src/HOL/Binomial.thy
changeset 65812 04ba6d530c87
parent 65581 baf96277ee76
child 65813 bdd17b18e103
equal deleted inserted replaced
65811:2653f1cd8775 65812:04ba6d530c87
     4     Author:     Jeremy Avigad
     4     Author:     Jeremy Avigad
     5     Author:     Chaitanya Mangla
     5     Author:     Chaitanya Mangla
     6     Author:     Manuel Eberl
     6     Author:     Manuel Eberl
     7 *)
     7 *)
     8 
     8 
     9 section \<open>Combinatorial Functions: Factorial Function, Rising Factorials, Binomial Coefficients and Binomial Theorem\<close>
     9 section \<open>Binomial Coefficients and Binomial Theorem\<close>
    10 
    10 
    11 theory Binomial
    11 theory Binomial
    12   imports Pre_Main
    12   imports Factorial
    13 begin
    13 begin
    14 
       
    15 subsection \<open>Factorial\<close>
       
    16 
       
    17 context semiring_char_0
       
    18 begin
       
    19 
       
    20 definition fact :: "nat \<Rightarrow> 'a"
       
    21   where fact_prod: "fact n = of_nat (\<Prod>{1..n})"
       
    22 
       
    23 lemma fact_prod_Suc: "fact n = of_nat (prod Suc {0..<n})"
       
    24   by (cases n)
       
    25     (simp_all add: fact_prod prod.atLeast_Suc_atMost_Suc_shift
       
    26       atLeastLessThanSuc_atLeastAtMost)
       
    27 
       
    28 lemma fact_prod_rev: "fact n = of_nat (\<Prod>i = 0..<n. n - i)"
       
    29   using prod.atLeast_atMost_rev [of "\<lambda>i. i" 1 n]
       
    30   by (cases n)
       
    31     (simp_all add: fact_prod_Suc prod.atLeast_Suc_atMost_Suc_shift
       
    32       atLeastLessThanSuc_atLeastAtMost)
       
    33 
       
    34 lemma fact_0 [simp]: "fact 0 = 1"
       
    35   by (simp add: fact_prod)
       
    36 
       
    37 lemma fact_1 [simp]: "fact 1 = 1"
       
    38   by (simp add: fact_prod)
       
    39 
       
    40 lemma fact_Suc_0 [simp]: "fact (Suc 0) = 1"
       
    41   by (simp add: fact_prod)
       
    42 
       
    43 lemma fact_Suc [simp]: "fact (Suc n) = of_nat (Suc n) * fact n"
       
    44   by (simp add: fact_prod atLeastAtMostSuc_conv algebra_simps)
       
    45 
       
    46 lemma fact_2 [simp]: "fact 2 = 2"
       
    47   by (simp add: numeral_2_eq_2)
       
    48 
       
    49 lemma fact_split: "k \<le> n \<Longrightarrow> fact n = of_nat (prod Suc {n - k..<n}) * fact (n - k)"
       
    50   by (simp add: fact_prod_Suc prod.union_disjoint [symmetric]
       
    51     ivl_disj_un ac_simps of_nat_mult [symmetric])
       
    52 
       
    53 end
       
    54 
       
    55 lemma of_nat_fact [simp]: "of_nat (fact n) = fact n"
       
    56   by (simp add: fact_prod)
       
    57 
       
    58 lemma of_int_fact [simp]: "of_int (fact n) = fact n"
       
    59   by (simp only: fact_prod of_int_of_nat_eq)
       
    60 
       
    61 lemma fact_reduce: "n > 0 \<Longrightarrow> fact n = of_nat n * fact (n - 1)"
       
    62   by (cases n) auto
       
    63 
       
    64 lemma fact_nonzero [simp]: "fact n \<noteq> (0::'a::{semiring_char_0,semiring_no_zero_divisors})"
       
    65   apply (induct n)
       
    66   apply auto
       
    67   using of_nat_eq_0_iff
       
    68   apply fastforce
       
    69   done
       
    70 
       
    71 lemma fact_mono_nat: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: nat)"
       
    72   by (induct n) (auto simp: le_Suc_eq)
       
    73 
       
    74 lemma fact_in_Nats: "fact n \<in> \<nat>"
       
    75   by (induct n) auto
       
    76 
       
    77 lemma fact_in_Ints: "fact n \<in> \<int>"
       
    78   by (induct n) auto
       
    79 
       
    80 context
       
    81   assumes "SORT_CONSTRAINT('a::linordered_semidom)"
       
    82 begin
       
    83 
       
    84 lemma fact_mono: "m \<le> n \<Longrightarrow> fact m \<le> (fact n :: 'a)"
       
    85   by (metis of_nat_fact of_nat_le_iff fact_mono_nat)
       
    86 
       
    87 lemma fact_ge_1 [simp]: "fact n \<ge> (1 :: 'a)"
       
    88   by (metis le0 fact_0 fact_mono)
       
    89 
       
    90 lemma fact_gt_zero [simp]: "fact n > (0 :: 'a)"
       
    91   using fact_ge_1 less_le_trans zero_less_one by blast
       
    92 
       
    93 lemma fact_ge_zero [simp]: "fact n \<ge> (0 :: 'a)"
       
    94   by (simp add: less_imp_le)
       
    95 
       
    96 lemma fact_not_neg [simp]: "\<not> fact n < (0 :: 'a)"
       
    97   by (simp add: not_less_iff_gr_or_eq)
       
    98 
       
    99 lemma fact_le_power: "fact n \<le> (of_nat (n^n) :: 'a)"
       
   100 proof (induct n)
       
   101   case 0
       
   102   then show ?case by simp
       
   103 next
       
   104   case (Suc n)
       
   105   then have *: "fact n \<le> (of_nat (Suc n ^ n) ::'a)"
       
   106     by (rule order_trans) (simp add: power_mono del: of_nat_power)
       
   107   have "fact (Suc n) = (of_nat (Suc n) * fact n ::'a)"
       
   108     by (simp add: algebra_simps)
       
   109   also have "\<dots> \<le> of_nat (Suc n) * of_nat (Suc n ^ n)"
       
   110     by (simp add: * ordered_comm_semiring_class.comm_mult_left_mono del: of_nat_power)
       
   111   also have "\<dots> \<le> of_nat (Suc n ^ Suc n)"
       
   112     by (metis of_nat_mult order_refl power_Suc)
       
   113   finally show ?case .
       
   114 qed
       
   115 
       
   116 end
       
   117 
       
   118 text \<open>Note that @{term "fact 0 = fact 1"}\<close>
       
   119 lemma fact_less_mono_nat: "0 < m \<Longrightarrow> m < n \<Longrightarrow> fact m < (fact n :: nat)"
       
   120   by (induct n) (auto simp: less_Suc_eq)
       
   121 
       
   122 lemma fact_less_mono: "0 < m \<Longrightarrow> m < n \<Longrightarrow> fact m < (fact n :: 'a::linordered_semidom)"
       
   123   by (metis of_nat_fact of_nat_less_iff fact_less_mono_nat)
       
   124 
       
   125 lemma fact_ge_Suc_0_nat [simp]: "fact n \<ge> Suc 0"
       
   126   by (metis One_nat_def fact_ge_1)
       
   127 
       
   128 lemma dvd_fact: "1 \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> m dvd fact n"
       
   129   by (induct n) (auto simp: dvdI le_Suc_eq)
       
   130 
       
   131 lemma fact_ge_self: "fact n \<ge> n"
       
   132   by (cases "n = 0") (simp_all add: dvd_imp_le dvd_fact)
       
   133 
       
   134 lemma fact_dvd: "n \<le> m \<Longrightarrow> fact n dvd (fact m :: 'a::{semiring_div,linordered_semidom})"
       
   135   by (induct m) (auto simp: le_Suc_eq)
       
   136 
       
   137 lemma fact_mod: "m \<le> n \<Longrightarrow> fact n mod (fact m :: 'a::{semiring_div,linordered_semidom}) = 0"
       
   138   by (auto simp add: fact_dvd)
       
   139 
       
   140 lemma fact_div_fact:
       
   141   assumes "m \<ge> n"
       
   142   shows "fact m div fact n = \<Prod>{n + 1..m}"
       
   143 proof -
       
   144   obtain d where "d = m - n"
       
   145     by auto
       
   146   with assms have "m = n + d"
       
   147     by auto
       
   148   have "fact (n + d) div (fact n) = \<Prod>{n + 1..n + d}"
       
   149   proof (induct d)
       
   150     case 0
       
   151     show ?case by simp
       
   152   next
       
   153     case (Suc d')
       
   154     have "fact (n + Suc d') div fact n = Suc (n + d') * fact (n + d') div fact n"
       
   155       by simp
       
   156     also from Suc.hyps have "\<dots> = Suc (n + d') * \<Prod>{n + 1..n + d'}"
       
   157       unfolding div_mult1_eq[of _ "fact (n + d')"] by (simp add: fact_mod)
       
   158     also have "\<dots> = \<Prod>{n + 1..n + Suc d'}"
       
   159       by (simp add: atLeastAtMostSuc_conv)
       
   160     finally show ?case .
       
   161   qed
       
   162   with \<open>m = n + d\<close> show ?thesis by simp
       
   163 qed
       
   164 
       
   165 lemma fact_num_eq_if: "fact m = (if m = 0 then 1 else of_nat m * fact (m - 1))"
       
   166   by (cases m) auto
       
   167 
       
   168 lemma fact_div_fact_le_pow:
       
   169   assumes "r \<le> n"
       
   170   shows "fact n div fact (n - r) \<le> n ^ r"
       
   171 proof -
       
   172   have "r \<le> n \<Longrightarrow> \<Prod>{n - r..n} = (n - r) * \<Prod>{Suc (n - r)..n}" for r
       
   173     by (subst prod.insert[symmetric]) (auto simp: atLeastAtMost_insertL)
       
   174   with assms show ?thesis
       
   175     by (induct r rule: nat.induct) (auto simp add: fact_div_fact Suc_diff_Suc mult_le_mono)
       
   176 qed
       
   177 
       
   178 lemma fact_numeral: "fact (numeral k) = numeral k * fact (pred_numeral k)"
       
   179   \<comment> \<open>Evaluation for specific numerals\<close>
       
   180   by (metis fact_Suc numeral_eq_Suc of_nat_numeral)
       
   181 
       
   182 
    14 
   183 subsection \<open>Binomial coefficients\<close>
    15 subsection \<open>Binomial coefficients\<close>
   184 
    16 
   185 text \<open>This development is based on the work of Andy Gordon and Florian Kammueller.\<close>
    17 text \<open>This development is based on the work of Andy Gordon and Florian Kammueller.\<close>
   186 
    18 
   494       by simp
   326       by simp
   495   also have "\<dots> = Suc (n - m + m) choose m"
   327   also have "\<dots> = Suc (n - m + m) choose m"
   496     by (rule sum_choose_lower)
   328     by (rule sum_choose_lower)
   497   also have "\<dots> = Suc n choose m"
   329   also have "\<dots> = Suc n choose m"
   498     using assms by simp
   330     using assms by simp
   499   finally show ?thesis .
       
   500 qed
       
   501 
       
   502 
       
   503 subsection \<open>Pochhammer's symbol: generalized rising factorial\<close>
       
   504 
       
   505 text \<open>See \<^url>\<open>http://en.wikipedia.org/wiki/Pochhammer_symbol\<close>.\<close>
       
   506 
       
   507 context comm_semiring_1
       
   508 begin
       
   509 
       
   510 definition pochhammer :: "'a \<Rightarrow> nat \<Rightarrow> 'a"
       
   511   where pochhammer_prod: "pochhammer a n = prod (\<lambda>i. a + of_nat i) {0..<n}"
       
   512 
       
   513 lemma pochhammer_prod_rev: "pochhammer a n = prod (\<lambda>i. a + of_nat (n - i)) {1..n}"
       
   514   using prod.atLeast_lessThan_rev_at_least_Suc_atMost [of "\<lambda>i. a + of_nat i" 0 n]
       
   515   by (simp add: pochhammer_prod)
       
   516 
       
   517 lemma pochhammer_Suc_prod: "pochhammer a (Suc n) = prod (\<lambda>i. a + of_nat i) {0..n}"
       
   518   by (simp add: pochhammer_prod atLeastLessThanSuc_atLeastAtMost)
       
   519 
       
   520 lemma pochhammer_Suc_prod_rev: "pochhammer a (Suc n) = prod (\<lambda>i. a + of_nat (n - i)) {0..n}"
       
   521   by (simp add: pochhammer_prod_rev prod.atLeast_Suc_atMost_Suc_shift)
       
   522 
       
   523 lemma pochhammer_0 [simp]: "pochhammer a 0 = 1"
       
   524   by (simp add: pochhammer_prod)
       
   525 
       
   526 lemma pochhammer_1 [simp]: "pochhammer a 1 = a"
       
   527   by (simp add: pochhammer_prod lessThan_Suc)
       
   528 
       
   529 lemma pochhammer_Suc0 [simp]: "pochhammer a (Suc 0) = a"
       
   530   by (simp add: pochhammer_prod lessThan_Suc)
       
   531 
       
   532 lemma pochhammer_Suc: "pochhammer a (Suc n) = pochhammer a n * (a + of_nat n)"
       
   533   by (simp add: pochhammer_prod atLeast0_lessThan_Suc ac_simps)
       
   534 
       
   535 end
       
   536 
       
   537 lemma pochhammer_nonneg:
       
   538   fixes x :: "'a :: linordered_semidom"
       
   539   shows "x > 0 \<Longrightarrow> pochhammer x n \<ge> 0"
       
   540   by (induction n) (auto simp: pochhammer_Suc intro!: mult_nonneg_nonneg add_nonneg_nonneg)
       
   541 
       
   542 lemma pochhammer_pos:
       
   543   fixes x :: "'a :: linordered_semidom"
       
   544   shows "x > 0 \<Longrightarrow> pochhammer x n > 0"
       
   545   by (induction n) (auto simp: pochhammer_Suc intro!: mult_pos_pos add_pos_nonneg)
       
   546 
       
   547 lemma pochhammer_of_nat: "pochhammer (of_nat x) n = of_nat (pochhammer x n)"
       
   548   by (simp add: pochhammer_prod)
       
   549 
       
   550 lemma pochhammer_of_int: "pochhammer (of_int x) n = of_int (pochhammer x n)"
       
   551   by (simp add: pochhammer_prod)
       
   552 
       
   553 lemma pochhammer_rec: "pochhammer a (Suc n) = a * pochhammer (a + 1) n"
       
   554   by (simp add: pochhammer_prod prod.atLeast0_lessThan_Suc_shift ac_simps)
       
   555 
       
   556 lemma pochhammer_rec': "pochhammer z (Suc n) = (z + of_nat n) * pochhammer z n"
       
   557   by (simp add: pochhammer_prod prod.atLeast0_lessThan_Suc ac_simps)
       
   558 
       
   559 lemma pochhammer_fact: "fact n = pochhammer 1 n"
       
   560   by (simp add: pochhammer_prod fact_prod_Suc)
       
   561 
       
   562 lemma pochhammer_of_nat_eq_0_lemma: "k > n \<Longrightarrow> pochhammer (- (of_nat n :: 'a:: idom)) k = 0"
       
   563   by (auto simp add: pochhammer_prod)
       
   564 
       
   565 lemma pochhammer_of_nat_eq_0_lemma':
       
   566   assumes kn: "k \<le> n"
       
   567   shows "pochhammer (- (of_nat n :: 'a::{idom,ring_char_0})) k \<noteq> 0"
       
   568 proof (cases k)
       
   569   case 0
       
   570   then show ?thesis by simp
       
   571 next
       
   572   case (Suc h)
       
   573   then show ?thesis
       
   574     apply (simp add: pochhammer_Suc_prod)
       
   575     using Suc kn
       
   576     apply (auto simp add: algebra_simps)
       
   577     done
       
   578 qed
       
   579 
       
   580 lemma pochhammer_of_nat_eq_0_iff:
       
   581   "pochhammer (- (of_nat n :: 'a::{idom,ring_char_0})) k = 0 \<longleftrightarrow> k > n"
       
   582   (is "?l = ?r")
       
   583   using pochhammer_of_nat_eq_0_lemma[of n k, where ?'a='a]
       
   584     pochhammer_of_nat_eq_0_lemma'[of k n, where ?'a = 'a]
       
   585   by (auto simp add: not_le[symmetric])
       
   586 
       
   587 lemma pochhammer_eq_0_iff: "pochhammer a n = (0::'a::field_char_0) \<longleftrightarrow> (\<exists>k < n. a = - of_nat k)"
       
   588   by (auto simp add: pochhammer_prod eq_neg_iff_add_eq_0)
       
   589 
       
   590 lemma pochhammer_eq_0_mono:
       
   591   "pochhammer a n = (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a m = 0"
       
   592   unfolding pochhammer_eq_0_iff by auto
       
   593 
       
   594 lemma pochhammer_neq_0_mono:
       
   595   "pochhammer a m \<noteq> (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a n \<noteq> 0"
       
   596   unfolding pochhammer_eq_0_iff by auto
       
   597 
       
   598 lemma pochhammer_minus:
       
   599   "pochhammer (- b) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (b - of_nat k + 1) k"
       
   600 proof (cases k)
       
   601   case 0
       
   602   then show ?thesis by simp
       
   603 next
       
   604   case (Suc h)
       
   605   have eq: "((- 1) ^ Suc h :: 'a) = (\<Prod>i = 0..h. - 1)"
       
   606     using prod_constant [where A="{0.. h}" and y="- 1 :: 'a"]
       
   607     by auto
       
   608   with Suc show ?thesis
       
   609     using pochhammer_Suc_prod_rev [of "b - of_nat k + 1"]
       
   610     by (auto simp add: pochhammer_Suc_prod prod.distrib [symmetric] eq of_nat_diff)
       
   611 qed
       
   612 
       
   613 lemma pochhammer_minus':
       
   614   "pochhammer (b - of_nat k + 1) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (- b) k"
       
   615   apply (simp only: pochhammer_minus [where b = b])
       
   616   apply (simp only: mult.assoc [symmetric])
       
   617   apply (simp only: power_add [symmetric])
       
   618   apply simp
       
   619   done
       
   620 
       
   621 lemma pochhammer_same: "pochhammer (- of_nat n) n =
       
   622     ((- 1) ^ n :: 'a::{semiring_char_0,comm_ring_1,semiring_no_zero_divisors}) * fact n"
       
   623   unfolding pochhammer_minus
       
   624   by (simp add: of_nat_diff pochhammer_fact)
       
   625 
       
   626 lemma pochhammer_product': "pochhammer z (n + m) = pochhammer z n * pochhammer (z + of_nat n) m"
       
   627 proof (induct n arbitrary: z)
       
   628   case 0
       
   629   then show ?case by simp
       
   630 next
       
   631   case (Suc n z)
       
   632   have "pochhammer z (Suc n) * pochhammer (z + of_nat (Suc n)) m =
       
   633       z * (pochhammer (z + 1) n * pochhammer (z + 1 + of_nat n) m)"
       
   634     by (simp add: pochhammer_rec ac_simps)
       
   635   also note Suc[symmetric]
       
   636   also have "z * pochhammer (z + 1) (n + m) = pochhammer z (Suc (n + m))"
       
   637     by (subst pochhammer_rec) simp
       
   638   finally show ?case
       
   639     by simp
       
   640 qed
       
   641 
       
   642 lemma pochhammer_product:
       
   643   "m \<le> n \<Longrightarrow> pochhammer z n = pochhammer z m * pochhammer (z + of_nat m) (n - m)"
       
   644   using pochhammer_product'[of z m "n - m"] by simp
       
   645 
       
   646 lemma pochhammer_times_pochhammer_half:
       
   647   fixes z :: "'a::field_char_0"
       
   648   shows "pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n) = (\<Prod>k=0..2*n+1. z + of_nat k / 2)"
       
   649 proof (induct n)
       
   650   case 0
       
   651   then show ?case
       
   652     by (simp add: atLeast0_atMost_Suc)
       
   653 next
       
   654   case (Suc n)
       
   655   define n' where "n' = Suc n"
       
   656   have "pochhammer z (Suc n') * pochhammer (z + 1 / 2) (Suc n') =
       
   657       (pochhammer z n' * pochhammer (z + 1 / 2) n') * ((z + of_nat n') * (z + 1/2 + of_nat n'))"
       
   658     (is "_ = _ * ?A")
       
   659     by (simp_all add: pochhammer_rec' mult_ac)
       
   660   also have "?A = (z + of_nat (Suc (2 * n + 1)) / 2) * (z + of_nat (Suc (Suc (2 * n + 1))) / 2)"
       
   661     (is "_ = ?B")
       
   662     by (simp add: field_simps n'_def)
       
   663   also note Suc[folded n'_def]
       
   664   also have "(\<Prod>k=0..2 * n + 1. z + of_nat k / 2) * ?B = (\<Prod>k=0..2 * Suc n + 1. z + of_nat k / 2)"
       
   665     by (simp add: atLeast0_atMost_Suc)
       
   666   finally show ?case
       
   667     by (simp add: n'_def)
       
   668 qed
       
   669 
       
   670 lemma pochhammer_double:
       
   671   fixes z :: "'a::field_char_0"
       
   672   shows "pochhammer (2 * z) (2 * n) = of_nat (2^(2*n)) * pochhammer z n * pochhammer (z+1/2) n"
       
   673 proof (induct n)
       
   674   case 0
       
   675   then show ?case by simp
       
   676 next
       
   677   case (Suc n)
       
   678   have "pochhammer (2 * z) (2 * (Suc n)) = pochhammer (2 * z) (2 * n) *
       
   679       (2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1)"
       
   680     by (simp add: pochhammer_rec' ac_simps)
       
   681   also note Suc
       
   682   also have "of_nat (2 ^ (2 * n)) * pochhammer z n * pochhammer (z + 1/2) n *
       
   683         (2 * (z + of_nat n)) * (2 * (z + of_nat n) + 1) =
       
   684       of_nat (2 ^ (2 * (Suc n))) * pochhammer z (Suc n) * pochhammer (z + 1/2) (Suc n)"
       
   685     by (simp add: field_simps pochhammer_rec')
       
   686   finally show ?case .
       
   687 qed
       
   688 
       
   689 lemma fact_double:
       
   690   "fact (2 * n) = (2 ^ (2 * n) * pochhammer (1 / 2) n * fact n :: 'a::field_char_0)"
       
   691   using pochhammer_double[of "1/2::'a" n] by (simp add: pochhammer_fact)
       
   692 
       
   693 lemma pochhammer_absorb_comp: "(r - of_nat k) * pochhammer (- r) k = r * pochhammer (-r + 1) k"
       
   694   (is "?lhs = ?rhs")
       
   695   for r :: "'a::comm_ring_1"
       
   696 proof -
       
   697   have "?lhs = - pochhammer (- r) (Suc k)"
       
   698     by (subst pochhammer_rec') (simp add: algebra_simps)
       
   699   also have "\<dots> = ?rhs"
       
   700     by (subst pochhammer_rec) simp
       
   701   finally show ?thesis .
   331   finally show ?thesis .
   702 qed
   332 qed
   703 
   333 
   704 
   334 
   705 subsection \<open>Generalized binomial coefficients\<close>
   335 subsection \<open>Generalized binomial coefficients\<close>
  1525 proof -
  1155 proof -
  1526   let ?A' = "{l. length l = m \<and> sum_list l = N \<and> hd l = 0}"
  1156   let ?A' = "{l. length l = m \<and> sum_list l = N \<and> hd l = 0}"
  1527   let ?B' = "{l. length l = m \<and> sum_list l = N \<and> hd l \<noteq> 0}"
  1157   let ?B' = "{l. length l = m \<and> sum_list l = N \<and> hd l \<noteq> 0}"
  1528   let ?f = "\<lambda>l. 0 # l"
  1158   let ?f = "\<lambda>l. 0 # l"
  1529   let ?g = "\<lambda>l. (hd l + 1) # tl l"
  1159   let ?g = "\<lambda>l. (hd l + 1) # tl l"
  1530   have 1: "xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" for x xs
  1160   have 1: "xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" for x :: nat and xs
  1531     by simp
  1161     by simp
  1532   have 2: "xs \<noteq> [] \<Longrightarrow> sum_list(tl xs) = sum_list xs - hd xs" for xs :: "nat list"
  1162   have 2: "xs \<noteq> [] \<Longrightarrow> sum_list(tl xs) = sum_list xs - hd xs" for xs :: "nat list"
  1533     by (auto simp add: neq_Nil_conv)
  1163     by (auto simp add: neq_Nil_conv)
  1534   have f: "bij_betw ?f ?A ?A'"
  1164   have f: "bij_betw ?f ?A ?A'"
  1535     apply (rule bij_betw_byWitness[where f' = tl])
  1165     apply (rule bij_betw_byWitness[where f' = tl])
  1658 qed
  1288 qed
  1659 
  1289 
  1660 
  1290 
  1661 subsection \<open>Misc\<close>
  1291 subsection \<open>Misc\<close>
  1662 
  1292 
  1663 lemma fact_code [code]:
       
  1664   "fact n = (of_nat (fold_atLeastAtMost_nat (op *) 2 n 1) :: 'a::semiring_char_0)"
       
  1665 proof -
       
  1666   have "fact n = (of_nat (\<Prod>{1..n}) :: 'a)"
       
  1667     by (simp add: fact_prod)
       
  1668   also have "\<Prod>{1..n} = \<Prod>{2..n}"
       
  1669     by (intro prod.mono_neutral_right) auto
       
  1670   also have "\<dots> = fold_atLeastAtMost_nat (op *) 2 n 1"
       
  1671     by (simp add: prod_atLeastAtMost_code)
       
  1672   finally show ?thesis .
       
  1673 qed
       
  1674 
       
  1675 lemma pochhammer_code [code]:
       
  1676   "pochhammer a n =
       
  1677     (if n = 0 then 1
       
  1678      else fold_atLeastAtMost_nat (\<lambda>n acc. (a + of_nat n) * acc) 0 (n - 1) 1)"
       
  1679   by (cases n)
       
  1680     (simp_all add: pochhammer_prod prod_atLeastAtMost_code [symmetric]
       
  1681       atLeastLessThanSuc_atLeastAtMost)
       
  1682 
       
  1683 lemma gbinomial_code [code]:
  1293 lemma gbinomial_code [code]:
  1684   "a gchoose n =
  1294   "a gchoose n =
  1685     (if n = 0 then 1
  1295     (if n = 0 then 1
  1686      else fold_atLeastAtMost_nat (\<lambda>n acc. (a - of_nat n) * acc) 0 (n - 1) 1 / fact n)"
  1296      else fold_atLeastAtMost_nat (\<lambda>n acc. (a - of_nat n) * acc) 0 (n - 1) 1 / fact n)"
  1687   by (cases n)
  1297   by (cases n)
  1688     (simp_all add: gbinomial_prod_rev prod_atLeastAtMost_code [symmetric]
  1298     (simp_all add: gbinomial_prod_rev prod_atLeastAtMost_code [symmetric]
  1689       atLeastLessThanSuc_atLeastAtMost)
  1299       atLeastLessThanSuc_atLeastAtMost)
  1690 
  1300 
  1691 lemmas [code del] = binomial_Suc_Suc binomial_n_0 binomial_0_Suc
  1301 declare [[code drop: binomial]]
  1692     
  1302     
  1693 lemma binomial_code [code]:
  1303 lemma binomial_code [code]:
  1694   "(n choose k) =
  1304   "(n choose k) =
  1695       (if k > n then 0
  1305       (if k > n then 0
  1696        else if 2 * k > n then (n choose (n - k))
  1306        else if 2 * k > n then (n choose (n - k))