src/HOL/Transitive_Closure.thy
author Christian Sternagel
Thu Aug 30 15:44:03 2012 +0900 (2012-08-30)
changeset 49093 fdc301f592c4
parent 48891 c0eafbd55de3
child 50616 5b6cf0fbc329
permissions -rw-r--r--
forgot to add lemmas
nipkow@10213
     1
(*  Title:      HOL/Transitive_Closure.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
nipkow@10213
     4
*)
nipkow@10213
     5
wenzelm@12691
     6
header {* Reflexive and Transitive closure of a relation *}
wenzelm@12691
     7
nipkow@15131
     8
theory Transitive_Closure
haftmann@46664
     9
imports Relation
nipkow@15131
    10
begin
wenzelm@12691
    11
wenzelm@48891
    12
ML_file "~~/src/Provers/trancl.ML"
wenzelm@48891
    13
wenzelm@12691
    14
text {*
wenzelm@12691
    15
  @{text rtrancl} is reflexive/transitive closure,
wenzelm@12691
    16
  @{text trancl} is transitive closure,
wenzelm@12691
    17
  @{text reflcl} is reflexive closure.
wenzelm@12691
    18
wenzelm@12691
    19
  These postfix operators have \emph{maximum priority}, forcing their
wenzelm@12691
    20
  operands to be atomic.
wenzelm@12691
    21
*}
nipkow@10213
    22
berghofe@23743
    23
inductive_set
berghofe@23743
    24
  rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"   ("(_^*)" [1000] 999)
berghofe@23743
    25
  for r :: "('a \<times> 'a) set"
berghofe@22262
    26
where
berghofe@23743
    27
    rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*"
berghofe@23743
    28
  | rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
berghofe@11327
    29
berghofe@23743
    30
inductive_set
berghofe@23743
    31
  trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_^+)" [1000] 999)
berghofe@23743
    32
  for r :: "('a \<times> 'a) set"
berghofe@22262
    33
where
berghofe@23743
    34
    r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+"
berghofe@23743
    35
  | trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a, c) : r^+"
berghofe@13704
    36
blanchet@41792
    37
declare rtrancl_def [nitpick_unfold del]
blanchet@41792
    38
        rtranclp_def [nitpick_unfold del]
blanchet@41792
    39
        trancl_def [nitpick_unfold del]
blanchet@41792
    40
        tranclp_def [nitpick_unfold del]
blanchet@33878
    41
berghofe@23743
    42
notation
berghofe@23743
    43
  rtranclp  ("(_^**)" [1000] 1000) and
berghofe@23743
    44
  tranclp  ("(_^++)" [1000] 1000)
nipkow@10213
    45
wenzelm@19656
    46
abbreviation
berghofe@23743
    47
  reflclp :: "('a => 'a => bool) => 'a => 'a => bool"  ("(_^==)" [1000] 1000) where
haftmann@45137
    48
  "r^== \<equiv> sup r op ="
berghofe@22262
    49
berghofe@22262
    50
abbreviation
berghofe@23743
    51
  reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
haftmann@45137
    52
  "r^= \<equiv> r \<union> Id"
nipkow@10213
    53
wenzelm@21210
    54
notation (xsymbols)
berghofe@23743
    55
  rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
berghofe@23743
    56
  tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
berghofe@23743
    57
  reflclp  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
berghofe@23743
    58
  rtrancl  ("(_\<^sup>*)" [1000] 999) and
berghofe@23743
    59
  trancl  ("(_\<^sup>+)" [1000] 999) and
berghofe@23743
    60
  reflcl  ("(_\<^sup>=)" [1000] 999)
wenzelm@12691
    61
wenzelm@21210
    62
notation (HTML output)
berghofe@23743
    63
  rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
berghofe@23743
    64
  tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
berghofe@23743
    65
  reflclp  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
berghofe@23743
    66
  rtrancl  ("(_\<^sup>*)" [1000] 999) and
berghofe@23743
    67
  trancl  ("(_\<^sup>+)" [1000] 999) and
berghofe@23743
    68
  reflcl  ("(_\<^sup>=)" [1000] 999)
kleing@14565
    69
wenzelm@12691
    70
nipkow@26271
    71
subsection {* Reflexive closure *}
nipkow@26271
    72
nipkow@30198
    73
lemma refl_reflcl[simp]: "refl(r^=)"
nipkow@30198
    74
by(simp add:refl_on_def)
nipkow@26271
    75
nipkow@26271
    76
lemma antisym_reflcl[simp]: "antisym(r^=) = antisym r"
nipkow@26271
    77
by(simp add:antisym_def)
nipkow@26271
    78
nipkow@26271
    79
lemma trans_reflclI[simp]: "trans r \<Longrightarrow> trans(r^=)"
nipkow@26271
    80
unfolding trans_def by blast
nipkow@26271
    81
nipkow@26271
    82
wenzelm@12691
    83
subsection {* Reflexive-transitive closure *}
wenzelm@12691
    84
haftmann@32883
    85
lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) op =) = (\<lambda>x y. (x, y) \<in> r \<union> Id)"
nipkow@39302
    86
  by (auto simp add: fun_eq_iff)
berghofe@22262
    87
wenzelm@12691
    88
lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
wenzelm@12691
    89
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
wenzelm@12691
    90
  apply (simp only: split_tupled_all)
wenzelm@12691
    91
  apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
wenzelm@12691
    92
  done
wenzelm@12691
    93
berghofe@23743
    94
lemma r_into_rtranclp [intro]: "r x y ==> r^** x y"
berghofe@22262
    95
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
berghofe@23743
    96
  by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl])
berghofe@22262
    97
berghofe@23743
    98
lemma rtranclp_mono: "r \<le> s ==> r^** \<le> s^**"
wenzelm@12691
    99
  -- {* monotonicity of @{text rtrancl} *}
berghofe@22262
   100
  apply (rule predicate2I)
berghofe@23743
   101
  apply (erule rtranclp.induct)
berghofe@23743
   102
   apply (rule_tac [2] rtranclp.rtrancl_into_rtrancl, blast+)
wenzelm@12691
   103
  done
wenzelm@12691
   104
berghofe@23743
   105
lemmas rtrancl_mono = rtranclp_mono [to_set]
berghofe@22262
   106
wenzelm@26179
   107
theorem rtranclp_induct [consumes 1, case_names base step, induct set: rtranclp]:
berghofe@22262
   108
  assumes a: "r^** a b"
berghofe@22262
   109
    and cases: "P a" "!!y z. [| r^** a y; r y z; P y |] ==> P z"
berghofe@34909
   110
  shows "P b" using a
berghofe@34909
   111
  by (induct x\<equiv>a b) (rule cases)+
wenzelm@12691
   112
berghofe@25425
   113
lemmas rtrancl_induct [induct set: rtrancl] = rtranclp_induct [to_set]
berghofe@22262
   114
berghofe@23743
   115
lemmas rtranclp_induct2 =
berghofe@23743
   116
  rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule,
berghofe@22262
   117
                 consumes 1, case_names refl step]
berghofe@22262
   118
nipkow@14404
   119
lemmas rtrancl_induct2 =
nipkow@14404
   120
  rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
   121
                 consumes 1, case_names refl step]
wenzelm@18372
   122
nipkow@30198
   123
lemma refl_rtrancl: "refl (r^*)"
nipkow@30198
   124
by (unfold refl_on_def) fast
huffman@19228
   125
wenzelm@26179
   126
text {* Transitivity of transitive closure. *}
wenzelm@26179
   127
lemma trans_rtrancl: "trans (r^*)"
berghofe@12823
   128
proof (rule transI)
berghofe@12823
   129
  fix x y z
berghofe@12823
   130
  assume "(x, y) \<in> r\<^sup>*"
berghofe@12823
   131
  assume "(y, z) \<in> r\<^sup>*"
wenzelm@26179
   132
  then show "(x, z) \<in> r\<^sup>*"
wenzelm@26179
   133
  proof induct
wenzelm@26179
   134
    case base
wenzelm@26179
   135
    show "(x, y) \<in> r\<^sup>*" by fact
wenzelm@26179
   136
  next
wenzelm@26179
   137
    case (step u v)
wenzelm@26179
   138
    from `(x, u) \<in> r\<^sup>*` and `(u, v) \<in> r`
wenzelm@26179
   139
    show "(x, v) \<in> r\<^sup>*" ..
wenzelm@26179
   140
  qed
berghofe@12823
   141
qed
wenzelm@12691
   142
wenzelm@45607
   143
lemmas rtrancl_trans = trans_rtrancl [THEN transD]
wenzelm@12691
   144
berghofe@23743
   145
lemma rtranclp_trans:
berghofe@22262
   146
  assumes xy: "r^** x y"
berghofe@22262
   147
  and yz: "r^** y z"
berghofe@22262
   148
  shows "r^** x z" using yz xy
berghofe@22262
   149
  by induct iprover+
berghofe@22262
   150
wenzelm@26174
   151
lemma rtranclE [cases set: rtrancl]:
wenzelm@26174
   152
  assumes major: "(a::'a, b) : r^*"
wenzelm@26174
   153
  obtains
wenzelm@26174
   154
    (base) "a = b"
wenzelm@26174
   155
  | (step) y where "(a, y) : r^*" and "(y, b) : r"
wenzelm@12691
   156
  -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
wenzelm@18372
   157
  apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)")
wenzelm@18372
   158
   apply (rule_tac [2] major [THEN rtrancl_induct])
wenzelm@18372
   159
    prefer 2 apply blast
wenzelm@18372
   160
   prefer 2 apply blast
wenzelm@26174
   161
  apply (erule asm_rl exE disjE conjE base step)+
wenzelm@18372
   162
  done
wenzelm@12691
   163
krauss@32235
   164
lemma rtrancl_Int_subset: "[| Id \<subseteq> s; (r^* \<inter> s) O r \<subseteq> s|] ==> r^* \<subseteq> s"
paulson@22080
   165
  apply (rule subsetI)
paulson@22080
   166
  apply (rule_tac p="x" in PairE, clarify)
paulson@22080
   167
  apply (erule rtrancl_induct, auto) 
paulson@22080
   168
  done
paulson@22080
   169
berghofe@23743
   170
lemma converse_rtranclp_into_rtranclp:
berghofe@22262
   171
  "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c"
berghofe@23743
   172
  by (rule rtranclp_trans) iprover+
berghofe@22262
   173
berghofe@23743
   174
lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set]
wenzelm@12691
   175
wenzelm@12691
   176
text {*
wenzelm@12691
   177
  \medskip More @{term "r^*"} equations and inclusions.
wenzelm@12691
   178
*}
wenzelm@12691
   179
berghofe@23743
   180
lemma rtranclp_idemp [simp]: "(r^**)^** = r^**"
berghofe@22262
   181
  apply (auto intro!: order_antisym)
berghofe@23743
   182
  apply (erule rtranclp_induct)
berghofe@23743
   183
   apply (rule rtranclp.rtrancl_refl)
berghofe@23743
   184
  apply (blast intro: rtranclp_trans)
wenzelm@12691
   185
  done
wenzelm@12691
   186
berghofe@23743
   187
lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set]
berghofe@22262
   188
wenzelm@12691
   189
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
nipkow@39302
   190
  apply (rule set_eqI)
wenzelm@12691
   191
  apply (simp only: split_tupled_all)
wenzelm@12691
   192
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   193
  done
wenzelm@12691
   194
wenzelm@12691
   195
lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
wenzelm@26179
   196
  apply (drule rtrancl_mono)
wenzelm@26179
   197
  apply simp
wenzelm@26179
   198
  done
wenzelm@12691
   199
berghofe@23743
   200
lemma rtranclp_subset: "R \<le> S ==> S \<le> R^** ==> S^** = R^**"
berghofe@23743
   201
  apply (drule rtranclp_mono)
wenzelm@26179
   202
  apply (drule rtranclp_mono)
wenzelm@26179
   203
  apply simp
wenzelm@12691
   204
  done
wenzelm@12691
   205
berghofe@23743
   206
lemmas rtrancl_subset = rtranclp_subset [to_set]
berghofe@22262
   207
berghofe@23743
   208
lemma rtranclp_sup_rtranclp: "(sup (R^**) (S^**))^** = (sup R S)^**"
berghofe@23743
   209
  by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D])
wenzelm@12691
   210
berghofe@23743
   211
lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set]
berghofe@22262
   212
berghofe@23743
   213
lemma rtranclp_reflcl [simp]: "(R^==)^** = R^**"
berghofe@23743
   214
  by (blast intro!: rtranclp_subset)
berghofe@22262
   215
berghofe@23743
   216
lemmas rtrancl_reflcl [simp] = rtranclp_reflcl [to_set]
wenzelm@12691
   217
wenzelm@12691
   218
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
wenzelm@12691
   219
  apply (rule sym)
paulson@14208
   220
  apply (rule rtrancl_subset, blast, clarify)
wenzelm@12691
   221
  apply (rename_tac a b)
wenzelm@26179
   222
  apply (case_tac "a = b")
wenzelm@26179
   223
   apply blast
huffman@44921
   224
  apply blast
wenzelm@12691
   225
  done
wenzelm@12691
   226
berghofe@23743
   227
lemma rtranclp_r_diff_Id: "(inf r op ~=)^** = r^**"
berghofe@22262
   228
  apply (rule sym)
berghofe@23743
   229
  apply (rule rtranclp_subset)
wenzelm@26179
   230
   apply blast+
berghofe@22262
   231
  done
berghofe@22262
   232
berghofe@23743
   233
theorem rtranclp_converseD:
berghofe@22262
   234
  assumes r: "(r^--1)^** x y"
berghofe@22262
   235
  shows "r^** y x"
berghofe@12823
   236
proof -
berghofe@12823
   237
  from r show ?thesis
berghofe@23743
   238
    by induct (iprover intro: rtranclp_trans dest!: conversepD)+
berghofe@12823
   239
qed
wenzelm@12691
   240
berghofe@23743
   241
lemmas rtrancl_converseD = rtranclp_converseD [to_set]
berghofe@22262
   242
berghofe@23743
   243
theorem rtranclp_converseI:
wenzelm@26179
   244
  assumes "r^** y x"
berghofe@22262
   245
  shows "(r^--1)^** x y"
wenzelm@26179
   246
  using assms
wenzelm@26179
   247
  by induct (iprover intro: rtranclp_trans conversepI)+
wenzelm@12691
   248
berghofe@23743
   249
lemmas rtrancl_converseI = rtranclp_converseI [to_set]
berghofe@22262
   250
wenzelm@12691
   251
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
wenzelm@12691
   252
  by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
wenzelm@12691
   253
huffman@19228
   254
lemma sym_rtrancl: "sym r ==> sym (r^*)"
huffman@19228
   255
  by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
huffman@19228
   256
berghofe@34909
   257
theorem converse_rtranclp_induct [consumes 1, case_names base step]:
berghofe@22262
   258
  assumes major: "r^** a b"
berghofe@22262
   259
    and cases: "P b" "!!y z. [| r y z; r^** z b; P z |] ==> P y"
wenzelm@12937
   260
  shows "P a"
wenzelm@26179
   261
  using rtranclp_converseI [OF major]
wenzelm@26179
   262
  by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+
wenzelm@12691
   263
berghofe@25425
   264
lemmas converse_rtrancl_induct = converse_rtranclp_induct [to_set]
berghofe@22262
   265
berghofe@23743
   266
lemmas converse_rtranclp_induct2 =
wenzelm@26179
   267
  converse_rtranclp_induct [of _ "(ax,ay)" "(bx,by)", split_rule,
berghofe@22262
   268
                 consumes 1, case_names refl step]
berghofe@22262
   269
nipkow@14404
   270
lemmas converse_rtrancl_induct2 =
wenzelm@26179
   271
  converse_rtrancl_induct [of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
   272
                 consumes 1, case_names refl step]
wenzelm@12691
   273
berghofe@34909
   274
lemma converse_rtranclpE [consumes 1, case_names base step]:
berghofe@22262
   275
  assumes major: "r^** x z"
wenzelm@18372
   276
    and cases: "x=z ==> P"
berghofe@22262
   277
      "!!y. [| r x y; r^** y z |] ==> P"
wenzelm@18372
   278
  shows P
berghofe@22262
   279
  apply (subgoal_tac "x = z | (EX y. r x y & r^** y z)")
berghofe@23743
   280
   apply (rule_tac [2] major [THEN converse_rtranclp_induct])
wenzelm@18372
   281
    prefer 2 apply iprover
wenzelm@18372
   282
   prefer 2 apply iprover
wenzelm@18372
   283
  apply (erule asm_rl exE disjE conjE cases)+
wenzelm@18372
   284
  done
wenzelm@12691
   285
berghofe@23743
   286
lemmas converse_rtranclE = converse_rtranclpE [to_set]
berghofe@22262
   287
berghofe@23743
   288
lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule]
berghofe@22262
   289
berghofe@22262
   290
lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule]
wenzelm@12691
   291
wenzelm@12691
   292
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
wenzelm@12691
   293
  by (blast elim: rtranclE converse_rtranclE
wenzelm@12691
   294
    intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
wenzelm@12691
   295
krauss@32235
   296
lemma rtrancl_unfold: "r^* = Id Un r^* O r"
paulson@15551
   297
  by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
paulson@15551
   298
nipkow@31690
   299
lemma rtrancl_Un_separatorE:
nipkow@31690
   300
  "(a,b) : (P \<union> Q)^* \<Longrightarrow> \<forall>x y. (a,x) : P^* \<longrightarrow> (x,y) : Q \<longrightarrow> x=y \<Longrightarrow> (a,b) : P^*"
nipkow@31690
   301
apply (induct rule:rtrancl.induct)
nipkow@31690
   302
 apply blast
nipkow@31690
   303
apply (blast intro:rtrancl_trans)
nipkow@31690
   304
done
nipkow@31690
   305
nipkow@31690
   306
lemma rtrancl_Un_separator_converseE:
nipkow@31690
   307
  "(a,b) : (P \<union> Q)^* \<Longrightarrow> \<forall>x y. (x,b) : P^* \<longrightarrow> (y,x) : Q \<longrightarrow> y=x \<Longrightarrow> (a,b) : P^*"
nipkow@31690
   308
apply (induct rule:converse_rtrancl_induct)
nipkow@31690
   309
 apply blast
nipkow@31690
   310
apply (blast intro:rtrancl_trans)
nipkow@31690
   311
done
nipkow@31690
   312
haftmann@34970
   313
lemma Image_closed_trancl:
haftmann@34970
   314
  assumes "r `` X \<subseteq> X" shows "r\<^sup>* `` X = X"
haftmann@34970
   315
proof -
haftmann@34970
   316
  from assms have **: "{y. \<exists>x\<in>X. (x, y) \<in> r} \<subseteq> X" by auto
haftmann@34970
   317
  have "\<And>x y. (y, x) \<in> r\<^sup>* \<Longrightarrow> y \<in> X \<Longrightarrow> x \<in> X"
haftmann@34970
   318
  proof -
haftmann@34970
   319
    fix x y
haftmann@34970
   320
    assume *: "y \<in> X"
haftmann@34970
   321
    assume "(y, x) \<in> r\<^sup>*"
haftmann@34970
   322
    then show "x \<in> X"
haftmann@34970
   323
    proof induct
haftmann@34970
   324
      case base show ?case by (fact *)
haftmann@34970
   325
    next
haftmann@34970
   326
      case step with ** show ?case by auto
haftmann@34970
   327
    qed
haftmann@34970
   328
  qed
haftmann@34970
   329
  then show ?thesis by auto
haftmann@34970
   330
qed
haftmann@34970
   331
wenzelm@12691
   332
wenzelm@12691
   333
subsection {* Transitive closure *}
wenzelm@10331
   334
berghofe@13704
   335
lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
berghofe@23743
   336
  apply (simp add: split_tupled_all)
berghofe@13704
   337
  apply (erule trancl.induct)
wenzelm@26179
   338
   apply (iprover dest: subsetD)+
wenzelm@12691
   339
  done
wenzelm@12691
   340
berghofe@13704
   341
lemma r_into_trancl': "!!p. p : r ==> p : r^+"
berghofe@13704
   342
  by (simp only: split_tupled_all) (erule r_into_trancl)
berghofe@13704
   343
wenzelm@12691
   344
text {*
wenzelm@12691
   345
  \medskip Conversions between @{text trancl} and @{text rtrancl}.
wenzelm@12691
   346
*}
wenzelm@12691
   347
berghofe@23743
   348
lemma tranclp_into_rtranclp: "r^++ a b ==> r^** a b"
berghofe@23743
   349
  by (erule tranclp.induct) iprover+
wenzelm@12691
   350
berghofe@23743
   351
lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set]
berghofe@22262
   352
berghofe@23743
   353
lemma rtranclp_into_tranclp1: assumes r: "r^** a b"
berghofe@22262
   354
  shows "!!c. r b c ==> r^++ a c" using r
nipkow@17589
   355
  by induct iprover+
wenzelm@12691
   356
berghofe@23743
   357
lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set]
berghofe@22262
   358
berghofe@23743
   359
lemma rtranclp_into_tranclp2: "[| r a b; r^** b c |] ==> r^++ a c"
wenzelm@12691
   360
  -- {* intro rule from @{text r} and @{text rtrancl} *}
wenzelm@26179
   361
  apply (erule rtranclp.cases)
wenzelm@26179
   362
   apply iprover
berghofe@23743
   363
  apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1])
wenzelm@26179
   364
    apply (simp | rule r_into_rtranclp)+
wenzelm@12691
   365
  done
wenzelm@12691
   366
berghofe@23743
   367
lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set]
berghofe@22262
   368
wenzelm@26179
   369
text {* Nice induction rule for @{text trancl} *}
wenzelm@26179
   370
lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]:
berghofe@34909
   371
  assumes a: "r^++ a b"
berghofe@22262
   372
  and cases: "!!y. r a y ==> P y"
berghofe@22262
   373
    "!!y z. r^++ a y ==> r y z ==> P y ==> P z"
berghofe@34909
   374
  shows "P b" using a
berghofe@34909
   375
  by (induct x\<equiv>a b) (iprover intro: cases)+
wenzelm@12691
   376
berghofe@25425
   377
lemmas trancl_induct [induct set: trancl] = tranclp_induct [to_set]
berghofe@22262
   378
berghofe@23743
   379
lemmas tranclp_induct2 =
wenzelm@26179
   380
  tranclp_induct [of _ "(ax,ay)" "(bx,by)", split_rule,
wenzelm@26179
   381
    consumes 1, case_names base step]
berghofe@22262
   382
paulson@22172
   383
lemmas trancl_induct2 =
wenzelm@26179
   384
  trancl_induct [of "(ax,ay)" "(bx,by)", split_format (complete),
wenzelm@26179
   385
    consumes 1, case_names base step]
paulson@22172
   386
berghofe@23743
   387
lemma tranclp_trans_induct:
berghofe@22262
   388
  assumes major: "r^++ x y"
berghofe@22262
   389
    and cases: "!!x y. r x y ==> P x y"
berghofe@22262
   390
      "!!x y z. [| r^++ x y; P x y; r^++ y z; P y z |] ==> P x z"
wenzelm@18372
   391
  shows "P x y"
wenzelm@12691
   392
  -- {* Another induction rule for trancl, incorporating transitivity *}
berghofe@23743
   393
  by (iprover intro: major [THEN tranclp_induct] cases)
wenzelm@12691
   394
berghofe@23743
   395
lemmas trancl_trans_induct = tranclp_trans_induct [to_set]
berghofe@23743
   396
wenzelm@26174
   397
lemma tranclE [cases set: trancl]:
wenzelm@26174
   398
  assumes "(a, b) : r^+"
wenzelm@26174
   399
  obtains
wenzelm@26174
   400
    (base) "(a, b) : r"
wenzelm@26174
   401
  | (step) c where "(a, c) : r^+" and "(c, b) : r"
wenzelm@26174
   402
  using assms by cases simp_all
wenzelm@10980
   403
krauss@32235
   404
lemma trancl_Int_subset: "[| r \<subseteq> s; (r^+ \<inter> s) O r \<subseteq> s|] ==> r^+ \<subseteq> s"
paulson@22080
   405
  apply (rule subsetI)
wenzelm@26179
   406
  apply (rule_tac p = x in PairE)
wenzelm@26179
   407
  apply clarify
wenzelm@26179
   408
  apply (erule trancl_induct)
wenzelm@26179
   409
   apply auto
paulson@22080
   410
  done
paulson@22080
   411
krauss@32235
   412
lemma trancl_unfold: "r^+ = r Un r^+ O r"
paulson@15551
   413
  by (auto intro: trancl_into_trancl elim: tranclE)
paulson@15551
   414
wenzelm@26179
   415
text {* Transitivity of @{term "r^+"} *}
wenzelm@26179
   416
lemma trans_trancl [simp]: "trans (r^+)"
berghofe@13704
   417
proof (rule transI)
berghofe@13704
   418
  fix x y z
wenzelm@26179
   419
  assume "(x, y) \<in> r^+"
berghofe@13704
   420
  assume "(y, z) \<in> r^+"
wenzelm@26179
   421
  then show "(x, z) \<in> r^+"
wenzelm@26179
   422
  proof induct
wenzelm@26179
   423
    case (base u)
wenzelm@26179
   424
    from `(x, y) \<in> r^+` and `(y, u) \<in> r`
wenzelm@26179
   425
    show "(x, u) \<in> r^+" ..
wenzelm@26179
   426
  next
wenzelm@26179
   427
    case (step u v)
wenzelm@26179
   428
    from `(x, u) \<in> r^+` and `(u, v) \<in> r`
wenzelm@26179
   429
    show "(x, v) \<in> r^+" ..
wenzelm@26179
   430
  qed
berghofe@13704
   431
qed
wenzelm@12691
   432
wenzelm@45607
   433
lemmas trancl_trans = trans_trancl [THEN transD]
wenzelm@12691
   434
berghofe@23743
   435
lemma tranclp_trans:
berghofe@22262
   436
  assumes xy: "r^++ x y"
berghofe@22262
   437
  and yz: "r^++ y z"
berghofe@22262
   438
  shows "r^++ x z" using yz xy
berghofe@22262
   439
  by induct iprover+
berghofe@22262
   440
wenzelm@26179
   441
lemma trancl_id [simp]: "trans r \<Longrightarrow> r^+ = r"
wenzelm@26179
   442
  apply auto
wenzelm@26179
   443
  apply (erule trancl_induct)
wenzelm@26179
   444
   apply assumption
wenzelm@26179
   445
  apply (unfold trans_def)
wenzelm@26179
   446
  apply blast
wenzelm@26179
   447
  done
nipkow@19623
   448
wenzelm@26179
   449
lemma rtranclp_tranclp_tranclp:
wenzelm@26179
   450
  assumes "r^** x y"
wenzelm@26179
   451
  shows "!!z. r^++ y z ==> r^++ x z" using assms
berghofe@23743
   452
  by induct (iprover intro: tranclp_trans)+
wenzelm@12691
   453
berghofe@23743
   454
lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set]
berghofe@22262
   455
berghofe@23743
   456
lemma tranclp_into_tranclp2: "r a b ==> r^++ b c ==> r^++ a c"
berghofe@23743
   457
  by (erule tranclp_trans [OF tranclp.r_into_trancl])
berghofe@22262
   458
berghofe@23743
   459
lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set]
wenzelm@12691
   460
wenzelm@12691
   461
lemma trancl_insert:
wenzelm@12691
   462
  "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
wenzelm@12691
   463
  -- {* primitive recursion for @{text trancl} over finite relations *}
wenzelm@12691
   464
  apply (rule equalityI)
wenzelm@12691
   465
   apply (rule subsetI)
wenzelm@12691
   466
   apply (simp only: split_tupled_all)
paulson@14208
   467
   apply (erule trancl_induct, blast)
huffman@35216
   468
   apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl trancl_trans)
wenzelm@12691
   469
  apply (rule subsetI)
wenzelm@12691
   470
  apply (blast intro: trancl_mono rtrancl_mono
wenzelm@12691
   471
    [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
wenzelm@12691
   472
  done
wenzelm@12691
   473
berghofe@23743
   474
lemma tranclp_converseI: "(r^++)^--1 x y ==> (r^--1)^++ x y"
berghofe@22262
   475
  apply (drule conversepD)
berghofe@23743
   476
  apply (erule tranclp_induct)
berghofe@23743
   477
  apply (iprover intro: conversepI tranclp_trans)+
wenzelm@12691
   478
  done
wenzelm@12691
   479
berghofe@23743
   480
lemmas trancl_converseI = tranclp_converseI [to_set]
berghofe@22262
   481
berghofe@23743
   482
lemma tranclp_converseD: "(r^--1)^++ x y ==> (r^++)^--1 x y"
berghofe@22262
   483
  apply (rule conversepI)
berghofe@23743
   484
  apply (erule tranclp_induct)
berghofe@23743
   485
  apply (iprover dest: conversepD intro: tranclp_trans)+
berghofe@13704
   486
  done
wenzelm@12691
   487
berghofe@23743
   488
lemmas trancl_converseD = tranclp_converseD [to_set]
berghofe@22262
   489
berghofe@23743
   490
lemma tranclp_converse: "(r^--1)^++ = (r^++)^--1"
nipkow@44890
   491
  by (fastforce simp add: fun_eq_iff
berghofe@23743
   492
    intro!: tranclp_converseI dest!: tranclp_converseD)
berghofe@22262
   493
berghofe@23743
   494
lemmas trancl_converse = tranclp_converse [to_set]
wenzelm@12691
   495
huffman@19228
   496
lemma sym_trancl: "sym r ==> sym (r^+)"
huffman@19228
   497
  by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
huffman@19228
   498
berghofe@34909
   499
lemma converse_tranclp_induct [consumes 1, case_names base step]:
berghofe@22262
   500
  assumes major: "r^++ a b"
berghofe@22262
   501
    and cases: "!!y. r y b ==> P(y)"
berghofe@22262
   502
      "!!y z.[| r y z;  r^++ z b;  P(z) |] ==> P(y)"
wenzelm@18372
   503
  shows "P a"
berghofe@23743
   504
  apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major])
wenzelm@18372
   505
   apply (rule cases)
berghofe@22262
   506
   apply (erule conversepD)
huffman@35216
   507
  apply (blast intro: assms dest!: tranclp_converseD)
wenzelm@18372
   508
  done
wenzelm@12691
   509
berghofe@23743
   510
lemmas converse_trancl_induct = converse_tranclp_induct [to_set]
berghofe@22262
   511
berghofe@23743
   512
lemma tranclpD: "R^++ x y ==> EX z. R x z \<and> R^** z y"
wenzelm@26179
   513
  apply (erule converse_tranclp_induct)
wenzelm@26179
   514
   apply auto
berghofe@23743
   515
  apply (blast intro: rtranclp_trans)
wenzelm@12691
   516
  done
wenzelm@12691
   517
berghofe@23743
   518
lemmas tranclD = tranclpD [to_set]
berghofe@22262
   519
bulwahn@31577
   520
lemma converse_tranclpE:
bulwahn@31577
   521
  assumes major: "tranclp r x z"
bulwahn@31577
   522
  assumes base: "r x z ==> P"
bulwahn@31577
   523
  assumes step: "\<And> y. [| r x y; tranclp r y z |] ==> P"
bulwahn@31577
   524
  shows P
bulwahn@31577
   525
proof -
bulwahn@31577
   526
  from tranclpD[OF major]
bulwahn@31577
   527
  obtain y where "r x y" and "rtranclp r y z" by iprover
bulwahn@31577
   528
  from this(2) show P
bulwahn@31577
   529
  proof (cases rule: rtranclp.cases)
bulwahn@31577
   530
    case rtrancl_refl
bulwahn@31577
   531
    with `r x y` base show P by iprover
bulwahn@31577
   532
  next
bulwahn@31577
   533
    case rtrancl_into_rtrancl
bulwahn@31577
   534
    from this have "tranclp r y z"
bulwahn@31577
   535
      by (iprover intro: rtranclp_into_tranclp1)
bulwahn@31577
   536
    with `r x y` step show P by iprover
bulwahn@31577
   537
  qed
bulwahn@31577
   538
qed
bulwahn@31577
   539
bulwahn@31577
   540
lemmas converse_tranclE = converse_tranclpE [to_set]
bulwahn@31577
   541
kleing@25295
   542
lemma tranclD2:
kleing@25295
   543
  "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R"
kleing@25295
   544
  by (blast elim: tranclE intro: trancl_into_rtrancl)
kleing@25295
   545
nipkow@13867
   546
lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
wenzelm@18372
   547
  by (blast elim: tranclE dest: trancl_into_rtrancl)
wenzelm@12691
   548
wenzelm@12691
   549
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"
wenzelm@12691
   550
  by (blast dest: r_into_trancl)
wenzelm@12691
   551
wenzelm@12691
   552
lemma trancl_subset_Sigma_aux:
wenzelm@12691
   553
    "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A"
wenzelm@18372
   554
  by (induct rule: rtrancl_induct) auto
wenzelm@12691
   555
wenzelm@12691
   556
lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A"
berghofe@13704
   557
  apply (rule subsetI)
berghofe@13704
   558
  apply (simp only: split_tupled_all)
berghofe@13704
   559
  apply (erule tranclE)
wenzelm@26179
   560
   apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
wenzelm@12691
   561
  done
nipkow@10996
   562
berghofe@23743
   563
lemma reflcl_tranclp [simp]: "(r^++)^== = r^**"
berghofe@22262
   564
  apply (safe intro!: order_antisym)
berghofe@23743
   565
   apply (erule tranclp_into_rtranclp)
berghofe@23743
   566
  apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1)
wenzelm@11084
   567
  done
nipkow@10996
   568
berghofe@23743
   569
lemmas reflcl_trancl [simp] = reflcl_tranclp [to_set]
berghofe@22262
   570
wenzelm@11090
   571
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
wenzelm@11084
   572
  apply safe
paulson@14208
   573
   apply (drule trancl_into_rtrancl, simp)
paulson@14208
   574
  apply (erule rtranclE, safe)
paulson@14208
   575
   apply (rule r_into_trancl, simp)
wenzelm@11084
   576
  apply (rule rtrancl_into_trancl1)
paulson@14208
   577
   apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast)
wenzelm@11084
   578
  done
nipkow@10996
   579
haftmann@45140
   580
lemma rtrancl_trancl_reflcl [code]: "r^* = (r^+)^="
haftmann@45140
   581
  by simp
haftmann@45140
   582
wenzelm@11090
   583
lemma trancl_empty [simp]: "{}^+ = {}"
wenzelm@11084
   584
  by (auto elim: trancl_induct)
nipkow@10996
   585
wenzelm@11090
   586
lemma rtrancl_empty [simp]: "{}^* = Id"
wenzelm@11084
   587
  by (rule subst [OF reflcl_trancl]) simp
nipkow@10996
   588
berghofe@23743
   589
lemma rtranclpD: "R^** a b ==> a = b \<or> a \<noteq> b \<and> R^++ a b"
berghofe@23743
   590
  by (force simp add: reflcl_tranclp [symmetric] simp del: reflcl_tranclp)
berghofe@22262
   591
berghofe@23743
   592
lemmas rtranclD = rtranclpD [to_set]
wenzelm@11084
   593
kleing@16514
   594
lemma rtrancl_eq_or_trancl:
kleing@16514
   595
  "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
kleing@16514
   596
  by (fast elim: trancl_into_rtrancl dest: rtranclD)
nipkow@10996
   597
krauss@33656
   598
lemma trancl_unfold_right: "r^+ = r^* O r"
krauss@33656
   599
by (auto dest: tranclD2 intro: rtrancl_into_trancl1)
krauss@33656
   600
krauss@33656
   601
lemma trancl_unfold_left: "r^+ = r O r^*"
krauss@33656
   602
by (auto dest: tranclD intro: rtrancl_into_trancl2)
krauss@33656
   603
krauss@33656
   604
krauss@33656
   605
text {* Simplifying nested closures *}
krauss@33656
   606
krauss@33656
   607
lemma rtrancl_trancl_absorb[simp]: "(R^*)^+ = R^*"
krauss@33656
   608
by (simp add: trans_rtrancl)
krauss@33656
   609
krauss@33656
   610
lemma trancl_rtrancl_absorb[simp]: "(R^+)^* = R^*"
krauss@33656
   611
by (subst reflcl_trancl[symmetric]) simp
krauss@33656
   612
krauss@33656
   613
lemma rtrancl_reflcl_absorb[simp]: "(R^*)^= = R^*"
krauss@33656
   614
by auto
krauss@33656
   615
krauss@33656
   616
wenzelm@12691
   617
text {* @{text Domain} and @{text Range} *}
nipkow@10996
   618
wenzelm@11090
   619
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"
wenzelm@11084
   620
  by blast
nipkow@10996
   621
wenzelm@11090
   622
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV"
wenzelm@11084
   623
  by blast
nipkow@10996
   624
wenzelm@11090
   625
lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*"
wenzelm@11084
   626
  by (rule rtrancl_Un_rtrancl [THEN subst]) fast
nipkow@10996
   627
wenzelm@11090
   628
lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*"
wenzelm@11084
   629
  by (blast intro: subsetD [OF rtrancl_Un_subset])
nipkow@10996
   630
wenzelm@11090
   631
lemma trancl_domain [simp]: "Domain (r^+) = Domain r"
haftmann@46752
   632
  by (unfold Domain_unfold) (blast dest: tranclD)
nipkow@10996
   633
wenzelm@11090
   634
lemma trancl_range [simp]: "Range (r^+) = Range r"
haftmann@46752
   635
  unfolding Domain_converse [symmetric] by (simp add: trancl_converse [symmetric])
nipkow@10996
   636
paulson@11115
   637
lemma Not_Domain_rtrancl:
wenzelm@12691
   638
    "x ~: Domain R ==> ((x, y) : R^*) = (x = y)"
wenzelm@12691
   639
  apply auto
wenzelm@26179
   640
  apply (erule rev_mp)
wenzelm@26179
   641
  apply (erule rtrancl_induct)
wenzelm@26179
   642
   apply auto
wenzelm@26179
   643
  done
berghofe@11327
   644
haftmann@29609
   645
lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r"
haftmann@29609
   646
  apply clarify
haftmann@29609
   647
  apply (erule trancl_induct)
haftmann@29609
   648
   apply (auto simp add: Field_def)
haftmann@29609
   649
  done
haftmann@29609
   650
nipkow@41987
   651
lemma finite_trancl[simp]: "finite (r^+) = finite r"
haftmann@29609
   652
  apply auto
haftmann@29609
   653
   prefer 2
haftmann@29609
   654
   apply (rule trancl_subset_Field2 [THEN finite_subset])
haftmann@29609
   655
   apply (rule finite_SigmaI)
haftmann@29609
   656
    prefer 3
haftmann@29609
   657
    apply (blast intro: r_into_trancl' finite_subset)
haftmann@29609
   658
   apply (auto simp add: finite_Field)
haftmann@29609
   659
  done
haftmann@29609
   660
wenzelm@12691
   661
text {* More about converse @{text rtrancl} and @{text trancl}, should
wenzelm@12691
   662
  be merged with main body. *}
kleing@12428
   663
nipkow@14337
   664
lemma single_valued_confluent:
nipkow@14337
   665
  "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk>
nipkow@14337
   666
  \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*"
wenzelm@26179
   667
  apply (erule rtrancl_induct)
wenzelm@26179
   668
  apply simp
wenzelm@26179
   669
  apply (erule disjE)
wenzelm@26179
   670
   apply (blast elim:converse_rtranclE dest:single_valuedD)
wenzelm@26179
   671
  apply(blast intro:rtrancl_trans)
wenzelm@26179
   672
  done
nipkow@14337
   673
wenzelm@12691
   674
lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+"
kleing@12428
   675
  by (fast intro: trancl_trans)
kleing@12428
   676
kleing@12428
   677
lemma trancl_into_trancl [rule_format]:
wenzelm@12691
   678
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+"
wenzelm@12691
   679
  apply (erule trancl_induct)
kleing@12428
   680
   apply (fast intro: r_r_into_trancl)
kleing@12428
   681
  apply (fast intro: r_r_into_trancl trancl_trans)
kleing@12428
   682
  done
kleing@12428
   683
berghofe@23743
   684
lemma tranclp_rtranclp_tranclp:
berghofe@22262
   685
    "r\<^sup>+\<^sup>+ a b ==> r\<^sup>*\<^sup>* b c ==> r\<^sup>+\<^sup>+ a c"
berghofe@23743
   686
  apply (drule tranclpD)
wenzelm@26179
   687
  apply (elim exE conjE)
berghofe@23743
   688
  apply (drule rtranclp_trans, assumption)
berghofe@23743
   689
  apply (drule rtranclp_into_tranclp2, assumption, assumption)
kleing@12428
   690
  done
kleing@12428
   691
berghofe@23743
   692
lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set]
berghofe@22262
   693
wenzelm@12691
   694
lemmas transitive_closure_trans [trans] =
wenzelm@12691
   695
  r_r_into_trancl trancl_trans rtrancl_trans
berghofe@23743
   696
  trancl.trancl_into_trancl trancl_into_trancl2
berghofe@23743
   697
  rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
wenzelm@12691
   698
  rtrancl_trancl_trancl trancl_rtrancl_trancl
kleing@12428
   699
berghofe@23743
   700
lemmas transitive_closurep_trans' [trans] =
berghofe@23743
   701
  tranclp_trans rtranclp_trans
berghofe@23743
   702
  tranclp.trancl_into_trancl tranclp_into_tranclp2
berghofe@23743
   703
  rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp
berghofe@23743
   704
  rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp
berghofe@22262
   705
kleing@12428
   706
declare trancl_into_rtrancl [elim]
berghofe@11327
   707
haftmann@30954
   708
subsection {* The power operation on relations *}
haftmann@30954
   709
haftmann@30954
   710
text {* @{text "R ^^ n = R O ... O R"}, the n-fold composition of @{text R} *}
haftmann@30954
   711
haftmann@30971
   712
overloading
haftmann@30971
   713
  relpow == "compow :: nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
haftmann@47202
   714
  relpowp == "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)"
haftmann@30971
   715
begin
haftmann@30954
   716
haftmann@30971
   717
primrec relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" where
haftmann@30971
   718
    "relpow 0 R = Id"
krauss@32235
   719
  | "relpow (Suc n) R = (R ^^ n) O R"
haftmann@30954
   720
haftmann@47202
   721
primrec relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)" where
haftmann@47202
   722
    "relpowp 0 R = HOL.eq"
haftmann@47202
   723
  | "relpowp (Suc n) R = (R ^^ n) OO R"
haftmann@47202
   724
haftmann@30971
   725
end
haftmann@30954
   726
haftmann@47202
   727
lemma relpowp_relpow_eq [pred_set_conv]:
haftmann@47202
   728
  fixes R :: "'a rel"
haftmann@47202
   729
  shows "(\<lambda>x y. (x, y) \<in> R) ^^ n = (\<lambda>x y. (x, y) \<in> R ^^ n)"
griff@47433
   730
  by (induct n) (simp_all add: relcompp_relcomp_eq)
haftmann@47202
   731
bulwahn@46360
   732
text {* for code generation *}
bulwahn@46360
   733
bulwahn@46360
   734
definition relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" where
bulwahn@46360
   735
  relpow_code_def [code_abbrev]: "relpow = compow"
bulwahn@46360
   736
Christian@47492
   737
definition relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)" where
Christian@47492
   738
  relpowp_code_def [code_abbrev]: "relpowp = compow"
Christian@47492
   739
bulwahn@46360
   740
lemma [code]:
bulwahn@46360
   741
  "relpow (Suc n) R = (relpow n R) O R"
bulwahn@46360
   742
  "relpow 0 R = Id"
bulwahn@46360
   743
  by (simp_all add: relpow_code_def)
bulwahn@46360
   744
Christian@47492
   745
lemma [code]:
Christian@47492
   746
  "relpowp (Suc n) R = (R ^^ n) OO R"
Christian@47492
   747
  "relpowp 0 R = HOL.eq"
Christian@47492
   748
  by (simp_all add: relpowp_code_def)
Christian@47492
   749
bulwahn@46360
   750
hide_const (open) relpow
Christian@47492
   751
hide_const (open) relpowp
bulwahn@46360
   752
bulwahn@46362
   753
lemma relpow_1 [simp]:
haftmann@30971
   754
  fixes R :: "('a \<times> 'a) set"
haftmann@30971
   755
  shows "R ^^ 1 = R"
haftmann@30954
   756
  by simp
haftmann@30954
   757
Christian@47492
   758
lemma relpowp_1 [simp]:
Christian@47492
   759
  fixes P :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
Christian@47492
   760
  shows "P ^^ 1 = P"
Christian@47492
   761
  by (fact relpow_1 [to_pred])
Christian@47492
   762
bulwahn@46362
   763
lemma relpow_0_I: 
haftmann@30954
   764
  "(x, x) \<in> R ^^ 0"
haftmann@30954
   765
  by simp
haftmann@30954
   766
Christian@47492
   767
lemma relpowp_0_I:
Christian@47492
   768
  "(P ^^ 0) x x"
Christian@47492
   769
  by (fact relpow_0_I [to_pred])
Christian@47492
   770
bulwahn@46362
   771
lemma relpow_Suc_I:
haftmann@30954
   772
  "(x, y) \<in>  R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
haftmann@30954
   773
  by auto
haftmann@30954
   774
Christian@47492
   775
lemma relpowp_Suc_I:
Christian@47492
   776
  "(P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> (P ^^ Suc n) x z"
Christian@47492
   777
  by (fact relpow_Suc_I [to_pred])
Christian@47492
   778
bulwahn@46362
   779
lemma relpow_Suc_I2:
haftmann@30954
   780
  "(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
nipkow@44890
   781
  by (induct n arbitrary: z) (simp, fastforce)
haftmann@30954
   782
Christian@47492
   783
lemma relpowp_Suc_I2:
Christian@47492
   784
  "P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> (P ^^ Suc n) x z"
Christian@47492
   785
  by (fact relpow_Suc_I2 [to_pred])
Christian@47492
   786
bulwahn@46362
   787
lemma relpow_0_E:
haftmann@30954
   788
  "(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@30954
   789
  by simp
haftmann@30954
   790
Christian@47492
   791
lemma relpowp_0_E:
Christian@47492
   792
  "(P ^^ 0) x y \<Longrightarrow> (x = y \<Longrightarrow> Q) \<Longrightarrow> Q"
Christian@47492
   793
  by (fact relpow_0_E [to_pred])
Christian@47492
   794
bulwahn@46362
   795
lemma relpow_Suc_E:
haftmann@30954
   796
  "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P"
haftmann@30954
   797
  by auto
haftmann@30954
   798
Christian@47492
   799
lemma relpowp_Suc_E:
Christian@47492
   800
  "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. (P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q"
Christian@47492
   801
  by (fact relpow_Suc_E [to_pred])
Christian@47492
   802
bulwahn@46362
   803
lemma relpow_E:
haftmann@30954
   804
  "(x, z) \<in>  R ^^ n \<Longrightarrow>  (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P)
haftmann@30954
   805
   \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in>  R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P)
haftmann@30954
   806
   \<Longrightarrow> P"
haftmann@30954
   807
  by (cases n) auto
haftmann@30954
   808
Christian@47492
   809
lemma relpowp_E:
Christian@47492
   810
  "(P ^^ n) x z \<Longrightarrow> (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q)
Christian@47492
   811
  \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (P ^^ m) x y \<Longrightarrow> P y z \<Longrightarrow> Q)
Christian@47492
   812
  \<Longrightarrow> Q"
Christian@47492
   813
  by (fact relpow_E [to_pred])
Christian@47492
   814
bulwahn@46362
   815
lemma relpow_Suc_D2:
haftmann@30954
   816
  "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)"
haftmann@30954
   817
  apply (induct n arbitrary: x z)
bulwahn@46362
   818
   apply (blast intro: relpow_0_I elim: relpow_0_E relpow_Suc_E)
bulwahn@46362
   819
  apply (blast intro: relpow_Suc_I elim: relpow_0_E relpow_Suc_E)
haftmann@30954
   820
  done
haftmann@30954
   821
Christian@47492
   822
lemma relpowp_Suc_D2:
Christian@47492
   823
  "(P ^^ Suc n) x z \<Longrightarrow> \<exists>y. P x y \<and> (P ^^ n) y z"
Christian@47492
   824
  by (fact relpow_Suc_D2 [to_pred])
Christian@47492
   825
bulwahn@46362
   826
lemma relpow_Suc_E2:
haftmann@30954
   827
  "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> P) \<Longrightarrow> P"
bulwahn@46362
   828
  by (blast dest: relpow_Suc_D2)
haftmann@30954
   829
Christian@47492
   830
lemma relpowp_Suc_E2:
Christian@47492
   831
  "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> Q) \<Longrightarrow> Q"
Christian@47492
   832
  by (fact relpow_Suc_E2 [to_pred])
Christian@47492
   833
bulwahn@46362
   834
lemma relpow_Suc_D2':
haftmann@30954
   835
  "\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)"
haftmann@30954
   836
  by (induct n) (simp_all, blast)
haftmann@30954
   837
Christian@47492
   838
lemma relpowp_Suc_D2':
Christian@47492
   839
  "\<forall>x y z. (P ^^ n) x y \<and> P y z \<longrightarrow> (\<exists>w. P x w \<and> (P ^^ n) w z)"
Christian@47492
   840
  by (fact relpow_Suc_D2' [to_pred])
Christian@47492
   841
bulwahn@46362
   842
lemma relpow_E2:
haftmann@30954
   843
  "(x, z) \<in> R ^^ n \<Longrightarrow>  (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P)
haftmann@30954
   844
     \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P)
haftmann@30954
   845
   \<Longrightarrow> P"
haftmann@30954
   846
  apply (cases n, simp)
bulwahn@46362
   847
  apply (cut_tac n=nat and R=R in relpow_Suc_D2', simp, blast)
haftmann@30954
   848
  done
haftmann@30954
   849
Christian@47492
   850
lemma relpowp_E2:
Christian@47492
   851
  "(P ^^ n) x z \<Longrightarrow> (n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q)
Christian@47492
   852
    \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> P x y \<Longrightarrow> (P ^^ m) y z \<Longrightarrow> Q)
Christian@47492
   853
  \<Longrightarrow> Q"
Christian@47492
   854
  by (fact relpow_E2 [to_pred])
Christian@47492
   855
bulwahn@46362
   856
lemma relpow_add: "R ^^ (m+n) = R^^m O R^^n"
haftmann@45976
   857
  by (induct n) auto
nipkow@31351
   858
Christian@47492
   859
lemma relpowp_add: "P ^^ (m + n) = P ^^ m OO P ^^ n"
Christian@47492
   860
  by (fact relpow_add [to_pred])
Christian@47492
   861
bulwahn@46362
   862
lemma relpow_commute: "R O R ^^ n = R ^^ n O R"
haftmann@45976
   863
  by (induct n) (simp, simp add: O_assoc [symmetric])
krauss@31970
   864
Christian@47492
   865
lemma relpowp_commute: "P OO P ^^ n = P ^^ n OO P"
Christian@47492
   866
  by (fact relpow_commute [to_pred])
Christian@47492
   867
bulwahn@46362
   868
lemma relpow_empty:
haftmann@45153
   869
  "0 < n \<Longrightarrow> ({} :: ('a \<times> 'a) set) ^^ n = {}"
haftmann@45153
   870
  by (cases n) auto
bulwahn@45116
   871
Christian@47492
   872
lemma relpowp_bot:
Christian@47492
   873
  "0 < n \<Longrightarrow> (\<bottom> :: 'a \<Rightarrow> 'a \<Rightarrow> bool) ^^ n = \<bottom>"
Christian@47492
   874
  by (fact relpow_empty [to_pred])
Christian@47492
   875
bulwahn@46362
   876
lemma rtrancl_imp_UN_relpow:
haftmann@30954
   877
  assumes "p \<in> R^*"
haftmann@30954
   878
  shows "p \<in> (\<Union>n. R ^^ n)"
haftmann@30954
   879
proof (cases p)
haftmann@30954
   880
  case (Pair x y)
haftmann@30954
   881
  with assms have "(x, y) \<in> R^*" by simp
haftmann@30954
   882
  then have "(x, y) \<in> (\<Union>n. R ^^ n)" proof induct
bulwahn@46362
   883
    case base show ?case by (blast intro: relpow_0_I)
haftmann@30954
   884
  next
bulwahn@46362
   885
    case step then show ?case by (blast intro: relpow_Suc_I)
haftmann@30954
   886
  qed
haftmann@30954
   887
  with Pair show ?thesis by simp
haftmann@30954
   888
qed
haftmann@30954
   889
Christian@47492
   890
lemma rtranclp_imp_Sup_relpowp:
Christian@47492
   891
  assumes "(P^**) x y"
Christian@47492
   892
  shows "(\<Squnion>n. P ^^ n) x y"
Christian@47492
   893
  using assms and rtrancl_imp_UN_relpow [to_pred] by blast
Christian@47492
   894
bulwahn@46362
   895
lemma relpow_imp_rtrancl:
haftmann@30954
   896
  assumes "p \<in> R ^^ n"
haftmann@30954
   897
  shows "p \<in> R^*"
haftmann@30954
   898
proof (cases p)
haftmann@30954
   899
  case (Pair x y)
haftmann@30954
   900
  with assms have "(x, y) \<in> R ^^ n" by simp
haftmann@30954
   901
  then have "(x, y) \<in> R^*" proof (induct n arbitrary: x y)
haftmann@30954
   902
    case 0 then show ?case by simp
haftmann@30954
   903
  next
haftmann@30954
   904
    case Suc then show ?case
bulwahn@46362
   905
      by (blast elim: relpow_Suc_E intro: rtrancl_into_rtrancl)
haftmann@30954
   906
  qed
haftmann@30954
   907
  with Pair show ?thesis by simp
haftmann@30954
   908
qed
haftmann@30954
   909
Christian@47492
   910
lemma relpowp_imp_rtranclp:
Christian@47492
   911
  assumes "(P ^^ n) x y"
Christian@47492
   912
  shows "(P^**) x y"
Christian@47492
   913
  using assms and relpow_imp_rtrancl [to_pred] by blast
Christian@47492
   914
bulwahn@46362
   915
lemma rtrancl_is_UN_relpow:
haftmann@30954
   916
  "R^* = (\<Union>n. R ^^ n)"
bulwahn@46362
   917
  by (blast intro: rtrancl_imp_UN_relpow relpow_imp_rtrancl)
haftmann@30954
   918
Christian@47492
   919
lemma rtranclp_is_Sup_relpowp:
Christian@47492
   920
  "P^** = (\<Squnion>n. P ^^ n)"
Christian@47492
   921
  using rtrancl_is_UN_relpow [to_pred, of P] by auto
Christian@47492
   922
haftmann@30954
   923
lemma rtrancl_power:
haftmann@30954
   924
  "p \<in> R^* \<longleftrightarrow> (\<exists>n. p \<in> R ^^ n)"
bulwahn@46362
   925
  by (simp add: rtrancl_is_UN_relpow)
haftmann@30954
   926
Christian@47492
   927
lemma rtranclp_power:
Christian@47492
   928
  "(P^**) x y \<longleftrightarrow> (\<exists>n. (P ^^ n) x y)"
Christian@47492
   929
  by (simp add: rtranclp_is_Sup_relpowp)
Christian@47492
   930
haftmann@30954
   931
lemma trancl_power:
haftmann@30954
   932
  "p \<in> R^+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)"
haftmann@30954
   933
  apply (cases p)
haftmann@30954
   934
  apply simp
haftmann@30954
   935
  apply (rule iffI)
haftmann@30954
   936
   apply (drule tranclD2)
bulwahn@46362
   937
   apply (clarsimp simp: rtrancl_is_UN_relpow)
haftmann@30971
   938
   apply (rule_tac x="Suc n" in exI)
griff@47433
   939
   apply (clarsimp simp: relcomp_unfold)
nipkow@44890
   940
   apply fastforce
haftmann@30954
   941
  apply clarsimp
haftmann@30954
   942
  apply (case_tac n, simp)
haftmann@30954
   943
  apply clarsimp
bulwahn@46362
   944
  apply (drule relpow_imp_rtrancl)
haftmann@30954
   945
  apply (drule rtrancl_into_trancl1) apply auto
haftmann@30954
   946
  done
haftmann@30954
   947
Christian@47492
   948
lemma tranclp_power:
Christian@47492
   949
  "(P^++) x y \<longleftrightarrow> (\<exists>n > 0. (P ^^ n) x y)"
Christian@47492
   950
  using trancl_power [to_pred, of P "(x, y)"] by simp
Christian@47492
   951
bulwahn@46362
   952
lemma rtrancl_imp_relpow:
haftmann@30954
   953
  "p \<in> R^* \<Longrightarrow> \<exists>n. p \<in> R ^^ n"
bulwahn@46362
   954
  by (auto dest: rtrancl_imp_UN_relpow)
haftmann@30954
   955
Christian@47492
   956
lemma rtranclp_imp_relpowp:
Christian@47492
   957
  "(P^**) x y \<Longrightarrow> \<exists>n. (P ^^ n) x y"
Christian@47492
   958
  by (auto dest: rtranclp_imp_Sup_relpowp)
Christian@47492
   959
nipkow@41987
   960
text{* By Sternagel/Thiemann: *}
bulwahn@46362
   961
lemma relpow_fun_conv:
nipkow@41987
   962
  "((a,b) \<in> R ^^ n) = (\<exists>f. f 0 = a \<and> f n = b \<and> (\<forall>i<n. (f i, f(Suc i)) \<in> R))"
nipkow@41987
   963
proof (induct n arbitrary: b)
nipkow@41987
   964
  case 0 show ?case by auto
nipkow@41987
   965
next
nipkow@41987
   966
  case (Suc n)
nipkow@41987
   967
  show ?case
griff@47433
   968
  proof (simp add: relcomp_unfold Suc)
nipkow@41987
   969
    show "(\<exists>y. (\<exists>f. f 0 = a \<and> f n = y \<and> (\<forall>i<n. (f i,f(Suc i)) \<in> R)) \<and> (y,b) \<in> R)
nipkow@41987
   970
     = (\<exists>f. f 0 = a \<and> f(Suc n) = b \<and> (\<forall>i<Suc n. (f i, f (Suc i)) \<in> R))"
nipkow@41987
   971
    (is "?l = ?r")
nipkow@41987
   972
    proof
nipkow@41987
   973
      assume ?l
nipkow@41987
   974
      then obtain c f where 1: "f 0 = a"  "f n = c"  "\<And>i. i < n \<Longrightarrow> (f i, f (Suc i)) \<in> R"  "(c,b) \<in> R" by auto
nipkow@41987
   975
      let ?g = "\<lambda> m. if m = Suc n then b else f m"
nipkow@41987
   976
      show ?r by (rule exI[of _ ?g], simp add: 1)
nipkow@41987
   977
    next
nipkow@41987
   978
      assume ?r
nipkow@41987
   979
      then obtain f where 1: "f 0 = a"  "b = f (Suc n)"  "\<And>i. i < Suc n \<Longrightarrow> (f i, f (Suc i)) \<in> R" by auto
nipkow@41987
   980
      show ?l by (rule exI[of _ "f n"], rule conjI, rule exI[of _ f], insert 1, auto)
nipkow@41987
   981
    qed
nipkow@41987
   982
  qed
nipkow@41987
   983
qed
nipkow@41987
   984
Christian@47492
   985
lemma relpowp_fun_conv:
Christian@47492
   986
  "(P ^^ n) x y \<longleftrightarrow> (\<exists>f. f 0 = x \<and> f n = y \<and> (\<forall>i<n. P (f i) (f (Suc i))))"
Christian@47492
   987
  by (fact relpow_fun_conv [to_pred])
Christian@47492
   988
bulwahn@46362
   989
lemma relpow_finite_bounded1:
nipkow@41987
   990
assumes "finite(R :: ('a*'a)set)" and "k>0"
nipkow@41987
   991
shows "R^^k \<subseteq> (UN n:{n. 0<n & n <= card R}. R^^n)" (is "_ \<subseteq> ?r")
nipkow@41987
   992
proof-
nipkow@41987
   993
  { fix a b k
nipkow@41987
   994
    have "(a,b) : R^^(Suc k) \<Longrightarrow> EX n. 0<n & n <= card R & (a,b) : R^^n"
nipkow@41987
   995
    proof(induct k arbitrary: b)
nipkow@41987
   996
      case 0
nipkow@41987
   997
      hence "R \<noteq> {}" by auto
nipkow@41987
   998
      with card_0_eq[OF `finite R`] have "card R >= Suc 0" by auto
nipkow@41987
   999
      thus ?case using 0 by force
nipkow@41987
  1000
    next
nipkow@41987
  1001
      case (Suc k)
nipkow@41987
  1002
      then obtain a' where "(a,a') : R^^(Suc k)" and "(a',b) : R" by auto
nipkow@41987
  1003
      from Suc(1)[OF `(a,a') : R^^(Suc k)`]
nipkow@41987
  1004
      obtain n where "n \<le> card R" and "(a,a') \<in> R ^^ n" by auto
nipkow@41987
  1005
      have "(a,b) : R^^(Suc n)" using `(a,a') \<in> R^^n` and `(a',b)\<in> R` by auto
nipkow@41987
  1006
      { assume "n < card R"
nipkow@41987
  1007
        hence ?case using `(a,b): R^^(Suc n)` Suc_leI[OF `n < card R`] by blast
nipkow@41987
  1008
      } moreover
nipkow@41987
  1009
      { assume "n = card R"
bulwahn@46362
  1010
        from `(a,b) \<in> R ^^ (Suc n)`[unfolded relpow_fun_conv]
nipkow@41987
  1011
        obtain f where "f 0 = a" and "f(Suc n) = b"
nipkow@41987
  1012
          and steps: "\<And>i. i <= n \<Longrightarrow> (f i, f (Suc i)) \<in> R" by auto
nipkow@41987
  1013
        let ?p = "%i. (f i, f(Suc i))"
nipkow@41987
  1014
        let ?N = "{i. i \<le> n}"
nipkow@41987
  1015
        have "?p ` ?N <= R" using steps by auto
nipkow@41987
  1016
        from card_mono[OF assms(1) this]
nipkow@41987
  1017
        have "card(?p ` ?N) <= card R" .
nipkow@41987
  1018
        also have "\<dots> < card ?N" using `n = card R` by simp
nipkow@41987
  1019
        finally have "~ inj_on ?p ?N" by(rule pigeonhole)
nipkow@41987
  1020
        then obtain i j where i: "i <= n" and j: "j <= n" and ij: "i \<noteq> j" and
nipkow@41987
  1021
          pij: "?p i = ?p j" by(auto simp: inj_on_def)
nipkow@41987
  1022
        let ?i = "min i j" let ?j = "max i j"
nipkow@41987
  1023
        have i: "?i <= n" and j: "?j <= n" and pij: "?p ?i = ?p ?j" 
nipkow@41987
  1024
          and ij: "?i < ?j"
nipkow@41987
  1025
          using i j ij pij unfolding min_def max_def by auto
nipkow@41987
  1026
        from i j pij ij obtain i j where i: "i<=n" and j: "j<=n" and ij: "i<j"
nipkow@41987
  1027
          and pij: "?p i = ?p j" by blast
nipkow@41987
  1028
        let ?g = "\<lambda> l. if l \<le> i then f l else f (l + (j - i))"
nipkow@41987
  1029
        let ?n = "Suc(n - (j - i))"
bulwahn@46362
  1030
        have abl: "(a,b) \<in> R ^^ ?n" unfolding relpow_fun_conv
nipkow@41987
  1031
        proof (rule exI[of _ ?g], intro conjI impI allI)
nipkow@41987
  1032
          show "?g ?n = b" using `f(Suc n) = b` j ij by auto
nipkow@41987
  1033
        next
nipkow@41987
  1034
          fix k assume "k < ?n"
nipkow@41987
  1035
          show "(?g k, ?g (Suc k)) \<in> R"
nipkow@41987
  1036
          proof (cases "k < i")
nipkow@41987
  1037
            case True
nipkow@41987
  1038
            with i have "k <= n" by auto
nipkow@41987
  1039
            from steps[OF this] show ?thesis using True by simp
nipkow@41987
  1040
          next
nipkow@41987
  1041
            case False
nipkow@41987
  1042
            hence "i \<le> k" by auto
nipkow@41987
  1043
            show ?thesis
nipkow@41987
  1044
            proof (cases "k = i")
nipkow@41987
  1045
              case True
nipkow@41987
  1046
              thus ?thesis using ij pij steps[OF i] by simp
nipkow@41987
  1047
            next
nipkow@41987
  1048
              case False
nipkow@41987
  1049
              with `i \<le> k` have "i < k" by auto
nipkow@41987
  1050
              hence small: "k + (j - i) <= n" using `k<?n` by arith
nipkow@41987
  1051
              show ?thesis using steps[OF small] `i<k` by auto
nipkow@41987
  1052
            qed
nipkow@41987
  1053
          qed
nipkow@41987
  1054
        qed (simp add: `f 0 = a`)
nipkow@41987
  1055
        moreover have "?n <= n" using i j ij by arith
nipkow@41987
  1056
        ultimately have ?case using `n = card R` by blast
nipkow@41987
  1057
      }
nipkow@41987
  1058
      ultimately show ?case using `n \<le> card R` by force
nipkow@41987
  1059
    qed
nipkow@41987
  1060
  }
nipkow@41987
  1061
  thus ?thesis using gr0_implies_Suc[OF `k>0`] by auto
nipkow@41987
  1062
qed
nipkow@41987
  1063
bulwahn@46362
  1064
lemma relpow_finite_bounded:
nipkow@41987
  1065
assumes "finite(R :: ('a*'a)set)"
nipkow@41987
  1066
shows "R^^k \<subseteq> (UN n:{n. n <= card R}. R^^n)"
nipkow@41987
  1067
apply(cases k)
nipkow@41987
  1068
 apply force
bulwahn@46362
  1069
using relpow_finite_bounded1[OF assms, of k] by auto
nipkow@41987
  1070
bulwahn@46362
  1071
lemma rtrancl_finite_eq_relpow:
nipkow@41987
  1072
  "finite R \<Longrightarrow> R^* = (UN n : {n. n <= card R}. R^^n)"
bulwahn@46362
  1073
by(fastforce simp: rtrancl_power dest: relpow_finite_bounded)
nipkow@41987
  1074
bulwahn@46362
  1075
lemma trancl_finite_eq_relpow:
nipkow@41987
  1076
  "finite R \<Longrightarrow> R^+ = (UN n : {n. 0 < n & n <= card R}. R^^n)"
nipkow@41987
  1077
apply(auto simp add: trancl_power)
bulwahn@46362
  1078
apply(auto dest: relpow_finite_bounded1)
nipkow@41987
  1079
done
nipkow@41987
  1080
griff@47433
  1081
lemma finite_relcomp[simp,intro]:
nipkow@41987
  1082
assumes "finite R" and "finite S"
nipkow@41987
  1083
shows "finite(R O S)"
nipkow@41987
  1084
proof-
nipkow@41987
  1085
  have "R O S = (UN (x,y) : R. \<Union>((%(u,v). if u=y then {(x,v)} else {}) ` S))"
nipkow@41987
  1086
    by(force simp add: split_def)
nipkow@41987
  1087
  thus ?thesis using assms by(clarsimp)
nipkow@41987
  1088
qed
nipkow@41987
  1089
nipkow@41987
  1090
lemma finite_relpow[simp,intro]:
nipkow@41987
  1091
  assumes "finite(R :: ('a*'a)set)" shows "n>0 \<Longrightarrow> finite(R^^n)"
nipkow@41987
  1092
apply(induct n)
nipkow@41987
  1093
 apply simp
nipkow@41987
  1094
apply(case_tac n)
nipkow@41987
  1095
 apply(simp_all add: assms)
nipkow@41987
  1096
done
nipkow@41987
  1097
bulwahn@46362
  1098
lemma single_valued_relpow:
haftmann@30954
  1099
  fixes R :: "('a * 'a) set"
haftmann@30954
  1100
  shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)"
nipkow@41987
  1101
apply (induct n arbitrary: R)
nipkow@41987
  1102
apply simp_all
nipkow@41987
  1103
apply (rule single_valuedI)
bulwahn@46362
  1104
apply (fast dest: single_valuedD elim: relpow_Suc_E)
nipkow@41987
  1105
done
paulson@15551
  1106
haftmann@45140
  1107
haftmann@45140
  1108
subsection {* Bounded transitive closure *}
haftmann@45140
  1109
haftmann@45140
  1110
definition ntrancl :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"
haftmann@45140
  1111
where
haftmann@45140
  1112
  "ntrancl n R = (\<Union>i\<in>{i. 0 < i \<and> i \<le> Suc n}. R ^^ i)"
haftmann@45140
  1113
haftmann@45140
  1114
lemma ntrancl_Zero [simp, code]:
haftmann@45140
  1115
  "ntrancl 0 R = R"
haftmann@45140
  1116
proof
haftmann@45140
  1117
  show "R \<subseteq> ntrancl 0 R"
haftmann@45140
  1118
    unfolding ntrancl_def by fastforce
haftmann@45140
  1119
next
haftmann@45140
  1120
  { 
haftmann@45140
  1121
    fix i have "0 < i \<and> i \<le> Suc 0 \<longleftrightarrow> i = 1" by auto
haftmann@45140
  1122
  }
haftmann@45140
  1123
  from this show "ntrancl 0 R \<le> R"
haftmann@45140
  1124
    unfolding ntrancl_def by auto
haftmann@45140
  1125
qed
haftmann@45140
  1126
bulwahn@46347
  1127
lemma ntrancl_Suc [simp]:
haftmann@45140
  1128
  "ntrancl (Suc n) R = ntrancl n R O (Id \<union> R)"
haftmann@45140
  1129
proof
haftmann@45140
  1130
  {
haftmann@45140
  1131
    fix a b
haftmann@45140
  1132
    assume "(a, b) \<in> ntrancl (Suc n) R"
haftmann@45140
  1133
    from this obtain i where "0 < i" "i \<le> Suc (Suc n)" "(a, b) \<in> R ^^ i"
haftmann@45140
  1134
      unfolding ntrancl_def by auto
haftmann@45140
  1135
    have "(a, b) \<in> ntrancl n R O (Id \<union> R)"
haftmann@45140
  1136
    proof (cases "i = 1")
haftmann@45140
  1137
      case True
haftmann@45140
  1138
      from this `(a, b) \<in> R ^^ i` show ?thesis
haftmann@45140
  1139
        unfolding ntrancl_def by auto
haftmann@45140
  1140
    next
haftmann@45140
  1141
      case False
haftmann@45140
  1142
      from this `0 < i` obtain j where j: "i = Suc j" "0 < j"
haftmann@45140
  1143
        by (cases i) auto
haftmann@45140
  1144
      from this `(a, b) \<in> R ^^ i` obtain c where c1: "(a, c) \<in> R ^^ j" and c2:"(c, b) \<in> R"
haftmann@45140
  1145
        by auto
haftmann@45140
  1146
      from c1 j `i \<le> Suc (Suc n)` have "(a, c) \<in> ntrancl n R"
haftmann@45140
  1147
        unfolding ntrancl_def by fastforce
haftmann@45140
  1148
      from this c2 show ?thesis by fastforce
haftmann@45140
  1149
    qed
haftmann@45140
  1150
  }
haftmann@45140
  1151
  from this show "ntrancl (Suc n) R \<subseteq> ntrancl n R O (Id \<union> R)"
haftmann@45140
  1152
    by auto
haftmann@45140
  1153
next
haftmann@45140
  1154
  show "ntrancl n R O (Id \<union> R) \<subseteq> ntrancl (Suc n) R"
haftmann@45140
  1155
    unfolding ntrancl_def by fastforce
haftmann@45140
  1156
qed
haftmann@45140
  1157
bulwahn@46347
  1158
lemma [code]:
bulwahn@46347
  1159
  "ntrancl (Suc n) r = (let r' = ntrancl n r in r' Un r' O r)"
bulwahn@46347
  1160
unfolding Let_def by auto
bulwahn@46347
  1161
haftmann@45141
  1162
lemma finite_trancl_ntranl:
haftmann@45140
  1163
  "finite R \<Longrightarrow> trancl R = ntrancl (card R - 1) R"
bulwahn@46362
  1164
  by (cases "card R") (auto simp add: trancl_finite_eq_relpow relpow_empty ntrancl_def)
haftmann@45140
  1165
haftmann@45140
  1166
haftmann@45139
  1167
subsection {* Acyclic relations *}
haftmann@45139
  1168
haftmann@45139
  1169
definition acyclic :: "('a * 'a) set => bool" where
haftmann@45139
  1170
  "acyclic r \<longleftrightarrow> (!x. (x,x) ~: r^+)"
haftmann@45139
  1171
haftmann@45139
  1172
abbreviation acyclicP :: "('a => 'a => bool) => bool" where
haftmann@45139
  1173
  "acyclicP r \<equiv> acyclic {(x, y). r x y}"
haftmann@45139
  1174
haftmann@46127
  1175
lemma acyclic_irrefl [code]:
haftmann@45139
  1176
  "acyclic r \<longleftrightarrow> irrefl (r^+)"
haftmann@45139
  1177
  by (simp add: acyclic_def irrefl_def)
haftmann@45139
  1178
haftmann@45139
  1179
lemma acyclicI: "ALL x. (x, x) ~: r^+ ==> acyclic r"
haftmann@45139
  1180
  by (simp add: acyclic_def)
haftmann@45139
  1181
haftmann@45139
  1182
lemma acyclic_insert [iff]:
haftmann@45139
  1183
     "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)"
haftmann@45139
  1184
apply (simp add: acyclic_def trancl_insert)
haftmann@45139
  1185
apply (blast intro: rtrancl_trans)
haftmann@45139
  1186
done
haftmann@45139
  1187
haftmann@45139
  1188
lemma acyclic_converse [iff]: "acyclic(r^-1) = acyclic r"
haftmann@45139
  1189
by (simp add: acyclic_def trancl_converse)
haftmann@45139
  1190
haftmann@45139
  1191
lemmas acyclicP_converse [iff] = acyclic_converse [to_pred]
haftmann@45139
  1192
haftmann@45139
  1193
lemma acyclic_impl_antisym_rtrancl: "acyclic r ==> antisym(r^*)"
haftmann@45139
  1194
apply (simp add: acyclic_def antisym_def)
haftmann@45139
  1195
apply (blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl)
haftmann@45139
  1196
done
haftmann@45139
  1197
haftmann@45139
  1198
(* Other direction:
haftmann@45139
  1199
acyclic = no loops
haftmann@45139
  1200
antisym = only self loops
haftmann@45139
  1201
Goalw [acyclic_def,antisym_def] "antisym( r^* ) ==> acyclic(r - Id)
haftmann@45139
  1202
==> antisym( r^* ) = acyclic(r - Id)";
haftmann@45139
  1203
*)
haftmann@45139
  1204
haftmann@45139
  1205
lemma acyclic_subset: "[| acyclic s; r <= s |] ==> acyclic r"
haftmann@45139
  1206
apply (simp add: acyclic_def)
haftmann@45139
  1207
apply (blast intro: trancl_mono)
haftmann@45139
  1208
done
haftmann@45139
  1209
haftmann@45139
  1210
ballarin@15076
  1211
subsection {* Setup of transitivity reasoner *}
ballarin@15076
  1212
wenzelm@26340
  1213
ML {*
ballarin@15076
  1214
wenzelm@32215
  1215
structure Trancl_Tac = Trancl_Tac
wenzelm@32215
  1216
(
wenzelm@32215
  1217
  val r_into_trancl = @{thm trancl.r_into_trancl};
wenzelm@32215
  1218
  val trancl_trans  = @{thm trancl_trans};
wenzelm@32215
  1219
  val rtrancl_refl = @{thm rtrancl.rtrancl_refl};
wenzelm@32215
  1220
  val r_into_rtrancl = @{thm r_into_rtrancl};
wenzelm@32215
  1221
  val trancl_into_rtrancl = @{thm trancl_into_rtrancl};
wenzelm@32215
  1222
  val rtrancl_trancl_trancl = @{thm rtrancl_trancl_trancl};
wenzelm@32215
  1223
  val trancl_rtrancl_trancl = @{thm trancl_rtrancl_trancl};
wenzelm@32215
  1224
  val rtrancl_trans = @{thm rtrancl_trans};
ballarin@15096
  1225
berghofe@30107
  1226
  fun decomp (@{const Trueprop} $ t) =
haftmann@37677
  1227
    let fun dec (Const (@{const_name Set.member}, _) $ (Const (@{const_name Pair}, _) $ a $ b) $ rel ) =
berghofe@23743
  1228
        let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
berghofe@23743
  1229
              | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
wenzelm@18372
  1230
              | decr r = (r,"r");
berghofe@26801
  1231
            val (rel,r) = decr (Envir.beta_eta_contract rel);
wenzelm@18372
  1232
        in SOME (a,b,rel,r) end
wenzelm@18372
  1233
      | dec _ =  NONE
berghofe@30107
  1234
    in dec t end
berghofe@30107
  1235
    | decomp _ = NONE;
wenzelm@32215
  1236
);
ballarin@15076
  1237
wenzelm@32215
  1238
structure Tranclp_Tac = Trancl_Tac
wenzelm@32215
  1239
(
wenzelm@32215
  1240
  val r_into_trancl = @{thm tranclp.r_into_trancl};
wenzelm@32215
  1241
  val trancl_trans  = @{thm tranclp_trans};
wenzelm@32215
  1242
  val rtrancl_refl = @{thm rtranclp.rtrancl_refl};
wenzelm@32215
  1243
  val r_into_rtrancl = @{thm r_into_rtranclp};
wenzelm@32215
  1244
  val trancl_into_rtrancl = @{thm tranclp_into_rtranclp};
wenzelm@32215
  1245
  val rtrancl_trancl_trancl = @{thm rtranclp_tranclp_tranclp};
wenzelm@32215
  1246
  val trancl_rtrancl_trancl = @{thm tranclp_rtranclp_tranclp};
wenzelm@32215
  1247
  val rtrancl_trans = @{thm rtranclp_trans};
berghofe@22262
  1248
berghofe@30107
  1249
  fun decomp (@{const Trueprop} $ t) =
berghofe@22262
  1250
    let fun dec (rel $ a $ b) =
berghofe@23743
  1251
        let fun decr (Const ("Transitive_Closure.rtranclp", _ ) $ r) = (r,"r*")
berghofe@23743
  1252
              | decr (Const ("Transitive_Closure.tranclp", _ ) $ r)  = (r,"r+")
berghofe@22262
  1253
              | decr r = (r,"r");
berghofe@22262
  1254
            val (rel,r) = decr rel;
berghofe@26801
  1255
        in SOME (a, b, rel, r) end
berghofe@22262
  1256
      | dec _ =  NONE
berghofe@30107
  1257
    in dec t end
berghofe@30107
  1258
    | decomp _ = NONE;
wenzelm@32215
  1259
);
wenzelm@26340
  1260
*}
berghofe@22262
  1261
wenzelm@42795
  1262
setup {*
wenzelm@42795
  1263
  Simplifier.map_simpset_global (fn ss => ss
wenzelm@43596
  1264
    addSolver (mk_solver "Trancl" (Trancl_Tac.trancl_tac o Simplifier.the_context))
wenzelm@43596
  1265
    addSolver (mk_solver "Rtrancl" (Trancl_Tac.rtrancl_tac o Simplifier.the_context))
wenzelm@43596
  1266
    addSolver (mk_solver "Tranclp" (Tranclp_Tac.trancl_tac o Simplifier.the_context))
wenzelm@43596
  1267
    addSolver (mk_solver "Rtranclp" (Tranclp_Tac.rtrancl_tac o Simplifier.the_context)))
ballarin@15076
  1268
*}
ballarin@15076
  1269
wenzelm@32215
  1270
wenzelm@32215
  1271
text {* Optional methods. *}
ballarin@15076
  1272
ballarin@15076
  1273
method_setup trancl =
wenzelm@32215
  1274
  {* Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.trancl_tac) *}
wenzelm@18372
  1275
  {* simple transitivity reasoner *}
ballarin@15076
  1276
method_setup rtrancl =
wenzelm@32215
  1277
  {* Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.rtrancl_tac) *}
ballarin@15076
  1278
  {* simple transitivity reasoner *}
berghofe@22262
  1279
method_setup tranclp =
wenzelm@32215
  1280
  {* Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.trancl_tac) *}
berghofe@22262
  1281
  {* simple transitivity reasoner (predicate version) *}
berghofe@22262
  1282
method_setup rtranclp =
wenzelm@32215
  1283
  {* Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.rtrancl_tac) *}
berghofe@22262
  1284
  {* simple transitivity reasoner (predicate version) *}
ballarin@15076
  1285
nipkow@10213
  1286
end
haftmann@46752
  1287