src/HOLCF/Cpodef.thy
changeset 40774 0437dbc127b3
parent 40773 6c12f5e24e34
child 40775 ed7a4eadb2f6
equal deleted inserted replaced
40773:6c12f5e24e34 40774:0437dbc127b3
     1 (*  Title:      HOLCF/Pcpodef.thy
       
     2     Author:     Brian Huffman
       
     3 *)
       
     4 
       
     5 header {* Subtypes of pcpos *}
       
     6 
       
     7 theory Cpodef
       
     8 imports Adm
       
     9 uses ("Tools/cpodef.ML")
       
    10 begin
       
    11 
       
    12 subsection {* Proving a subtype is a partial order *}
       
    13 
       
    14 text {*
       
    15   A subtype of a partial order is itself a partial order,
       
    16   if the ordering is defined in the standard way.
       
    17 *}
       
    18 
       
    19 setup {* Sign.add_const_constraint (@{const_name Porder.below}, NONE) *}
       
    20 
       
    21 theorem typedef_po:
       
    22   fixes Abs :: "'a::po \<Rightarrow> 'b::type"
       
    23   assumes type: "type_definition Rep Abs A"
       
    24     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
    25   shows "OFCLASS('b, po_class)"
       
    26  apply (intro_classes, unfold below)
       
    27    apply (rule below_refl)
       
    28   apply (erule (1) below_trans)
       
    29  apply (rule type_definition.Rep_inject [OF type, THEN iffD1])
       
    30  apply (erule (1) below_antisym)
       
    31 done
       
    32 
       
    33 setup {* Sign.add_const_constraint (@{const_name Porder.below},
       
    34   SOME @{typ "'a::below \<Rightarrow> 'a::below \<Rightarrow> bool"}) *}
       
    35 
       
    36 subsection {* Proving a subtype is finite *}
       
    37 
       
    38 lemma typedef_finite_UNIV:
       
    39   fixes Abs :: "'a::type \<Rightarrow> 'b::type"
       
    40   assumes type: "type_definition Rep Abs A"
       
    41   shows "finite A \<Longrightarrow> finite (UNIV :: 'b set)"
       
    42 proof -
       
    43   assume "finite A"
       
    44   hence "finite (Abs ` A)" by (rule finite_imageI)
       
    45   thus "finite (UNIV :: 'b set)"
       
    46     by (simp only: type_definition.Abs_image [OF type])
       
    47 qed
       
    48 
       
    49 subsection {* Proving a subtype is chain-finite *}
       
    50 
       
    51 lemma ch2ch_Rep:
       
    52   assumes below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
    53   shows "chain S \<Longrightarrow> chain (\<lambda>i. Rep (S i))"
       
    54 unfolding chain_def below .
       
    55 
       
    56 theorem typedef_chfin:
       
    57   fixes Abs :: "'a::chfin \<Rightarrow> 'b::po"
       
    58   assumes type: "type_definition Rep Abs A"
       
    59     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
    60   shows "OFCLASS('b, chfin_class)"
       
    61  apply intro_classes
       
    62  apply (drule ch2ch_Rep [OF below])
       
    63  apply (drule chfin)
       
    64  apply (unfold max_in_chain_def)
       
    65  apply (simp add: type_definition.Rep_inject [OF type])
       
    66 done
       
    67 
       
    68 subsection {* Proving a subtype is complete *}
       
    69 
       
    70 text {*
       
    71   A subtype of a cpo is itself a cpo if the ordering is
       
    72   defined in the standard way, and the defining subset
       
    73   is closed with respect to limits of chains.  A set is
       
    74   closed if and only if membership in the set is an
       
    75   admissible predicate.
       
    76 *}
       
    77 
       
    78 lemma typedef_is_lubI:
       
    79   assumes below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
    80   shows "range (\<lambda>i. Rep (S i)) <<| Rep x \<Longrightarrow> range S <<| x"
       
    81 unfolding is_lub_def is_ub_def below by simp
       
    82 
       
    83 lemma Abs_inverse_lub_Rep:
       
    84   fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
       
    85   assumes type: "type_definition Rep Abs A"
       
    86     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
    87     and adm:  "adm (\<lambda>x. x \<in> A)"
       
    88   shows "chain S \<Longrightarrow> Rep (Abs (\<Squnion>i. Rep (S i))) = (\<Squnion>i. Rep (S i))"
       
    89  apply (rule type_definition.Abs_inverse [OF type])
       
    90  apply (erule admD [OF adm ch2ch_Rep [OF below]])
       
    91  apply (rule type_definition.Rep [OF type])
       
    92 done
       
    93 
       
    94 theorem typedef_is_lub:
       
    95   fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
       
    96   assumes type: "type_definition Rep Abs A"
       
    97     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
    98     and adm: "adm (\<lambda>x. x \<in> A)"
       
    99   shows "chain S \<Longrightarrow> range S <<| Abs (\<Squnion>i. Rep (S i))"
       
   100 proof -
       
   101   assume S: "chain S"
       
   102   hence "chain (\<lambda>i. Rep (S i))" by (rule ch2ch_Rep [OF below])
       
   103   hence "range (\<lambda>i. Rep (S i)) <<| (\<Squnion>i. Rep (S i))" by (rule cpo_lubI)
       
   104   hence "range (\<lambda>i. Rep (S i)) <<| Rep (Abs (\<Squnion>i. Rep (S i)))"
       
   105     by (simp only: Abs_inverse_lub_Rep [OF type below adm S])
       
   106   thus "range S <<| Abs (\<Squnion>i. Rep (S i))"
       
   107     by (rule typedef_is_lubI [OF below])
       
   108 qed
       
   109 
       
   110 lemmas typedef_lub = typedef_is_lub [THEN lub_eqI, standard]
       
   111 
       
   112 theorem typedef_cpo:
       
   113   fixes Abs :: "'a::cpo \<Rightarrow> 'b::po"
       
   114   assumes type: "type_definition Rep Abs A"
       
   115     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   116     and adm: "adm (\<lambda>x. x \<in> A)"
       
   117   shows "OFCLASS('b, cpo_class)"
       
   118 proof
       
   119   fix S::"nat \<Rightarrow> 'b" assume "chain S"
       
   120   hence "range S <<| Abs (\<Squnion>i. Rep (S i))"
       
   121     by (rule typedef_is_lub [OF type below adm])
       
   122   thus "\<exists>x. range S <<| x" ..
       
   123 qed
       
   124 
       
   125 subsubsection {* Continuity of \emph{Rep} and \emph{Abs} *}
       
   126 
       
   127 text {* For any sub-cpo, the @{term Rep} function is continuous. *}
       
   128 
       
   129 theorem typedef_cont_Rep:
       
   130   fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
       
   131   assumes type: "type_definition Rep Abs A"
       
   132     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   133     and adm: "adm (\<lambda>x. x \<in> A)"
       
   134   shows "cont Rep"
       
   135  apply (rule contI)
       
   136  apply (simp only: typedef_lub [OF type below adm])
       
   137  apply (simp only: Abs_inverse_lub_Rep [OF type below adm])
       
   138  apply (rule cpo_lubI)
       
   139  apply (erule ch2ch_Rep [OF below])
       
   140 done
       
   141 
       
   142 text {*
       
   143   For a sub-cpo, we can make the @{term Abs} function continuous
       
   144   only if we restrict its domain to the defining subset by
       
   145   composing it with another continuous function.
       
   146 *}
       
   147 
       
   148 theorem typedef_cont_Abs:
       
   149   fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
       
   150   fixes f :: "'c::cpo \<Rightarrow> 'a::cpo"
       
   151   assumes type: "type_definition Rep Abs A"
       
   152     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   153     and adm: "adm (\<lambda>x. x \<in> A)" (* not used *)
       
   154     and f_in_A: "\<And>x. f x \<in> A"
       
   155   shows "cont f \<Longrightarrow> cont (\<lambda>x. Abs (f x))"
       
   156 unfolding cont_def is_lub_def is_ub_def ball_simps below
       
   157 by (simp add: type_definition.Abs_inverse [OF type f_in_A])
       
   158 
       
   159 subsection {* Proving subtype elements are compact *}
       
   160 
       
   161 theorem typedef_compact:
       
   162   fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
       
   163   assumes type: "type_definition Rep Abs A"
       
   164     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   165     and adm: "adm (\<lambda>x. x \<in> A)"
       
   166   shows "compact (Rep k) \<Longrightarrow> compact k"
       
   167 proof (unfold compact_def)
       
   168   have cont_Rep: "cont Rep"
       
   169     by (rule typedef_cont_Rep [OF type below adm])
       
   170   assume "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> x)"
       
   171   with cont_Rep have "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> Rep x)" by (rule adm_subst)
       
   172   thus "adm (\<lambda>x. \<not> k \<sqsubseteq> x)" by (unfold below)
       
   173 qed
       
   174 
       
   175 subsection {* Proving a subtype is pointed *}
       
   176 
       
   177 text {*
       
   178   A subtype of a cpo has a least element if and only if
       
   179   the defining subset has a least element.
       
   180 *}
       
   181 
       
   182 theorem typedef_pcpo_generic:
       
   183   fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo"
       
   184   assumes type: "type_definition Rep Abs A"
       
   185     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   186     and z_in_A: "z \<in> A"
       
   187     and z_least: "\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x"
       
   188   shows "OFCLASS('b, pcpo_class)"
       
   189  apply (intro_classes)
       
   190  apply (rule_tac x="Abs z" in exI, rule allI)
       
   191  apply (unfold below)
       
   192  apply (subst type_definition.Abs_inverse [OF type z_in_A])
       
   193  apply (rule z_least [OF type_definition.Rep [OF type]])
       
   194 done
       
   195 
       
   196 text {*
       
   197   As a special case, a subtype of a pcpo has a least element
       
   198   if the defining subset contains @{term \<bottom>}.
       
   199 *}
       
   200 
       
   201 theorem typedef_pcpo:
       
   202   fixes Abs :: "'a::pcpo \<Rightarrow> 'b::cpo"
       
   203   assumes type: "type_definition Rep Abs A"
       
   204     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   205     and UU_in_A: "\<bottom> \<in> A"
       
   206   shows "OFCLASS('b, pcpo_class)"
       
   207 by (rule typedef_pcpo_generic [OF type below UU_in_A], rule minimal)
       
   208 
       
   209 subsubsection {* Strictness of \emph{Rep} and \emph{Abs} *}
       
   210 
       
   211 text {*
       
   212   For a sub-pcpo where @{term \<bottom>} is a member of the defining
       
   213   subset, @{term Rep} and @{term Abs} are both strict.
       
   214 *}
       
   215 
       
   216 theorem typedef_Abs_strict:
       
   217   assumes type: "type_definition Rep Abs A"
       
   218     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   219     and UU_in_A: "\<bottom> \<in> A"
       
   220   shows "Abs \<bottom> = \<bottom>"
       
   221  apply (rule UU_I, unfold below)
       
   222  apply (simp add: type_definition.Abs_inverse [OF type UU_in_A])
       
   223 done
       
   224 
       
   225 theorem typedef_Rep_strict:
       
   226   assumes type: "type_definition Rep Abs A"
       
   227     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   228     and UU_in_A: "\<bottom> \<in> A"
       
   229   shows "Rep \<bottom> = \<bottom>"
       
   230  apply (rule typedef_Abs_strict [OF type below UU_in_A, THEN subst])
       
   231  apply (rule type_definition.Abs_inverse [OF type UU_in_A])
       
   232 done
       
   233 
       
   234 theorem typedef_Abs_bottom_iff:
       
   235   assumes type: "type_definition Rep Abs A"
       
   236     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   237     and UU_in_A: "\<bottom> \<in> A"
       
   238   shows "x \<in> A \<Longrightarrow> (Abs x = \<bottom>) = (x = \<bottom>)"
       
   239  apply (rule typedef_Abs_strict [OF type below UU_in_A, THEN subst])
       
   240  apply (simp add: type_definition.Abs_inject [OF type] UU_in_A)
       
   241 done
       
   242 
       
   243 theorem typedef_Rep_bottom_iff:
       
   244   assumes type: "type_definition Rep Abs A"
       
   245     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   246     and UU_in_A: "\<bottom> \<in> A"
       
   247   shows "(Rep x = \<bottom>) = (x = \<bottom>)"
       
   248  apply (rule typedef_Rep_strict [OF type below UU_in_A, THEN subst])
       
   249  apply (simp add: type_definition.Rep_inject [OF type])
       
   250 done
       
   251 
       
   252 theorem typedef_Abs_defined:
       
   253   assumes type: "type_definition Rep Abs A"
       
   254     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   255     and UU_in_A: "\<bottom> \<in> A"
       
   256   shows "\<lbrakk>x \<noteq> \<bottom>; x \<in> A\<rbrakk> \<Longrightarrow> Abs x \<noteq> \<bottom>"
       
   257 by (simp add: typedef_Abs_bottom_iff [OF type below UU_in_A])
       
   258 
       
   259 theorem typedef_Rep_defined:
       
   260   assumes type: "type_definition Rep Abs A"
       
   261     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   262     and UU_in_A: "\<bottom> \<in> A"
       
   263   shows "x \<noteq> \<bottom> \<Longrightarrow> Rep x \<noteq> \<bottom>"
       
   264 by (simp add: typedef_Rep_bottom_iff [OF type below UU_in_A])
       
   265 
       
   266 subsection {* Proving a subtype is flat *}
       
   267 
       
   268 theorem typedef_flat:
       
   269   fixes Abs :: "'a::flat \<Rightarrow> 'b::pcpo"
       
   270   assumes type: "type_definition Rep Abs A"
       
   271     and below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
       
   272     and UU_in_A: "\<bottom> \<in> A"
       
   273   shows "OFCLASS('b, flat_class)"
       
   274  apply (intro_classes)
       
   275  apply (unfold below)
       
   276  apply (simp add: type_definition.Rep_inject [OF type, symmetric])
       
   277  apply (simp add: typedef_Rep_strict [OF type below UU_in_A])
       
   278  apply (simp add: ax_flat)
       
   279 done
       
   280 
       
   281 subsection {* HOLCF type definition package *}
       
   282 
       
   283 use "Tools/cpodef.ML"
       
   284 
       
   285 end