923
|
1 |
(* Title: HOL/List
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1994 TU Muenchen
|
|
5 |
|
|
6 |
List lemmas
|
|
7 |
*)
|
|
8 |
|
|
9 |
open List;
|
|
10 |
|
|
11 |
val [Nil_not_Cons,Cons_not_Nil] = list.distinct;
|
|
12 |
|
|
13 |
bind_thm("Cons_neq_Nil", Cons_not_Nil RS notE);
|
|
14 |
bind_thm("Nil_neq_Cons", sym RS Cons_neq_Nil);
|
|
15 |
|
|
16 |
bind_thm("Cons_inject", (hd list.inject) RS iffD1 RS conjE);
|
|
17 |
|
|
18 |
val list_ss = HOL_ss addsimps list.simps;
|
|
19 |
|
|
20 |
goal List.thy "!x. xs ~= x#xs";
|
|
21 |
by (list.induct_tac "xs" 1);
|
|
22 |
by (ALLGOALS (asm_simp_tac list_ss));
|
|
23 |
qed "not_Cons_self";
|
|
24 |
|
|
25 |
goal List.thy "(xs ~= []) = (? y ys. xs = y#ys)";
|
|
26 |
by (list.induct_tac "xs" 1);
|
|
27 |
by(simp_tac list_ss 1);
|
|
28 |
by(asm_simp_tac list_ss 1);
|
|
29 |
by(REPEAT(resolve_tac [exI,refl,conjI] 1));
|
|
30 |
qed "neq_Nil_conv";
|
|
31 |
|
|
32 |
val list_ss = arith_ss addsimps list.simps @
|
|
33 |
[null_Nil, null_Cons, hd_Cons, tl_Cons, ttl_Nil, ttl_Cons,
|
|
34 |
mem_Nil, mem_Cons,
|
|
35 |
append_Nil, append_Cons,
|
|
36 |
map_Nil, map_Cons,
|
|
37 |
flat_Nil, flat_Cons,
|
|
38 |
list_all_Nil, list_all_Cons,
|
|
39 |
filter_Nil, filter_Cons];
|
|
40 |
|
|
41 |
|
|
42 |
(** @ - append **)
|
|
43 |
|
|
44 |
goal List.thy "(xs@ys)@zs = xs@(ys@zs)";
|
|
45 |
by (list.induct_tac "xs" 1);
|
|
46 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
47 |
qed "append_assoc";
|
|
48 |
|
|
49 |
goal List.thy "xs @ [] = xs";
|
|
50 |
by (list.induct_tac "xs" 1);
|
|
51 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
52 |
qed "append_Nil2";
|
|
53 |
|
|
54 |
goal List.thy "(xs@ys = []) = (xs=[] & ys=[])";
|
|
55 |
by (list.induct_tac "xs" 1);
|
|
56 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
57 |
qed "append_is_Nil";
|
|
58 |
|
|
59 |
goal List.thy "(xs @ ys = xs @ zs) = (ys=zs)";
|
|
60 |
by (list.induct_tac "xs" 1);
|
|
61 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
62 |
qed "same_append_eq";
|
|
63 |
|
|
64 |
|
|
65 |
(** mem **)
|
|
66 |
|
|
67 |
goal List.thy "x mem (xs@ys) = (x mem xs | x mem ys)";
|
|
68 |
by (list.induct_tac "xs" 1);
|
|
69 |
by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
|
|
70 |
qed "mem_append";
|
|
71 |
|
|
72 |
goal List.thy "x mem [x:xs.P(x)] = (x mem xs & P(x))";
|
|
73 |
by (list.induct_tac "xs" 1);
|
|
74 |
by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
|
|
75 |
qed "mem_filter";
|
|
76 |
|
|
77 |
(** list_all **)
|
|
78 |
|
|
79 |
goal List.thy "(Alls x:xs.True) = True";
|
|
80 |
by (list.induct_tac "xs" 1);
|
|
81 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
82 |
qed "list_all_True";
|
|
83 |
|
|
84 |
goal List.thy "list_all p (xs@ys) = (list_all p xs & list_all p ys)";
|
|
85 |
by (list.induct_tac "xs" 1);
|
|
86 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
87 |
qed "list_all_conj";
|
|
88 |
|
|
89 |
goal List.thy "(Alls x:xs.P(x)) = (!x. x mem xs --> P(x))";
|
|
90 |
by (list.induct_tac "xs" 1);
|
|
91 |
by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
|
|
92 |
by(fast_tac HOL_cs 1);
|
|
93 |
qed "list_all_mem_conv";
|
|
94 |
|
|
95 |
|
|
96 |
(** list_case **)
|
|
97 |
|
|
98 |
goal List.thy
|
|
99 |
"P(list_case a f xs) = ((xs=[] --> P(a)) & \
|
|
100 |
\ (!y ys. xs=y#ys --> P(f y ys)))";
|
|
101 |
by (list.induct_tac "xs" 1);
|
|
102 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
103 |
by(fast_tac HOL_cs 1);
|
|
104 |
qed "expand_list_case";
|
|
105 |
|
|
106 |
goal List.thy "(xs=[] --> P([])) & (!y ys. xs=y#ys --> P(y#ys)) --> P(xs)";
|
|
107 |
by(list.induct_tac "xs" 1);
|
|
108 |
by(fast_tac HOL_cs 1);
|
|
109 |
by(fast_tac HOL_cs 1);
|
|
110 |
bind_thm("list_eq_cases",
|
|
111 |
impI RSN (2,allI RSN (2,allI RSN (2,impI RS (conjI RS (result() RS mp))))));
|
|
112 |
|
|
113 |
(** flat **)
|
|
114 |
|
|
115 |
goal List.thy "flat(xs@ys) = flat(xs)@flat(ys)";
|
|
116 |
by (list.induct_tac "xs" 1);
|
|
117 |
by(ALLGOALS(asm_simp_tac (list_ss addsimps [append_assoc])));
|
|
118 |
qed"flat_append";
|
|
119 |
|
|
120 |
(** nth **)
|
|
121 |
|
|
122 |
val [nth_0,nth_Suc] = nat_recs nth_def;
|
|
123 |
store_thm("nth_0",nth_0);
|
|
124 |
store_thm("nth_Suc",nth_Suc);
|
|
125 |
|
|
126 |
(** Additional mapping lemmas **)
|
|
127 |
|
|
128 |
goal List.thy "map (%x.x) xs = xs";
|
|
129 |
by (list.induct_tac "xs" 1);
|
|
130 |
by (ALLGOALS (asm_simp_tac list_ss));
|
|
131 |
qed "map_ident";
|
|
132 |
|
|
133 |
goal List.thy "map f (xs@ys) = map f xs @ map f ys";
|
|
134 |
by (list.induct_tac "xs" 1);
|
|
135 |
by (ALLGOALS (asm_simp_tac list_ss));
|
|
136 |
qed "map_append";
|
|
137 |
|
|
138 |
goalw List.thy [o_def] "map (f o g) xs = map f (map g xs)";
|
|
139 |
by (list.induct_tac "xs" 1);
|
|
140 |
by (ALLGOALS (asm_simp_tac list_ss));
|
|
141 |
qed "map_compose";
|
|
142 |
|
|
143 |
val list_ss = list_ss addsimps
|
|
144 |
[not_Cons_self, append_assoc, append_Nil2, append_is_Nil, same_append_eq,
|
|
145 |
mem_append, mem_filter,
|
|
146 |
map_ident, map_append, map_compose,
|
|
147 |
flat_append, list_all_True, list_all_conj, nth_0, nth_Suc];
|
|
148 |
|