution using a pair of nets rather than rules*)
|
clasohm@0
|
384 |
fun biresolution_from_nets_tac match (inet,enet) =
|
clasohm@0
|
385 |
SUBGOAL
|
clasohm@0
|
386 |
(fn (prem,i) =>
|
clasohm@0
|
387 |
let val hyps = Logic.strip_assums_hyp prem
|
clasohm@0
|
388 |
and concl = Logic.strip_assums_concl prem
|
clasohm@0
|
389 |
val kbrls = Net.unify_term inet concl @
|
clasohm@0
|
390 |
flat (map (Net.unify_term enet) hyps)
|
clasohm@0
|
391 |
in PRIMSEQ (biresolution match (orderlist kbrls) i) end);
|
clasohm@0
|
392 |
|
clasohm@0
|
393 |
(*versions taking pre-built nets*)
|
clasohm@0
|
394 |
val biresolve_from_nets_tac = biresolution_from_nets_tac false;
|
clasohm@0
|
395 |
val bimatch_from_nets_tac = biresolution_from_nets_tac true;
|
clasohm@0
|
396 |
|
clasohm@0
|
397 |
(*fast versions using nets internally*)
|
lcp@670
|
398 |
val net_biresolve_tac =
|
lcp@670
|
399 |
biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
|
lcp@670
|
400 |
|
lcp@670
|
401 |
val net_bimatch_tac =
|
lcp@670
|
402 |
bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
|
clasohm@0
|
403 |
|
clasohm@0
|
404 |
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
|
clasohm@0
|
405 |
|
clasohm@0
|
406 |
(*insert one tagged rl into the net*)
|
clasohm@0
|
407 |
fun insert_krl (krl as (k,th), net) =
|
clasohm@0
|
408 |
Net.insert_term ((concl_of th, krl), net, K false);
|
clasohm@0
|
409 |
|
clasohm@0
|
410 |
(*build a net of rules for resolution*)
|
clasohm@0
|
411 |
fun build_net rls =
|
clasohm@0
|
412 |
foldr insert_krl (taglist 1 rls, Net.empty);
|
clasohm@0
|
413 |
|
clasohm@0
|
414 |
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
|
clasohm@0
|
415 |
fun filt_resolution_from_net_tac match pred net =
|
clasohm@0
|
416 |
SUBGOAL
|
clasohm@0
|
417 |
(fn (prem,i) =>
|
clasohm@0
|
418 |
let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
|
clasohm@0
|
419 |
in
|
clasohm@1460
|
420 |
if pred krls
|
clasohm@0
|
421 |
then PRIMSEQ
|
clasohm@1460
|
422 |
(biresolution match (map (pair false) (orderlist krls)) i)
|
clasohm@0
|
423 |
else no_tac
|
clasohm@0
|
424 |
end);
|
clasohm@0
|
425 |
|
clasohm@0
|
426 |
(*Resolve the subgoal using the rules (making a net) unless too flexible,
|
clasohm@0
|
427 |
which means more than maxr rules are unifiable. *)
|
clasohm@0
|
428 |
fun filt_resolve_tac rules maxr =
|
clasohm@0
|
429 |
let fun pred krls = length krls <= maxr
|
clasohm@0
|
430 |
in filt_resolution_from_net_tac false pred (build_net rules) end;
|
clasohm@0
|
431 |
|
clasohm@0
|
432 |
(*versions taking pre-built nets*)
|
clasohm@0
|
433 |
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
|
clasohm@0
|
434 |
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
|
clasohm@0
|
435 |
|
clasohm@0
|
436 |
(*fast versions using nets internally*)
|
clasohm@0
|
437 |
val net_resolve_tac = resolve_from_net_tac o build_net;
|
clasohm@0
|
438 |
val net_match_tac = match_from_net_tac o build_net;
|
clasohm@0
|
439 |
|
clasohm@0
|
440 |
|
clasohm@0
|
441 |
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
|
clasohm@0
|
442 |
|
clasohm@0
|
443 |
(*The number of new subgoals produced by the brule*)
|
lcp@1077
|
444 |
fun subgoals_of_brl (true,rule) = nprems_of rule - 1
|
lcp@1077
|
445 |
| subgoals_of_brl (false,rule) = nprems_of rule;
|
clasohm@0
|
446 |
|
clasohm@0
|
447 |
(*Less-than test: for sorting to minimize number of new subgoals*)
|
clasohm@0
|
448 |
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
|
clasohm@0
|
449 |
|
clasohm@0
|
450 |
|
clasohm@0
|
451 |
(*** Meta-Rewriting Tactics ***)
|
clasohm@0
|
452 |
|
clasohm@0
|
453 |
fun result1 tacf mss thm =
|
paulson@1501
|
454 |
case Sequence.pull(tacf mss thm) of
|
clasohm@0
|
455 |
None => None
|
clasohm@0
|
456 |
| Some(thm,_) => Some(thm);
|
clasohm@0
|
457 |
|
paulson@2145
|
458 |
(*Rewrite subgoal i only. SELECT_GOAL avoids inefficiencies in goals_conv.*)
|
paulson@2145
|
459 |
fun asm_rewrite_goal_tac mode prover_tac mss =
|
paulson@2145
|
460 |
SELECT_GOAL
|
paulson@2145
|
461 |
(PRIMITIVE
|
paulson@2145
|
462 |
(rewrite_goal_rule mode (result1 prover_tac) mss 1));
|
clasohm@0
|
463 |
|
lcp@69
|
464 |
(*Rewrite throughout proof state. *)
|
lcp@69
|
465 |
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
|
clasohm@0
|
466 |
|
clasohm@0
|
467 |
(*Rewrite subgoals only, not main goal. *)
|
lcp@69
|
468 |
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
|
clasohm@0
|
469 |
|
clasohm@1460
|
470 |
fun rewtac def = rewrite_goals_tac [def];
|
clasohm@0
|
471 |
|
clasohm@0
|
472 |
|
paulson@1501
|
473 |
(*** for folding definitions, handling critical pairs ***)
|
lcp@69
|
474 |
|
lcp@69
|
475 |
(*The depth of nesting in a term*)
|
lcp@69
|
476 |
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
|
paulson@2145
|
477 |
| term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
|
lcp@69
|
478 |
| term_depth _ = 0;
|
lcp@69
|
479 |
|
lcp@69
|
480 |
val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm;
|
lcp@69
|
481 |
|
lcp@69
|
482 |
(*folding should handle critical pairs! E.g. K == Inl(0), S == Inr(Inl(0))
|
lcp@69
|
483 |
Returns longest lhs first to avoid folding its subexpressions.*)
|
lcp@69
|
484 |
fun sort_lhs_depths defs =
|
lcp@69
|
485 |
let val keylist = make_keylist (term_depth o lhs_of_thm) defs
|
lcp@69
|
486 |
val keys = distinct (sort op> (map #2 keylist))
|
lcp@69
|
487 |
in map (keyfilter keylist) keys end;
|
lcp@69
|
488 |
|
lcp@69
|
489 |
fun fold_tac defs = EVERY
|
lcp@69
|
490 |
(map rewrite_tac (sort_lhs_depths (map symmetric defs)));
|
lcp@69
|
491 |
|
lcp@69
|
492 |
fun fold_goals_tac defs = EVERY
|
lcp@69
|
493 |
(map rewrite_goals_tac (sort_lhs_depths (map symmetric defs)));
|
lcp@69
|
494 |
|
lcp@69
|
495 |
|
lcp@69
|
496 |
(*** Renaming of parameters in a subgoal
|
lcp@69
|
497 |
Names may contain letters, digits or primes and must be
|
lcp@69
|
498 |
separated by blanks ***)
|
clasohm@0
|
499 |
|
clasohm@0
|
500 |
(*Calling this will generate the warning "Same as previous level" since
|
clasohm@0
|
501 |
it affects nothing but the names of bound variables!*)
|
clasohm@0
|
502 |
fun rename_tac str i =
|
clasohm@0
|
503 |
let val cs = explode str
|
clasohm@0
|
504 |
in
|
clasohm@0
|
505 |
if !Logic.auto_rename
|
clasohm@0
|
506 |
then (writeln"Note: setting Logic.auto_rename := false";
|
clasohm@1460
|
507 |
Logic.auto_rename := false)
|
clasohm@0
|
508 |
else ();
|
clasohm@0
|
509 |
case #2 (take_prefix (is_letdig orf is_blank) cs) of
|
clasohm@0
|
510 |
[] => PRIMITIVE (rename_params_rule (scanwords is_letdig cs, i))
|
clasohm@0
|
511 |
| c::_ => error ("Illegal character: " ^ c)
|
clasohm@0
|
512 |
end;
|
clasohm@0
|
513 |
|
paulson@1501
|
514 |
(*Rename recent parameters using names generated from a and the suffixes,
|
paulson@1501
|
515 |
provided the string a, which represents a term, is an identifier. *)
|
clasohm@0
|
516 |
fun rename_last_tac a sufs i =
|
clasohm@0
|
517 |
let val names = map (curry op^ a) sufs
|
clasohm@0
|
518 |
in if Syntax.is_identifier a
|
clasohm@0
|
519 |
then PRIMITIVE (rename_params_rule (names,i))
|
clasohm@0
|
520 |
else all_tac
|
clasohm@0
|
521 |
end;
|
clasohm@0
|
522 |
|
paulson@2043
|
523 |
(*Prunes all redundant parameters from the proof state by rewriting.
|
paulson@2043
|
524 |
DOES NOT rewrite main goal, where quantification over an unused bound
|
paulson@2043
|
525 |
variable is sometimes done to avoid the need for cut_facts_tac.*)
|
paulson@2043
|
526 |
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
|
clasohm@0
|
527 |
|
paulson@1501
|
528 |
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
|
paulson@1501
|
529 |
right to left if n is positive, and from left to right if n is negative.*)
|
nipkow@1209
|
530 |
fun rotate_tac n =
|
nipkow@1209
|
531 |
let fun rot(n) = EVERY'(replicate n (dtac asm_rl));
|
nipkow@1209
|
532 |
in if n >= 0 then rot n
|
nipkow@1209
|
533 |
else SUBGOAL (fn (t,i) => rot(length(Logic.strip_assums_hyp t)+n) i)
|
nipkow@1209
|
534 |
end;
|
nipkow@1209
|
535 |
|
clasohm@0
|
536 |
end;
|
paulson@1501
|
537 |
|
paulson@1501
|
538 |
open Tactic;
|