author  wenzelm 
Sat, 20 Dec 2014 22:23:37 +0100  
changeset 59164  ff40c53d1af9 
parent 58977  9576b510f6a2 
child 59498  50b60f501b05 
permissions  rwrr 
17441  1 
(* Title: CTT/CTT.thy 
0  2 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 
3 
Copyright 1993 University of Cambridge 

4 
*) 

5 

58889  6 
section {* Constructive Type Theory *} 
0  7 

17441  8 
theory CTT 
9 
imports Pure 

10 
begin 

11 

48891  12 
ML_file "~~/src/Provers/typedsimp.ML" 
39557
fe5722fce758
renamed structure PureThy to Pure_Thy and moved most content to Global_Theory, to emphasize that this is globalonly;
wenzelm
parents:
35762
diff
changeset

13 
setup Pure_Thy.old_appl_syntax_setup 
26956
1309a6a0a29f
setup PureThy.old_appl_syntax_setup  theory Pure provides regular application syntax by default;
wenzelm
parents:
26391
diff
changeset

14 

17441  15 
typedecl i 
16 
typedecl t 

17 
typedecl o 

0  18 

19 
consts 

20 
(*Types*) 

17441  21 
F :: "t" 
22 
T :: "t" (*F is empty, T contains one element*) 

58977  23 
contr :: "i\<Rightarrow>i" 
0  24 
tt :: "i" 
25 
(*Natural numbers*) 

26 
N :: "t" 

58977  27 
succ :: "i\<Rightarrow>i" 
28 
rec :: "[i, i, [i,i]\<Rightarrow>i] \<Rightarrow> i" 

0  29 
(*Unions*) 
58977  30 
inl :: "i\<Rightarrow>i" 
31 
inr :: "i\<Rightarrow>i" 

32 
when :: "[i, i\<Rightarrow>i, i\<Rightarrow>i]\<Rightarrow>i" 

0  33 
(*General Sum and Binary Product*) 
58977  34 
Sum :: "[t, i\<Rightarrow>t]\<Rightarrow>t" 
35 
fst :: "i\<Rightarrow>i" 

36 
snd :: "i\<Rightarrow>i" 

37 
split :: "[i, [i,i]\<Rightarrow>i] \<Rightarrow>i" 

0  38 
(*General Product and Function Space*) 
58977  39 
Prod :: "[t, i\<Rightarrow>t]\<Rightarrow>t" 
14765  40 
(*Types*) 
58977  41 
Plus :: "[t,t]\<Rightarrow>t" (infixr "+" 40) 
0  42 
(*Equality type*) 
58977  43 
Eq :: "[t,i,i]\<Rightarrow>t" 
0  44 
eq :: "i" 
45 
(*Judgements*) 

58977  46 
Type :: "t \<Rightarrow> prop" ("(_ type)" [10] 5) 
47 
Eqtype :: "[t,t]\<Rightarrow>prop" ("(_ =/ _)" [10,10] 5) 

48 
Elem :: "[i, t]\<Rightarrow>prop" ("(_ /: _)" [10,10] 5) 

49 
Eqelem :: "[i,i,t]\<Rightarrow>prop" ("(_ =/ _ :/ _)" [10,10,10] 5) 

50 
Reduce :: "[i,i]\<Rightarrow>prop" ("Reduce[_,_]") 

0  51 
(*Types*) 
14765  52 

0  53 
(*Functions*) 
58977  54 
lambda :: "(i \<Rightarrow> i) \<Rightarrow> i" (binder "lam " 10) 
55 
app :: "[i,i]\<Rightarrow>i" (infixl "`" 60) 

0  56 
(*Natural numbers*) 
41310  57 
Zero :: "i" ("0") 
0  58 
(*Pairing*) 
58977  59 
pair :: "[i,i]\<Rightarrow>i" ("(1<_,/_>)") 
0  60 

14765  61 
syntax 
58977  62 
"_PROD" :: "[idt,t,t]\<Rightarrow>t" ("(3PROD _:_./ _)" 10) 
63 
"_SUM" :: "[idt,t,t]\<Rightarrow>t" ("(3SUM _:_./ _)" 10) 

0  64 
translations 
58977  65 
"PROD x:A. B" == "CONST Prod(A, \<lambda>x. B)" 
66 
"SUM x:A. B" == "CONST Sum(A, \<lambda>x. B)" 

19761  67 

68 
abbreviation 

58977  69 
Arrow :: "[t,t]\<Rightarrow>t" (infixr ">" 30) where 
19761  70 
"A > B == PROD _:A. B" 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

71 
abbreviation 
58977  72 
Times :: "[t,t]\<Rightarrow>t" (infixr "*" 50) where 
19761  73 
"A * B == SUM _:A. B" 
0  74 

21210  75 
notation (xsymbols) 
21524  76 
lambda (binder "\<lambda>\<lambda>" 10) and 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

77 
Elem ("(_ /\<in> _)" [10,10] 5) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

78 
Eqelem ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

79 
Arrow (infixr "\<longrightarrow>" 30) and 
19761  80 
Times (infixr "\<times>" 50) 
17441  81 

21210  82 
notation (HTML output) 
21524  83 
lambda (binder "\<lambda>\<lambda>" 10) and 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

84 
Elem ("(_ /\<in> _)" [10,10] 5) and 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset

85 
Eqelem ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and 
19761  86 
Times (infixr "\<times>" 50) 
17441  87 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

88 
syntax (xsymbols) 
58977  89 
"_PROD" :: "[idt,t,t] \<Rightarrow> t" ("(3\<Pi> _\<in>_./ _)" 10) 
90 
"_SUM" :: "[idt,t,t] \<Rightarrow> t" ("(3\<Sigma> _\<in>_./ _)" 10) 

10467
e6e7205e9e91
xsymbol support for Pi, Sigma, >, : (membership)
paulson
parents:
3837
diff
changeset

91 

14565  92 
syntax (HTML output) 
58977  93 
"_PROD" :: "[idt,t,t] \<Rightarrow> t" ("(3\<Pi> _\<in>_./ _)" 10) 
94 
"_SUM" :: "[idt,t,t] \<Rightarrow> t" ("(3\<Sigma> _\<in>_./ _)" 10) 

14565  95 

0  96 
(*Reduction: a weaker notion than equality; a hack for simplification. 
97 
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" 

98 
are textually identical.*) 

99 

100 
(*does not verify a:A! Sound because only trans_red uses a Reduce premise 

101 
No new theorems can be proved about the standard judgements.*) 

51308  102 
axiomatization where 
103 
refl_red: "\<And>a. Reduce[a,a]" and 

58977  104 
red_if_equal: "\<And>a b A. a = b : A \<Longrightarrow> Reduce[a,b]" and 
105 
trans_red: "\<And>a b c A. \<lbrakk>a = b : A; Reduce[b,c]\<rbrakk> \<Longrightarrow> a = c : A" and 

0  106 

107 
(*Reflexivity*) 

108 

58977  109 
refl_type: "\<And>A. A type \<Longrightarrow> A = A" and 
110 
refl_elem: "\<And>a A. a : A \<Longrightarrow> a = a : A" and 

0  111 

112 
(*Symmetry*) 

113 

58977  114 
sym_type: "\<And>A B. A = B \<Longrightarrow> B = A" and 
115 
sym_elem: "\<And>a b A. a = b : A \<Longrightarrow> b = a : A" and 

0  116 

117 
(*Transitivity*) 

118 

58977  119 
trans_type: "\<And>A B C. \<lbrakk>A = B; B = C\<rbrakk> \<Longrightarrow> A = C" and 
120 
trans_elem: "\<And>a b c A. \<lbrakk>a = b : A; b = c : A\<rbrakk> \<Longrightarrow> a = c : A" and 

0  121 

58977  122 
equal_types: "\<And>a A B. \<lbrakk>a : A; A = B\<rbrakk> \<Longrightarrow> a : B" and 
123 
equal_typesL: "\<And>a b A B. \<lbrakk>a = b : A; A = B\<rbrakk> \<Longrightarrow> a = b : B" and 

0  124 

125 
(*Substitution*) 

126 

58977  127 
subst_type: "\<And>a A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> B(z) type\<rbrakk> \<Longrightarrow> B(a) type" and 
128 
subst_typeL: "\<And>a c A B D. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> B(z) = D(z)\<rbrakk> \<Longrightarrow> B(a) = D(c)" and 

0  129 

58977  130 
subst_elem: "\<And>a b A B. \<lbrakk>a : A; \<And>z. z:A \<Longrightarrow> b(z):B(z)\<rbrakk> \<Longrightarrow> b(a):B(a)" and 
17441  131 
subst_elemL: 
58977  132 
"\<And>a b c d A B. \<lbrakk>a = c : A; \<And>z. z:A \<Longrightarrow> b(z)=d(z) : B(z)\<rbrakk> \<Longrightarrow> b(a)=d(c) : B(a)" and 
0  133 

134 

135 
(*The type N  natural numbers*) 

136 

51308  137 
NF: "N type" and 
138 
NI0: "0 : N" and 

58977  139 
NI_succ: "\<And>a. a : N \<Longrightarrow> succ(a) : N" and 
140 
NI_succL: "\<And>a b. a = b : N \<Longrightarrow> succ(a) = succ(b) : N" and 

0  141 

17441  142 
NE: 
58977  143 
"\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> 
144 
\<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) : C(p)" and 

0  145 

17441  146 
NEL: 
58977  147 
"\<And>p q a b c d C. \<lbrakk>p = q : N; a = c : C(0); 
148 
\<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v) = d(u,v): C(succ(u))\<rbrakk> 

149 
\<Longrightarrow> rec(p, a, \<lambda>u v. b(u,v)) = rec(q,c,d) : C(p)" and 

0  150 

17441  151 
NC0: 
58977  152 
"\<And>a b C. \<lbrakk>a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> 
153 
\<Longrightarrow> rec(0, a, \<lambda>u v. b(u,v)) = a : C(0)" and 

0  154 

17441  155 
NC_succ: 
58977  156 
"\<And>p a b C. \<lbrakk>p: N; a: C(0); \<And>u v. \<lbrakk>u: N; v: C(u)\<rbrakk> \<Longrightarrow> b(u,v): C(succ(u))\<rbrakk> \<Longrightarrow> 
157 
rec(succ(p), a, \<lambda>u v. b(u,v)) = b(p, rec(p, a, \<lambda>u v. b(u,v))) : C(succ(p))" and 

0  158 

159 
(*The fourth Peano axiom. See page 91 of MartinLof's book*) 

58977  160 
zero_ne_succ: "\<And>a. \<lbrakk>a: N; 0 = succ(a) : N\<rbrakk> \<Longrightarrow> 0: F" and 
0  161 

162 

163 
(*The Product of a family of types*) 

164 

58977  165 
ProdF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> PROD x:A. B(x) type" and 
0  166 

17441  167 
ProdFL: 
58977  168 
"\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> PROD x:A. B(x) = PROD x:C. D(x)" and 
0  169 

17441  170 
ProdI: 
58977  171 
"\<And>b A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x):B(x)\<rbrakk> \<Longrightarrow> lam x. b(x) : PROD x:A. B(x)" and 
0  172 

58977  173 
ProdIL: "\<And>b c A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> b(x) = c(x) : B(x)\<rbrakk> \<Longrightarrow> 
174 
lam x. b(x) = lam x. c(x) : PROD x:A. B(x)" and 

0  175 

58977  176 
ProdE: "\<And>p a A B. \<lbrakk>p : PROD x:A. B(x); a : A\<rbrakk> \<Longrightarrow> p`a : B(a)" and 
177 
ProdEL: "\<And>p q a b A B. \<lbrakk>p = q: PROD x:A. B(x); a = b : A\<rbrakk> \<Longrightarrow> p`a = q`b : B(a)" and 

0  178 

58977  179 
ProdC: "\<And>a b A B. \<lbrakk>a : A; \<And>x. x:A \<Longrightarrow> b(x) : B(x)\<rbrakk> \<Longrightarrow> (lam x. b(x)) ` a = b(a) : B(a)" and 
0  180 

58977  181 
ProdC2: "\<And>p A B. p : PROD x:A. B(x) \<Longrightarrow> (lam x. p`x) = p : PROD x:A. B(x)" and 
0  182 

183 

184 
(*The Sum of a family of types*) 

185 

58977  186 
SumF: "\<And>A B. \<lbrakk>A type; \<And>x. x:A \<Longrightarrow> B(x) type\<rbrakk> \<Longrightarrow> SUM x:A. B(x) type" and 
187 
SumFL: "\<And>A B C D. \<lbrakk>A = C; \<And>x. x:A \<Longrightarrow> B(x) = D(x)\<rbrakk> \<Longrightarrow> SUM x:A. B(x) = SUM x:C. D(x)" and 

0  188 

58977  189 
SumI: "\<And>a b A B. \<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> <a,b> : SUM x:A. B(x)" and 
190 
SumIL: "\<And>a b c d A B. \<lbrakk> a = c : A; b = d : B(a)\<rbrakk> \<Longrightarrow> <a,b> = <c,d> : SUM x:A. B(x)" and 

0  191 

58977  192 
SumE: "\<And>p c A B C. \<lbrakk>p: SUM x:A. B(x); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> 
193 
\<Longrightarrow> split(p, \<lambda>x y. c(x,y)) : C(p)" and 

0  194 

58977  195 
SumEL: "\<And>p q c d A B C. \<lbrakk>p = q : SUM x:A. B(x); 
196 
\<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y)=d(x,y): C(<x,y>)\<rbrakk> 

197 
\<Longrightarrow> split(p, \<lambda>x y. c(x,y)) = split(q, \<lambda>x y. d(x,y)) : C(p)" and 

0  198 

58977  199 
SumC: "\<And>a b c A B C. \<lbrakk>a: A; b: B(a); \<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> c(x,y): C(<x,y>)\<rbrakk> 
200 
\<Longrightarrow> split(<a,b>, \<lambda>x y. c(x,y)) = c(a,b) : C(<a,b>)" and 

0  201 

58977  202 
fst_def: "\<And>a. fst(a) == split(a, \<lambda>x y. x)" and 
203 
snd_def: "\<And>a. snd(a) == split(a, \<lambda>x y. y)" and 

0  204 

205 

206 
(*The sum of two types*) 

207 

58977  208 
PlusF: "\<And>A B. \<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> A+B type" and 
209 
PlusFL: "\<And>A B C D. \<lbrakk>A = C; B = D\<rbrakk> \<Longrightarrow> A+B = C+D" and 

0  210 

58977  211 
PlusI_inl: "\<And>a A B. \<lbrakk>a : A; B type\<rbrakk> \<Longrightarrow> inl(a) : A+B" and 
212 
PlusI_inlL: "\<And>a c A B. \<lbrakk>a = c : A; B type\<rbrakk> \<Longrightarrow> inl(a) = inl(c) : A+B" and 

0  213 

58977  214 
PlusI_inr: "\<And>b A B. \<lbrakk>A type; b : B\<rbrakk> \<Longrightarrow> inr(b) : A+B" and 
215 
PlusI_inrL: "\<And>b d A B. \<lbrakk>A type; b = d : B\<rbrakk> \<Longrightarrow> inr(b) = inr(d) : A+B" and 

0  216 

17441  217 
PlusE: 
58977  218 
"\<And>p c d A B C. \<lbrakk>p: A+B; 
219 
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); 

220 
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> \<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) : C(p)" and 

0  221 

17441  222 
PlusEL: 
58977  223 
"\<And>p q c d e f A B C. \<lbrakk>p = q : A+B; 
224 
\<And>x. x: A \<Longrightarrow> c(x) = e(x) : C(inl(x)); 

225 
\<And>y. y: B \<Longrightarrow> d(y) = f(y) : C(inr(y))\<rbrakk> 

226 
\<Longrightarrow> when(p, \<lambda>x. c(x), \<lambda>y. d(y)) = when(q, \<lambda>x. e(x), \<lambda>y. f(y)) : C(p)" and 

0  227 

17441  228 
PlusC_inl: 
58977  229 
"\<And>a c d A C. \<lbrakk>a: A; 
230 
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); 

231 
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y)) \<rbrakk> 

232 
\<Longrightarrow> when(inl(a), \<lambda>x. c(x), \<lambda>y. d(y)) = c(a) : C(inl(a))" and 

0  233 

17441  234 
PlusC_inr: 
58977  235 
"\<And>b c d A B C. \<lbrakk>b: B; 
236 
\<And>x. x:A \<Longrightarrow> c(x): C(inl(x)); 

237 
\<And>y. y:B \<Longrightarrow> d(y): C(inr(y))\<rbrakk> 

238 
\<Longrightarrow> when(inr(b), \<lambda>x. c(x), \<lambda>y. d(y)) = d(b) : C(inr(b))" and 

0  239 

240 

241 
(*The type Eq*) 

242 

58977  243 
EqF: "\<And>a b A. \<lbrakk>A type; a : A; b : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) type" and 
244 
EqFL: "\<And>a b c d A B. \<lbrakk>A = B; a = c : A; b = d : A\<rbrakk> \<Longrightarrow> Eq(A,a,b) = Eq(B,c,d)" and 

245 
EqI: "\<And>a b A. a = b : A \<Longrightarrow> eq : Eq(A,a,b)" and 

246 
EqE: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> a = b : A" and 

0  247 

248 
(*By equality of types, can prove C(p) from C(eq), an elimination rule*) 

58977  249 
EqC: "\<And>p a b A. p : Eq(A,a,b) \<Longrightarrow> p = eq : Eq(A,a,b)" and 
0  250 

251 
(*The type F*) 

252 

51308  253 
FF: "F type" and 
58977  254 
FE: "\<And>p C. \<lbrakk>p: F; C type\<rbrakk> \<Longrightarrow> contr(p) : C" and 
255 
FEL: "\<And>p q C. \<lbrakk>p = q : F; C type\<rbrakk> \<Longrightarrow> contr(p) = contr(q) : C" and 

0  256 

257 
(*The type T 

258 
MartinLof's book (page 68) discusses elimination and computation. 

259 
Elimination can be derived by computation and equality of types, 

260 
but with an extra premise C(x) type x:T. 

261 
Also computation can be derived from elimination. *) 

262 

51308  263 
TF: "T type" and 
264 
TI: "tt : T" and 

58977  265 
TE: "\<And>p c C. \<lbrakk>p : T; c : C(tt)\<rbrakk> \<Longrightarrow> c : C(p)" and 
266 
TEL: "\<And>p q c d C. \<lbrakk>p = q : T; c = d : C(tt)\<rbrakk> \<Longrightarrow> c = d : C(p)" and 

267 
TC: "\<And>p. p : T \<Longrightarrow> p = tt : T" 

0  268 

19761  269 

270 
subsection "Tactics and derived rules for Constructive Type Theory" 

271 

272 
(*Formation rules*) 

273 
lemmas form_rls = NF ProdF SumF PlusF EqF FF TF 

274 
and formL_rls = ProdFL SumFL PlusFL EqFL 

275 

276 
(*Introduction rules 

277 
OMITTED: EqI, because its premise is an eqelem, not an elem*) 

278 
lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI 

279 
and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL 

280 

281 
(*Elimination rules 

282 
OMITTED: EqE, because its conclusion is an eqelem, not an elem 

283 
TE, because it does not involve a constructor *) 

284 
lemmas elim_rls = NE ProdE SumE PlusE FE 

285 
and elimL_rls = NEL ProdEL SumEL PlusEL FEL 

286 

287 
(*OMITTED: eqC are TC because they make rewriting loop: p = un = un = ... *) 

288 
lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr 

289 

290 
(*rules with conclusion a:A, an elem judgement*) 

291 
lemmas element_rls = intr_rls elim_rls 

292 

293 
(*Definitions are (meta)equality axioms*) 

294 
lemmas basic_defs = fst_def snd_def 

295 

296 
(*Compare with standard version: B is applied to UNSIMPLIFIED expression! *) 

58977  297 
lemma SumIL2: "\<lbrakk>c = a : A; d = b : B(a)\<rbrakk> \<Longrightarrow> <c,d> = <a,b> : Sum(A,B)" 
19761  298 
apply (rule sym_elem) 
299 
apply (rule SumIL) 

300 
apply (rule_tac [!] sym_elem) 

301 
apply assumption+ 

302 
done 

303 

304 
lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL 

305 

306 
(*Exploit p:Prod(A,B) to create the assumption z:B(a). 

307 
A more natural form of product elimination. *) 

308 
lemma subst_prodE: 

309 
assumes "p: Prod(A,B)" 

310 
and "a: A" 

58977  311 
and "\<And>z. z: B(a) \<Longrightarrow> c(z): C(z)" 
19761  312 
shows "c(p`a): C(p`a)" 
41526  313 
apply (rule assms ProdE)+ 
19761  314 
done 
315 

316 

317 
subsection {* Tactics for type checking *} 

318 

319 
ML {* 

320 

321 
local 

322 

56250  323 
fun is_rigid_elem (Const(@{const_name Elem},_) $ a $ _) = not(is_Var (head_of a)) 
324 
 is_rigid_elem (Const(@{const_name Eqelem},_) $ a $ _ $ _) = not(is_Var (head_of a)) 

325 
 is_rigid_elem (Const(@{const_name Type},_) $ a) = not(is_Var (head_of a)) 

19761  326 
 is_rigid_elem _ = false 
327 

328 
in 

329 

330 
(*Try solving a:A or a=b:A by assumption provided a is rigid!*) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

331 
fun test_assume_tac ctxt = SUBGOAL(fn (prem,i) => 
19761  332 
if is_rigid_elem (Logic.strip_assums_concl prem) 
58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

333 
then assume_tac ctxt i else no_tac) 
19761  334 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

335 
fun ASSUME ctxt tf i = test_assume_tac ctxt i ORELSE tf i 
19761  336 

337 
end; 

338 

339 
*} 

340 

341 
(*For simplification: type formation and checking, 

342 
but no equalities between terms*) 

343 
lemmas routine_rls = form_rls formL_rls refl_type element_rls 

344 

345 
ML {* 

346 
local 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

347 
val equal_rls = @{thms form_rls} @ @{thms element_rls} @ @{thms intrL_rls} @ 
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

348 
@{thms elimL_rls} @ @{thms refl_elem} 
19761  349 
in 
350 

59164  351 
fun routine_tac rls ctxt prems = 
352 
ASSUME ctxt (filt_resolve_from_net_tac ctxt 4 (Tactic.build_net (prems @ rls))); 

19761  353 

354 
(*Solve all subgoals "A type" using formation rules. *) 

59164  355 
val form_net = Tactic.build_net @{thms form_rls}; 
356 
fun form_tac ctxt = 

357 
REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 form_net)); 

19761  358 

359 
(*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

360 
fun typechk_tac ctxt thms = 
59164  361 
let val tac = 
362 
filt_resolve_from_net_tac ctxt 3 

363 
(Tactic.build_net (thms @ @{thms form_rls} @ @{thms element_rls})) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

364 
in REPEAT_FIRST (ASSUME ctxt tac) end 
19761  365 

366 
(*Solve a:A (a flexible, A rigid) by introduction rules. 

367 
Cannot use stringtrees (filt_resolve_tac) since 

368 
goals like ?a:SUM(A,B) have a trivial headstring *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

369 
fun intr_tac ctxt thms = 
59164  370 
let val tac = 
371 
filt_resolve_from_net_tac ctxt 1 

372 
(Tactic.build_net (thms @ @{thms form_rls} @ @{thms intr_rls})) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

373 
in REPEAT_FIRST (ASSUME ctxt tac) end 
19761  374 

375 
(*Equality proving: solve a=b:A (where a is rigid) by long rules. *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

376 
fun equal_tac ctxt thms = 
59164  377 
REPEAT_FIRST 
378 
(ASSUME ctxt (filt_resolve_from_net_tac ctxt 3 (Tactic.build_net (thms @ equal_rls)))) 

0  379 

17441  380 
end 
58972  381 
*} 
19761  382 

58976  383 
method_setup form = {* Scan.succeed (fn ctxt => SIMPLE_METHOD (form_tac ctxt)) *} 
384 
method_setup typechk = {* Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (typechk_tac ctxt ths)) *} 

385 
method_setup intr = {* Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (intr_tac ctxt ths)) *} 

386 
method_setup equal = {* Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (equal_tac ctxt ths)) *} 

19761  387 

388 

389 
subsection {* Simplification *} 

390 

391 
(*To simplify the type in a goal*) 

58977  392 
lemma replace_type: "\<lbrakk>B = A; a : A\<rbrakk> \<Longrightarrow> a : B" 
19761  393 
apply (rule equal_types) 
394 
apply (rule_tac [2] sym_type) 

395 
apply assumption+ 

396 
done 

397 

398 
(*Simplify the parameter of a unary type operator.*) 

399 
lemma subst_eqtyparg: 

23467  400 
assumes 1: "a=c : A" 
58977  401 
and 2: "\<And>z. z:A \<Longrightarrow> B(z) type" 
19761  402 
shows "B(a)=B(c)" 
403 
apply (rule subst_typeL) 

404 
apply (rule_tac [2] refl_type) 

23467  405 
apply (rule 1) 
406 
apply (erule 2) 

19761  407 
done 
408 

409 
(*Simplification rules for Constructive Type Theory*) 

410 
lemmas reduction_rls = comp_rls [THEN trans_elem] 

411 

412 
ML {* 

413 
(*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification. 

414 
Uses other intro rules to avoid changing flexible goals.*) 

59164  415 
val eqintr_net = Tactic.build_net @{thms EqI intr_rls} 
58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

416 
fun eqintr_tac ctxt = 
59164  417 
REPEAT_FIRST (ASSUME ctxt (filt_resolve_from_net_tac ctxt 1 eqintr_net)) 
19761  418 

419 
(** Tactics that instantiate CTTrules. 

420 
Vars in the given terms will be incremented! 

421 
The (rtac EqE i) lets them apply to equality judgements. **) 

422 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

423 
fun NE_tac ctxt sp i = 
27239  424 
TRY (rtac @{thm EqE} i) THEN res_inst_tac ctxt [(("p", 0), sp)] @{thm NE} i 
19761  425 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

426 
fun SumE_tac ctxt sp i = 
27239  427 
TRY (rtac @{thm EqE} i) THEN res_inst_tac ctxt [(("p", 0), sp)] @{thm SumE} i 
19761  428 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

429 
fun PlusE_tac ctxt sp i = 
27239  430 
TRY (rtac @{thm EqE} i) THEN res_inst_tac ctxt [(("p", 0), sp)] @{thm PlusE} i 
19761  431 

432 
(** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **) 

433 

434 
(*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

435 
fun add_mp_tac ctxt i = 
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

436 
rtac @{thm subst_prodE} i THEN assume_tac ctxt i THEN assume_tac ctxt i 
19761  437 

438 
(*Finds P>Q and P in the assumptions, replaces implication by Q *) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

439 
fun mp_tac ctxt i = etac @{thm subst_prodE} i THEN assume_tac ctxt i 
19761  440 

441 
(*"safe" when regarded as predicate calculus rules*) 

442 
val safe_brls = sort (make_ord lessb) 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

443 
[ (true, @{thm FE}), (true,asm_rl), 
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

444 
(false, @{thm ProdI}), (true, @{thm SumE}), (true, @{thm PlusE}) ] 
19761  445 

446 
val unsafe_brls = 

27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

447 
[ (false, @{thm PlusI_inl}), (false, @{thm PlusI_inr}), (false, @{thm SumI}), 
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
26956
diff
changeset

448 
(true, @{thm subst_prodE}) ] 
19761  449 

450 
(*0 subgoals vs 1 or more*) 

451 
val (safe0_brls, safep_brls) = 

452 
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls 

453 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

454 
fun safestep_tac ctxt thms i = 
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

455 
form_tac ctxt ORELSE 
19761  456 
resolve_tac thms i ORELSE 
58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

457 
biresolve_tac safe0_brls i ORELSE mp_tac ctxt i ORELSE 
19761  458 
DETERM (biresolve_tac safep_brls i) 
459 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

460 
fun safe_tac ctxt thms i = DEPTH_SOLVE_1 (safestep_tac ctxt thms i) 
19761  461 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

462 
fun step_tac ctxt thms = safestep_tac ctxt thms ORELSE' biresolve_tac unsafe_brls 
19761  463 

464 
(*Fails unless it solves the goal!*) 

58963
26bf09b95dda
proper context for assume_tac (atac remains as fallback without context);
wenzelm
parents:
58889
diff
changeset

465 
fun pc_tac ctxt thms = DEPTH_SOLVE_1 o (step_tac ctxt thms) 
19761  466 
*} 
467 

58976  468 
method_setup eqintr = {* Scan.succeed (SIMPLE_METHOD o eqintr_tac) *} 
58972  469 
method_setup NE = {* 
58975  470 
Scan.lift Args.name_inner_syntax >> (fn s => fn ctxt => SIMPLE_METHOD' (NE_tac ctxt s)) 
58972  471 
*} 
58976  472 
method_setup pc = {* Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (pc_tac ctxt ths)) *} 
473 
method_setup add_mp = {* Scan.succeed (SIMPLE_METHOD' o add_mp_tac) *} 

58972  474 

48891  475 
ML_file "rew.ML" 
58976  476 
method_setup rew = {* Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (rew_tac ctxt ths)) *} 
477 
method_setup hyp_rew = {* Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_rew_tac ctxt ths)) *} 

58972  478 

19761  479 

480 
subsection {* The elimination rules for fst/snd *} 

481 

58977  482 
lemma SumE_fst: "p : Sum(A,B) \<Longrightarrow> fst(p) : A" 
19761  483 
apply (unfold basic_defs) 
484 
apply (erule SumE) 

485 
apply assumption 

486 
done 

487 

488 
(*The first premise must be p:Sum(A,B) !!*) 

489 
lemma SumE_snd: 

490 
assumes major: "p: Sum(A,B)" 

491 
and "A type" 

58977  492 
and "\<And>x. x:A \<Longrightarrow> B(x) type" 
19761  493 
shows "snd(p) : B(fst(p))" 
494 
apply (unfold basic_defs) 

495 
apply (rule major [THEN SumE]) 

496 
apply (rule SumC [THEN subst_eqtyparg, THEN replace_type]) 

58972  497 
apply (typechk assms) 
19761  498 
done 
499 

500 
end 