src/HOL/ex/Unification.thy
changeset 44370 03d91bfad83b
parent 44369 02e13192a053
child 44371 3a10392fb8c3
equal deleted inserted replaced
44369:02e13192a053 44370:03d91bfad83b
   104 
   104 
   105 lemma Var_in_subst:
   105 lemma Var_in_subst:
   106   "v \<in> vars_of t \<Longrightarrow> w \<in> vars_of (t \<lhd> (v, Var(w)) # s)"
   106   "v \<in> vars_of t \<Longrightarrow> w \<in> vars_of (t \<lhd> (v, Var(w)) # s)"
   107 by (induct t) auto
   107 by (induct t) auto
   108 
   108 
       
   109 lemma remove_var: "v \<notin> vars_of s \<Longrightarrow> v \<notin> vars_of (t \<lhd> [(v, s)])"
       
   110 by (induct t) simp_all
       
   111 
   109 lemma subst_refl[iff]: "s \<doteq> s"
   112 lemma subst_refl[iff]: "s \<doteq> s"
   110   by (auto simp:subst_eq_def)
   113   by (auto simp:subst_eq_def)
   111 
   114 
   112 lemma subst_sym[sym]: "\<lbrakk>s1 \<doteq> s2\<rbrakk> \<Longrightarrow> s2 \<doteq> s1"
   115 lemma subst_sym[sym]: "\<lbrakk>s1 \<doteq> s2\<rbrakk> \<Longrightarrow> s2 \<doteq> s1"
   113   by (auto simp:subst_eq_def)
   116   by (auto simp:subst_eq_def)
   114 
   117 
   115 lemma subst_trans[trans]: "\<lbrakk>s1 \<doteq> s2; s2 \<doteq> s3\<rbrakk> \<Longrightarrow> s1 \<doteq> s3"
   118 lemma subst_trans[trans]: "\<lbrakk>s1 \<doteq> s2; s2 \<doteq> s3\<rbrakk> \<Longrightarrow> s1 \<doteq> s3"
   116   by (auto simp:subst_eq_def)
   119   by (auto simp:subst_eq_def)
   117 
   120 
       
   121 
   118 text {* Composition of Substitutions *}
   122 text {* Composition of Substitutions *}
   119 
       
   120 
   123 
   121 lemma comp_Nil[simp]: "\<sigma> \<lozenge> [] = \<sigma>"
   124 lemma comp_Nil[simp]: "\<sigma> \<lozenge> [] = \<sigma>"
   122 by (induct \<sigma>) auto
   125 by (induct \<sigma>) auto
   123 
   126 
   124 lemma subst_comp[simp]: "t \<lhd> (r \<lozenge> s) = t \<lhd> r \<lhd> s"
   127 lemma subst_comp[simp]: "t \<lhd> (r \<lozenge> s) = t \<lhd> r \<lhd> s"
   137   by auto
   140   by auto
   138 
   141 
   139 lemma subst_cong: "\<lbrakk>\<sigma> \<doteq> \<sigma>'; \<theta> \<doteq> \<theta>'\<rbrakk> \<Longrightarrow> (\<sigma> \<lozenge> \<theta>) \<doteq> (\<sigma>' \<lozenge> \<theta>')"
   142 lemma subst_cong: "\<lbrakk>\<sigma> \<doteq> \<sigma>'; \<theta> \<doteq> \<theta>'\<rbrakk> \<Longrightarrow> (\<sigma> \<lozenge> \<theta>) \<doteq> (\<sigma>' \<lozenge> \<theta>')"
   140   by (auto simp: subst_eq_def)
   143   by (auto simp: subst_eq_def)
   141 
   144 
       
   145 lemma var_self: "[(v, Var v)] \<doteq> []"
       
   146 proof
       
   147   fix t show "t \<lhd> [(v, Var v)] = t \<lhd> []"
       
   148     by (induct t) simp_all
       
   149 qed
       
   150 
       
   151 lemma var_same[simp]: "[(v, t)] \<doteq> [] \<longleftrightarrow> t = Var v"
       
   152 by (metis assoc.simps(2) subst.simps(1) subst_eq_def var_self)
   142 
   153 
   143 
   154 
   144 subsection {* Specification: Most general unifiers *}
   155 subsection {* Specification: Most general unifiers *}
   145 
   156 
   146 definition Unifier :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool"
   157 definition Unifier :: "'a subst \<Rightarrow> 'a trm \<Rightarrow> 'a trm \<Rightarrow> bool"
   157 
   168 
   158 lemma MGU_sym[sym]:
   169 lemma MGU_sym[sym]:
   159   "MGU \<sigma> s t \<Longrightarrow> MGU \<sigma> t s"
   170   "MGU \<sigma> s t \<Longrightarrow> MGU \<sigma> t s"
   160   by (auto simp:MGU_def Unifier_def)
   171   by (auto simp:MGU_def Unifier_def)
   161 
   172 
       
   173 lemma MGU_Var: 
       
   174   assumes "\<not> Var v \<prec> t"
       
   175   shows "MGU [(v,t)] (Var v) t"
       
   176 proof (intro MGUI exI)
       
   177   show "Var v \<lhd> [(v,t)] = t \<lhd> [(v,t)]" using assms
       
   178     by (metis assoc.simps(2) repl_invariance subst.simps(1) subst_Nil vars_iff_occseq)
       
   179 next
       
   180   fix \<theta> assume th: "Var v \<lhd> \<theta> = t \<lhd> \<theta>" 
       
   181   show "\<theta> \<doteq> [(v,t)] \<lozenge> \<theta>" 
       
   182   proof
       
   183     fix s show "s \<lhd> \<theta> = s \<lhd> [(v,t)] \<lozenge> \<theta>" using th 
       
   184       by (induct s) auto
       
   185   qed
       
   186 qed
       
   187 
       
   188 lemma MGU_Const: "MGU [] (Const c) (Const d) \<longleftrightarrow> c = d"
       
   189   by (auto simp: MGU_def Unifier_def)
       
   190   
   162 
   191 
   163 definition Idem :: "'a subst \<Rightarrow> bool"
   192 definition Idem :: "'a subst \<Rightarrow> bool"
   164 where "Idem s \<longleftrightarrow> (s \<lozenge> s) \<doteq> s"
   193 where "Idem s \<longleftrightarrow> (s \<lozenge> s) \<doteq> s"
   165 
   194 
   166 
   195 
   187                                     Some \<theta> \<Rightarrow> (case unify (N \<lhd> \<theta>) (N' \<lhd> \<theta>)
   216                                     Some \<theta> \<Rightarrow> (case unify (N \<lhd> \<theta>) (N' \<lhd> \<theta>)
   188                                       of None \<Rightarrow> None |
   217                                       of None \<Rightarrow> None |
   189                                          Some \<sigma> \<Rightarrow> Some (\<theta> \<lozenge> \<sigma>)))"
   218                                          Some \<sigma> \<Rightarrow> Some (\<theta> \<lozenge> \<sigma>)))"
   190   by pat_completeness auto
   219   by pat_completeness auto
   191 
   220 
   192 declare unify.psimps[simp]
       
   193 
       
   194 subsection {* Partial correctness *}
       
   195 
       
   196 text {* Some lemmas about occs and MGU: *}
       
   197 
       
   198 lemma subst_no_occs: "\<not> Var v \<prec> t \<Longrightarrow> Var v \<noteq> t
       
   199   \<Longrightarrow> t \<lhd> [(v,s)] = t"
       
   200 by (induct t) auto
       
   201 
       
   202 lemma MGU_Var[intro]: 
       
   203   assumes no_occs: "\<not> Var v \<prec> t"
       
   204   shows "MGU [(v,t)] (Var v) t"
       
   205 proof (intro MGUI exI)
       
   206   show "Var v \<lhd> [(v,t)] = t \<lhd> [(v,t)]" using no_occs
       
   207     by (cases "Var v = t", auto simp:subst_no_occs)
       
   208 next
       
   209   fix \<theta> assume th: "Var v \<lhd> \<theta> = t \<lhd> \<theta>" 
       
   210   show "\<theta> \<doteq> [(v,t)] \<lozenge> \<theta>" 
       
   211   proof
       
   212     fix s show "s \<lhd> \<theta> = s \<lhd> [(v,t)] \<lozenge> \<theta>" using th 
       
   213       by (induct s) auto
       
   214   qed
       
   215 qed
       
   216 
       
   217 declare MGU_Var[symmetric, intro]
       
   218 
       
   219 lemma MGU_Const[simp]: "MGU [] (Const c) (Const d) = (c = d)"
       
   220   unfolding MGU_def Unifier_def
       
   221   by auto
       
   222   
       
   223 text {* If unification terminates, then it computes most general unifiers: *}
       
   224 
       
   225 lemma unify_partial_correctness:
       
   226   assumes "unify_dom (M, N)"
       
   227   assumes "unify M N = Some \<sigma>"
       
   228   shows "MGU \<sigma> M N"
       
   229 using assms
       
   230 proof (induct M N arbitrary: \<sigma>)
       
   231   case (7 M N M' N' \<sigma>) -- "The interesting case"
       
   232 
       
   233   then obtain \<theta>1 \<theta>2 
       
   234     where "unify M M' = Some \<theta>1"
       
   235     and "unify (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1) = Some \<theta>2"
       
   236     and \<sigma>: "\<sigma> = \<theta>1 \<lozenge> \<theta>2"
       
   237     and MGU_inner: "MGU \<theta>1 M M'" 
       
   238     and MGU_outer: "MGU \<theta>2 (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1)"
       
   239     by (auto split:option.split_asm)
       
   240 
       
   241   show ?case
       
   242   proof
       
   243     from MGU_inner and MGU_outer
       
   244     have "M \<lhd> \<theta>1 = M' \<lhd> \<theta>1" 
       
   245       and "N \<lhd> \<theta>1 \<lhd> \<theta>2 = N' \<lhd> \<theta>1 \<lhd> \<theta>2"
       
   246       unfolding MGU_def Unifier_def
       
   247       by auto
       
   248     thus "M \<cdot> N \<lhd> \<sigma> = M' \<cdot> N' \<lhd> \<sigma>" unfolding \<sigma>
       
   249       by simp
       
   250   next
       
   251     fix \<sigma>' assume "M \<cdot> N \<lhd> \<sigma>' = M' \<cdot> N' \<lhd> \<sigma>'"
       
   252     hence "M \<lhd> \<sigma>' = M' \<lhd> \<sigma>'"
       
   253       and Ns: "N \<lhd> \<sigma>' = N' \<lhd> \<sigma>'" by auto
       
   254 
       
   255     with MGU_inner obtain \<delta>
       
   256       where eqv: "\<sigma>' \<doteq> \<theta>1 \<lozenge> \<delta>"
       
   257       unfolding MGU_def Unifier_def
       
   258       by auto
       
   259 
       
   260     from Ns have "N \<lhd> \<theta>1 \<lhd> \<delta> = N' \<lhd> \<theta>1 \<lhd> \<delta>"
       
   261       by (simp add:subst_eq_dest[OF eqv])
       
   262 
       
   263     with MGU_outer obtain \<rho>
       
   264       where eqv2: "\<delta> \<doteq> \<theta>2 \<lozenge> \<rho>"
       
   265       unfolding MGU_def Unifier_def
       
   266       by auto
       
   267     
       
   268     have "\<sigma>' \<doteq> \<sigma> \<lozenge> \<rho>" unfolding \<sigma>
       
   269       by (rule subst_eq_intro, auto simp:subst_eq_dest[OF eqv] subst_eq_dest[OF eqv2])
       
   270     thus "\<exists>\<gamma>. \<sigma>' \<doteq> \<sigma> \<lozenge> \<gamma>" ..
       
   271   qed
       
   272 qed (auto split:split_if_asm) -- "Solve the remaining cases automatically"
       
   273 
       
   274 
       
   275 subsection {* Properties used in termination proof *}
   221 subsection {* Properties used in termination proof *}
   276 
   222 
   277 
   223 
   278 text {* Elimination of variables by a substitution: *}
   224 text {* Elimination of variables by a substitution: *}
   279 
   225 
   284   by (auto simp:elim_def)
   230   by (auto simp:elim_def)
   285 
   231 
   286 lemma elim_dest[dest]: "elim \<sigma> v \<Longrightarrow> v \<notin> vars_of (t \<lhd> \<sigma>)"
   232 lemma elim_dest[dest]: "elim \<sigma> v \<Longrightarrow> v \<notin> vars_of (t \<lhd> \<sigma>)"
   287   by (auto simp:elim_def)
   233   by (auto simp:elim_def)
   288 
   234 
   289 lemma elim_eqv: "\<sigma> \<doteq> \<theta> \<Longrightarrow> elim \<sigma> x = elim \<theta> x"
   235 lemma elim_eq: "\<sigma> \<doteq> \<theta> \<Longrightarrow> elim \<sigma> x = elim \<theta> x"
   290   by (auto simp:elim_def subst_eq_def)
   236   by (auto simp:elim_def subst_eq_def)
   291 
       
   292 
       
   293 text {* Replacing a variable by itself yields an identity subtitution: *}
       
   294 
       
   295 lemma var_self[intro]: "[(v, Var v)] \<doteq> []"
       
   296 proof
       
   297   fix t show "t \<lhd> [(v, Var v)] = t \<lhd> []"
       
   298     by (induct t) simp_all
       
   299 qed
       
   300 
       
   301 lemma var_same: "([(v, t)] \<doteq> []) = (t = Var v)"
       
   302 proof
       
   303   assume t_v: "t = Var v"
       
   304   thus "[(v, t)] \<doteq> []"
       
   305     by auto
       
   306 next
       
   307   assume id: "[(v, t)] \<doteq> []"
       
   308   show "t = Var v"
       
   309   proof -
       
   310     have "t = Var v \<lhd> [(v, t)]" by simp
       
   311     also from id have "\<dots> = Var v \<lhd> []" ..
       
   312     finally show ?thesis by simp
       
   313   qed
       
   314 qed
       
   315 
       
   316 text {* A lemma about occs and elim *}
       
   317 
       
   318 lemma remove_var:
       
   319   assumes [simp]: "v \<notin> vars_of s"
       
   320   shows "v \<notin> vars_of (t \<lhd> [(v, s)])"
       
   321   by (induct t) simp_all
       
   322 
   237 
   323 lemma occs_elim: "\<not> Var v \<prec> t 
   238 lemma occs_elim: "\<not> Var v \<prec> t 
   324   \<Longrightarrow> elim [(v,t)] v \<or> [(v,t)] \<doteq> []"
   239   \<Longrightarrow> elim [(v,t)] v \<or> [(v,t)] \<doteq> []"
   325 proof (induct t)
   240 by (metis elim_intro remove_var var_same vars_iff_occseq)
   326   case (Var x)
       
   327   show ?case
       
   328   proof cases
       
   329     assume "v = x"
       
   330     thus ?thesis
       
   331       by (simp add:var_same)
       
   332   next
       
   333     assume neq: "v \<noteq> x"
       
   334     have "elim [(v, Var x)] v"
       
   335       by (auto intro!:remove_var simp:neq)
       
   336     thus ?thesis ..
       
   337   qed
       
   338 next
       
   339   case (Const c)
       
   340   have "elim [(v, Const c)] v"
       
   341     by (auto intro!:remove_var)
       
   342   thus ?case ..
       
   343 next
       
   344   case (Comb M N)
       
   345   
       
   346   hence ih1: "elim [(v, M)] v \<or> [(v, M)] \<doteq> []"
       
   347     and ih2: "elim [(v, N)] v \<or> [(v, N)] \<doteq> []"
       
   348     and nonoccs: "Var v \<noteq> M" "Var v \<noteq> N"
       
   349     by auto
       
   350 
       
   351   from nonoccs have "\<not> [(v,M)] \<doteq> []"
       
   352     by (simp add:var_same)
       
   353   with ih1 have "elim [(v, M)] v" by blast
       
   354   hence "v \<notin> vars_of (Var v \<lhd> [(v,M)])" ..
       
   355   hence not_in_M: "v \<notin> vars_of M" by simp
       
   356 
       
   357   from nonoccs have "\<not> [(v,N)] \<doteq> []"
       
   358     by (simp add:var_same)
       
   359   with ih2 have "elim [(v, N)] v" by blast
       
   360   hence "v \<notin> vars_of (Var v \<lhd> [(v,N)])" ..
       
   361   hence not_in_N: "v \<notin> vars_of N" by simp
       
   362 
       
   363   have "elim [(v, M \<cdot> N)] v"
       
   364   proof 
       
   365     fix t 
       
   366     show "v \<notin> vars_of (t \<lhd> [(v, M \<cdot> N)])"
       
   367     proof (induct t)
       
   368       case (Var x) thus ?case by (simp add: not_in_M not_in_N)
       
   369     qed auto
       
   370   qed
       
   371   thus ?case ..
       
   372 qed
       
   373 
   241 
   374 text {* The result of a unification never introduces new variables: *}
   242 text {* The result of a unification never introduces new variables: *}
       
   243 
       
   244 declare unify.psimps[simp]
   375 
   245 
   376 lemma unify_vars: 
   246 lemma unify_vars: 
   377   assumes "unify_dom (M, N)"
   247   assumes "unify_dom (M, N)"
   378   assumes "unify M N = Some \<sigma>"
   248   assumes "unify M N = Some \<sigma>"
   379   shows "vars_of (t \<lhd> \<sigma>) \<subseteq> vars_of M \<union> vars_of N \<union> vars_of t"
   249   shows "vars_of (t \<lhd> \<sigma>) \<subseteq> vars_of M \<union> vars_of N \<union> vars_of t"
   501     finally have "\<sigma> \<doteq> \<theta>1" .
   371     finally have "\<sigma> \<doteq> \<theta>1" .
   502 
   372 
   503     from ih1 show ?thesis
   373     from ih1 show ?thesis
   504     proof
   374     proof
   505       assume "\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta>1 v"
   375       assume "\<exists>v\<in>vars_of M \<union> vars_of M'. elim \<theta>1 v"
   506       with elim_eqv[OF `\<sigma> \<doteq> \<theta>1`]
   376       with elim_eq[OF `\<sigma> \<doteq> \<theta>1`]
   507       show ?thesis by auto
   377       show ?thesis by auto
   508     next
   378     next
   509       note `\<sigma> \<doteq> \<theta>1`
   379       note `\<sigma> \<doteq> \<theta>1`
   510       also assume "\<theta>1 \<doteq> []"
   380       also assume "\<theta>1 \<doteq> []"
   511       finally show ?thesis ..
   381       finally show ?thesis ..
   512     qed
   382     qed
   513   qed
   383   qed
   514 qed
   384 qed
   515 
   385 
       
   386 declare unify.psimps[simp del]
   516 
   387 
   517 subsection {* Termination proof *}
   388 subsection {* Termination proof *}
   518 
   389 
   519 termination unify
   390 termination unify
   520 proof 
   391 proof 
   521   let ?R = "measures [\<lambda>(M,N). card (vars_of M \<union> vars_of N),
   392   let ?R = "measures [\<lambda>(M,N). card (vars_of M \<union> vars_of N),
   522                            \<lambda>(M, N). size M]"
   393                            \<lambda>(M, N). size M]"
   523   show "wf ?R" by simp
   394   show "wf ?R" by simp
   524 
   395 
   525   fix M N M' N' 
   396   fix M N M' N' :: "'a trm"
   526   show "((M, M'), (M \<cdot> N, M' \<cdot> N')) \<in> ?R" -- "Inner call"
   397   show "((M, M'), (M \<cdot> N, M' \<cdot> N')) \<in> ?R" -- "Inner call"
   527     by (rule measures_lesseq) (auto intro: card_mono)
   398     by (rule measures_lesseq) (auto intro: card_mono)
   528 
   399 
   529   fix \<theta>                                   -- "Outer call"
   400   fix \<theta>                                   -- "Outer call"
   530   assume inner: "unify_dom (M, M')"
   401   assume inner: "unify_dom (M, M')"
   553     thus ?thesis 
   424     thus ?thesis 
   554        by (auto intro!: measures_less intro: psubset_card_mono)
   425        by (auto intro!: measures_less intro: psubset_card_mono)
   555   qed
   426   qed
   556 qed
   427 qed
   557 
   428 
   558 declare unify.psimps[simp del]
   429 
       
   430 subsection {* Other Properties *}
       
   431 
       
   432 lemma unify_computes_MGU:
       
   433   "unify M N = Some \<sigma> \<Longrightarrow> MGU \<sigma> M N"
       
   434 using assms
       
   435 proof (induct M N arbitrary: \<sigma> rule: unify.induct)
       
   436   case (7 M N M' N' \<sigma>) -- "The interesting case"
       
   437 
       
   438   then obtain \<theta>1 \<theta>2 
       
   439     where "unify M M' = Some \<theta>1"
       
   440     and "unify (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1) = Some \<theta>2"
       
   441     and \<sigma>: "\<sigma> = \<theta>1 \<lozenge> \<theta>2"
       
   442     and MGU_inner: "MGU \<theta>1 M M'" 
       
   443     and MGU_outer: "MGU \<theta>2 (N \<lhd> \<theta>1) (N' \<lhd> \<theta>1)"
       
   444     by (auto split:option.split_asm)
       
   445 
       
   446   show ?case
       
   447   proof
       
   448     from MGU_inner and MGU_outer
       
   449     have "M \<lhd> \<theta>1 = M' \<lhd> \<theta>1" 
       
   450       and "N \<lhd> \<theta>1 \<lhd> \<theta>2 = N' \<lhd> \<theta>1 \<lhd> \<theta>2"
       
   451       unfolding MGU_def Unifier_def
       
   452       by auto
       
   453     thus "M \<cdot> N \<lhd> \<sigma> = M' \<cdot> N' \<lhd> \<sigma>" unfolding \<sigma>
       
   454       by simp
       
   455   next
       
   456     fix \<sigma>' assume "M \<cdot> N \<lhd> \<sigma>' = M' \<cdot> N' \<lhd> \<sigma>'"
       
   457     hence "M \<lhd> \<sigma>' = M' \<lhd> \<sigma>'"
       
   458       and Ns: "N \<lhd> \<sigma>' = N' \<lhd> \<sigma>'" by auto
       
   459 
       
   460     with MGU_inner obtain \<delta>
       
   461       where eqv: "\<sigma>' \<doteq> \<theta>1 \<lozenge> \<delta>"
       
   462       unfolding MGU_def Unifier_def
       
   463       by auto
       
   464 
       
   465     from Ns have "N \<lhd> \<theta>1 \<lhd> \<delta> = N' \<lhd> \<theta>1 \<lhd> \<delta>"
       
   466       by (simp add:subst_eq_dest[OF eqv])
       
   467 
       
   468     with MGU_outer obtain \<rho>
       
   469       where eqv2: "\<delta> \<doteq> \<theta>2 \<lozenge> \<rho>"
       
   470       unfolding MGU_def Unifier_def
       
   471       by auto
       
   472     
       
   473     have "\<sigma>' \<doteq> \<sigma> \<lozenge> \<rho>" unfolding \<sigma>
       
   474       by (rule subst_eq_intro, auto simp:subst_eq_dest[OF eqv] subst_eq_dest[OF eqv2])
       
   475     thus "\<exists>\<gamma>. \<sigma>' \<doteq> \<sigma> \<lozenge> \<gamma>" ..
       
   476   qed
       
   477 qed (auto simp: MGU_Const intro: MGU_Var MGU_Var[symmetric] split: split_if_asm)
       
   478 
       
   479 
   559 
   480 
   560 end
   481 end