src/HOL/ex/Peano_Axioms.thy
changeset 70921 05810acd4858
parent 64920 31044168af84
equal deleted inserted replaced
70920:1e0ad25c94c8 70921:05810acd4858
     2 
     2 
     3 theory Peano_Axioms
     3 theory Peano_Axioms
     4   imports Main
     4   imports Main
     5 begin
     5 begin
     6 
     6 
     7 locale peano =
     7 locale peano =  \<comment> \<open>or: \<^theory_text>\<open>class\<close>\<close>
     8   fixes zero :: 'n
     8   fixes zero :: 'a
     9   fixes succ :: "'n \<Rightarrow> 'n"
     9   fixes succ :: "'a \<Rightarrow> 'a"
    10   assumes succ_neq_zero [simp]: "succ m \<noteq> zero"
    10   assumes succ_neq_zero [simp]: "succ m \<noteq> zero"
    11   assumes succ_inject [simp]: "succ m = succ n \<longleftrightarrow> m = n"
    11   assumes succ_inject [simp]: "succ m = succ n \<longleftrightarrow> m = n"
    12   assumes induct [case_names zero succ, induct type: 'n]:
    12   assumes induct [case_names zero succ, induct type: 'a]:
    13     "P zero \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (succ n)) \<Longrightarrow> P n"
    13     "P zero \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (succ n)) \<Longrightarrow> P n"
    14 begin
    14 begin
    15 
    15 
    16 lemma zero_neq_succ [simp]: "zero \<noteq> succ m"
    16 lemma zero_neq_succ [simp]: "zero \<noteq> succ m"
    17   by (rule succ_neq_zero [symmetric])
    17   by (rule succ_neq_zero [symmetric])
    18 
    18 
    19 
    19 
    20 text \<open>\<^medskip> Primitive recursion as a (functional) relation -- polymorphic!\<close>
    20 text \<open>\<^medskip> Primitive recursion as a (functional) relation -- polymorphic!\<close>
    21 
    21 
    22 inductive Rec :: "'a \<Rightarrow> ('n \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'n \<Rightarrow> 'a \<Rightarrow> bool"
    22 inductive Rec :: "'b \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
    23   for e :: 'a and r :: "'n \<Rightarrow> 'a \<Rightarrow> 'a"
    23   for e :: 'b and r :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
    24 where
    24 where
    25   Rec_zero: "Rec e r zero e"
    25   Rec_zero: "Rec e r zero e"
    26 | Rec_succ: "Rec e r m n \<Longrightarrow> Rec e r (succ m) (r m n)"
    26 | Rec_succ: "Rec e r m n \<Longrightarrow> Rec e r (succ m) (r m n)"
    27 
    27 
    28 lemma Rec_functional: "\<exists>!y::'a. Rec e r x y" for x :: 'n
    28 lemma Rec_functional: "\<exists>!y::'b. Rec e r x y" for x :: 'a
    29 proof -
    29 proof -
    30   let ?R = "Rec e r"
    30   let ?R = "Rec e r"
    31   show ?thesis
    31   show ?thesis
    32   proof (induct x)
    32   proof (induct x)
    33     case zero
    33     case zero
    57 qed
    57 qed
    58 
    58 
    59 
    59 
    60 text \<open>\<^medskip> The recursion operator -- polymorphic!\<close>
    60 text \<open>\<^medskip> The recursion operator -- polymorphic!\<close>
    61 
    61 
    62 definition rec :: "'a \<Rightarrow> ('n \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'n \<Rightarrow> 'a"
    62 definition rec :: "'b \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
    63   where "rec e r x = (THE y. Rec e r x y)"
    63   where "rec e r x = (THE y. Rec e r x y)"
    64 
    64 
    65 lemma rec_eval:
    65 lemma rec_eval:
    66   assumes Rec: "Rec e r x y"
    66   assumes Rec: "Rec e r x y"
    67   shows "rec e r x = y"
    67   shows "rec e r x = y"
    82 qed
    82 qed
    83 
    83 
    84 
    84 
    85 text \<open>\<^medskip> Example: addition (monomorphic)\<close>
    85 text \<open>\<^medskip> Example: addition (monomorphic)\<close>
    86 
    86 
    87 definition add :: "'n \<Rightarrow> 'n \<Rightarrow> 'n"
    87 definition add :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
    88   where "add m n = rec n (\<lambda>_ k. succ k) m"
    88   where "add m n = rec n (\<lambda>_ k. succ k) m"
    89 
    89 
    90 lemma add_zero [simp]: "add zero n = n"
    90 lemma add_zero [simp]: "add zero n = n"
    91   and add_succ [simp]: "add (succ m) n = succ (add m n)"
    91   and add_succ [simp]: "add (succ m) n = succ (add m n)"
    92   unfolding add_def by simp_all
    92   unfolding add_def by simp_all
   105   by simp
   105   by simp
   106 
   106 
   107 
   107 
   108 text \<open>\<^medskip> Example: replication (polymorphic)\<close>
   108 text \<open>\<^medskip> Example: replication (polymorphic)\<close>
   109 
   109 
   110 definition repl :: "'n \<Rightarrow> 'a \<Rightarrow> 'a list"
   110 definition repl :: "'a \<Rightarrow> 'b \<Rightarrow> 'b list"
   111   where "repl n x = rec [] (\<lambda>_ xs. x # xs) n"
   111   where "repl n x = rec [] (\<lambda>_ xs. x # xs) n"
   112 
   112 
   113 lemma repl_zero [simp]: "repl zero x = []"
   113 lemma repl_zero [simp]: "repl zero x = []"
   114   and repl_succ [simp]: "repl (succ n) x = x # repl n x"
   114   and repl_succ [simp]: "repl (succ n) x = x # repl n x"
   115   unfolding repl_def by simp_all
   115   unfolding repl_def by simp_all