src/HOL/NSA/Examples/NSPrimes.thy
changeset 27468 0783dd1dc13d
child 32479 521cc9bf2958
equal deleted inserted replaced
27467:c0c4a6bd2cbc 27468:0783dd1dc13d
       
     1 (*  Title       : NSPrimes.thy
       
     2     Author      : Jacques D. Fleuriot
       
     3     Copyright   : 2002 University of Edinburgh
       
     4     Conversion to Isar and new proofs by Lawrence C Paulson, 2004
       
     5 *)
       
     6 
       
     7 header{*The Nonstandard Primes as an Extension of the Prime Numbers*}
       
     8 
       
     9 theory NSPrimes
       
    10 imports "~~/src/HOL/NumberTheory/Factorization" Hyperreal
       
    11 begin
       
    12 
       
    13 text{*These can be used to derive an alternative proof of the infinitude of
       
    14 primes by considering a property of nonstandard sets.*}
       
    15 
       
    16 definition
       
    17   hdvd  :: "[hypnat, hypnat] => bool"       (infixl "hdvd" 50) where
       
    18   [transfer_unfold]: "(M::hypnat) hdvd N = ( *p2* (op dvd)) M N"
       
    19 
       
    20 definition
       
    21   starprime :: "hypnat set" where
       
    22   [transfer_unfold]: "starprime = ( *s* {p. prime p})"
       
    23 
       
    24 definition
       
    25   choicefun :: "'a set => 'a" where
       
    26   "choicefun E = (@x. \<exists>X \<in> Pow(E) -{{}}. x : X)"
       
    27 
       
    28 consts injf_max :: "nat => ('a::{order} set) => 'a"
       
    29 primrec
       
    30   injf_max_zero: "injf_max 0 E = choicefun E"
       
    31   injf_max_Suc:  "injf_max (Suc n) E = choicefun({e. e:E & injf_max n E < e})"
       
    32 
       
    33 
       
    34 lemma dvd_by_all: "\<forall>M. \<exists>N. 0 < N & (\<forall>m. 0 < m & (m::nat) <= M --> m dvd N)"
       
    35 apply (rule allI)
       
    36 apply (induct_tac "M", auto)
       
    37 apply (rule_tac x = "N * (Suc n) " in exI)
       
    38 apply (safe, force)
       
    39 apply (drule le_imp_less_or_eq, erule disjE)
       
    40 apply (force intro!: dvd_mult2)
       
    41 apply (force intro!: dvd_mult)
       
    42 done
       
    43 
       
    44 lemmas dvd_by_all2 = dvd_by_all [THEN spec, standard]
       
    45 
       
    46 lemma hypnat_of_nat_le_zero_iff: "(hypnat_of_nat n <= 0) = (n = 0)"
       
    47 by (transfer, simp)
       
    48 declare hypnat_of_nat_le_zero_iff [simp]
       
    49 
       
    50 
       
    51 (* Goldblatt: Exercise 5.11(2) - p. 57 *)
       
    52 lemma hdvd_by_all: "\<forall>M. \<exists>N. 0 < N & (\<forall>m. 0 < m & (m::hypnat) <= M --> m hdvd N)"
       
    53 by (transfer, rule dvd_by_all)
       
    54 
       
    55 lemmas hdvd_by_all2 = hdvd_by_all [THEN spec, standard]
       
    56 
       
    57 (* Goldblatt: Exercise 5.11(2) - p. 57 *)
       
    58 lemma hypnat_dvd_all_hypnat_of_nat:
       
    59      "\<exists>(N::hypnat). 0 < N & (\<forall>n \<in> -{0::nat}. hypnat_of_nat(n) hdvd N)"
       
    60 apply (cut_tac hdvd_by_all)
       
    61 apply (drule_tac x = whn in spec, auto)
       
    62 apply (rule exI, auto)
       
    63 apply (drule_tac x = "hypnat_of_nat n" in spec)
       
    64 apply (auto simp add: linorder_not_less star_of_eq_0)
       
    65 done
       
    66 
       
    67 
       
    68 text{*The nonstandard extension of the set prime numbers consists of precisely
       
    69 those hypernaturals exceeding 1 that have no nontrivial factors*}
       
    70 
       
    71 (* Goldblatt: Exercise 5.11(3a) - p 57  *)
       
    72 lemma starprime:
       
    73   "starprime = {p. 1 < p & (\<forall>m. m hdvd p --> m = 1 | m = p)}"
       
    74 by (transfer, auto simp add: prime_def)
       
    75 
       
    76 lemma prime_two:  "prime 2"
       
    77 apply (unfold prime_def, auto)
       
    78 apply (frule dvd_imp_le)
       
    79 apply (auto dest: dvd_0_left)
       
    80 apply (case_tac m, simp, arith)
       
    81 done
       
    82 declare prime_two [simp]
       
    83 
       
    84 (* proof uses course-of-value induction *)
       
    85 lemma prime_factor_exists [rule_format]: "Suc 0 < n --> (\<exists>k. prime k & k dvd n)"
       
    86 apply (rule_tac n = n in nat_less_induct, auto)
       
    87 apply (case_tac "prime n")
       
    88 apply (rule_tac x = n in exI, auto)
       
    89 apply (drule conjI [THEN not_prime_ex_mk], auto)
       
    90 apply (drule_tac x = m in spec, auto)
       
    91 apply (rule_tac x = ka in exI)
       
    92 apply (auto intro: dvd_mult2)
       
    93 done
       
    94 
       
    95 (* Goldblatt Exercise 5.11(3b) - p 57  *)
       
    96 lemma hyperprime_factor_exists [rule_format]:
       
    97   "!!n. 1 < n ==> (\<exists>k \<in> starprime. k hdvd n)"
       
    98 by (transfer, simp add: prime_factor_exists)
       
    99 
       
   100 (* Goldblatt Exercise 3.10(1) - p. 29 *)
       
   101 lemma NatStar_hypnat_of_nat: "finite A ==> *s* A = hypnat_of_nat ` A"
       
   102 by (rule starset_finite)
       
   103 
       
   104 
       
   105 subsection{*Another characterization of infinite set of natural numbers*}
       
   106 
       
   107 lemma finite_nat_set_bounded: "finite N ==> \<exists>n. (\<forall>i \<in> N. i<(n::nat))"
       
   108 apply (erule_tac F = N in finite_induct, auto)
       
   109 apply (rule_tac x = "Suc n + x" in exI, auto)
       
   110 done
       
   111 
       
   112 lemma finite_nat_set_bounded_iff: "finite N = (\<exists>n. (\<forall>i \<in> N. i<(n::nat)))"
       
   113 by (blast intro: finite_nat_set_bounded bounded_nat_set_is_finite)
       
   114 
       
   115 lemma not_finite_nat_set_iff: "(~ finite N) = (\<forall>n. \<exists>i \<in> N. n <= (i::nat))"
       
   116 by (auto simp add: finite_nat_set_bounded_iff not_less)
       
   117 
       
   118 lemma bounded_nat_set_is_finite2: "(\<forall>i \<in> N. i<=(n::nat)) ==> finite N"
       
   119 apply (rule finite_subset)
       
   120  apply (rule_tac [2] finite_atMost, auto)
       
   121 done
       
   122 
       
   123 lemma finite_nat_set_bounded2: "finite N ==> \<exists>n. (\<forall>i \<in> N. i<=(n::nat))"
       
   124 apply (erule_tac F = N in finite_induct, auto)
       
   125 apply (rule_tac x = "n + x" in exI, auto)
       
   126 done
       
   127 
       
   128 lemma finite_nat_set_bounded_iff2: "finite N = (\<exists>n. (\<forall>i \<in> N. i<=(n::nat)))"
       
   129 by (blast intro: finite_nat_set_bounded2 bounded_nat_set_is_finite2)
       
   130 
       
   131 lemma not_finite_nat_set_iff2: "(~ finite N) = (\<forall>n. \<exists>i \<in> N. n < (i::nat))"
       
   132 by (auto simp add: finite_nat_set_bounded_iff2 not_le)
       
   133 
       
   134 
       
   135 subsection{*An injective function cannot define an embedded natural number*}
       
   136 
       
   137 lemma lemma_infinite_set_singleton: "\<forall>m n. m \<noteq> n --> f n \<noteq> f m
       
   138       ==>  {n. f n = N} = {} |  (\<exists>m. {n. f n = N} = {m})"
       
   139 apply auto
       
   140 apply (drule_tac x = x in spec, auto)
       
   141 apply (subgoal_tac "\<forall>n. (f n = f x) = (x = n) ")
       
   142 apply auto
       
   143 done
       
   144 
       
   145 lemma inj_fun_not_hypnat_in_SHNat:
       
   146   assumes inj_f: "inj (f::nat=>nat)"
       
   147   shows "starfun f whn \<notin> Nats"
       
   148 proof
       
   149   from inj_f have inj_f': "inj (starfun f)"
       
   150     by (transfer inj_on_def Ball_def UNIV_def)
       
   151   assume "starfun f whn \<in> Nats"
       
   152   then obtain N where N: "starfun f whn = hypnat_of_nat N"
       
   153     by (auto simp add: Nats_def)
       
   154   hence "\<exists>n. starfun f n = hypnat_of_nat N" ..
       
   155   hence "\<exists>n. f n = N" by transfer
       
   156   then obtain n where n: "f n = N" ..
       
   157   hence "starfun f (hypnat_of_nat n) = hypnat_of_nat N"
       
   158     by transfer
       
   159   with N have "starfun f whn = starfun f (hypnat_of_nat n)"
       
   160     by simp
       
   161   with inj_f' have "whn = hypnat_of_nat n"
       
   162     by (rule injD)
       
   163   thus "False"
       
   164     by (simp add: whn_neq_hypnat_of_nat)
       
   165 qed
       
   166 
       
   167 lemma range_subset_mem_starsetNat:
       
   168    "range f <= A ==> starfun f whn \<in> *s* A"
       
   169 apply (rule_tac x="whn" in spec)
       
   170 apply (transfer, auto)
       
   171 done
       
   172 
       
   173 (*--------------------------------------------------------------------------------*)
       
   174 (* Gleason Proposition 11-5.5. pg 149, pg 155 (ex. 3) and pg. 360                 *)
       
   175 (* Let E be a nonvoid ordered set with no maximal elements (note: effectively an  *)
       
   176 (* infinite set if we take E = N (Nats)). Then there exists an order-preserving   *)
       
   177 (* injection from N to E. Of course, (as some doofus will undoubtedly point out!  *)
       
   178 (* :-)) can use notion of least element in proof (i.e. no need for choice) if     *)
       
   179 (* dealing with nats as we have well-ordering property                            *)
       
   180 (*--------------------------------------------------------------------------------*)
       
   181 
       
   182 lemma lemmaPow3: "E \<noteq> {} ==> \<exists>x. \<exists>X \<in> (Pow E - {{}}). x: X"
       
   183 by auto
       
   184 
       
   185 lemma choicefun_mem_set: "E \<noteq> {} ==> choicefun E \<in> E"
       
   186 apply (unfold choicefun_def)
       
   187 apply (rule lemmaPow3 [THEN someI2_ex], auto)
       
   188 done
       
   189 declare choicefun_mem_set [simp]
       
   190 
       
   191 lemma injf_max_mem_set: "[| E \<noteq>{}; \<forall>x. \<exists>y \<in> E. x < y |] ==> injf_max n E \<in> E"
       
   192 apply (induct_tac "n", force)
       
   193 apply (simp (no_asm) add: choicefun_def)
       
   194 apply (rule lemmaPow3 [THEN someI2_ex], auto)
       
   195 done
       
   196 
       
   197 lemma injf_max_order_preserving: "\<forall>x. \<exists>y \<in> E. x < y ==> injf_max n E < injf_max (Suc n) E"
       
   198 apply (simp (no_asm) add: choicefun_def)
       
   199 apply (rule lemmaPow3 [THEN someI2_ex], auto)
       
   200 done
       
   201 
       
   202 lemma injf_max_order_preserving2: "\<forall>x. \<exists>y \<in> E. x < y
       
   203       ==> \<forall>n m. m < n --> injf_max m E < injf_max n E"
       
   204 apply (rule allI)
       
   205 apply (induct_tac "n", auto)
       
   206 apply (simp (no_asm) add: choicefun_def)
       
   207 apply (rule lemmaPow3 [THEN someI2_ex])
       
   208 apply (auto simp add: less_Suc_eq)
       
   209 apply (drule_tac x = m in spec)
       
   210 apply (drule subsetD, auto)
       
   211 apply (drule_tac x = "injf_max m E" in order_less_trans, auto)
       
   212 done
       
   213 
       
   214 lemma inj_injf_max: "\<forall>x. \<exists>y \<in> E. x < y ==> inj (%n. injf_max n E)"
       
   215 apply (rule inj_onI)
       
   216 apply (rule ccontr, auto)
       
   217 apply (drule injf_max_order_preserving2)
       
   218 apply (metis linorder_antisym_conv3 order_less_le)
       
   219 done
       
   220 
       
   221 lemma infinite_set_has_order_preserving_inj:
       
   222      "[| (E::('a::{order} set)) \<noteq> {}; \<forall>x. \<exists>y \<in> E. x < y |]
       
   223       ==> \<exists>f. range f <= E & inj (f::nat => 'a) & (\<forall>m. f m < f(Suc m))"
       
   224 apply (rule_tac x = "%n. injf_max n E" in exI, safe)
       
   225 apply (rule injf_max_mem_set)
       
   226 apply (rule_tac [3] inj_injf_max)
       
   227 apply (rule_tac [4] injf_max_order_preserving, auto)
       
   228 done
       
   229 
       
   230 text{*Only need the existence of an injective function from N to A for proof*}
       
   231 
       
   232 lemma hypnat_infinite_has_nonstandard:
       
   233      "~ finite A ==> hypnat_of_nat ` A < ( *s* A)"
       
   234 apply auto
       
   235 apply (subgoal_tac "A \<noteq> {}")
       
   236 prefer 2 apply force
       
   237 apply (drule infinite_set_has_order_preserving_inj)
       
   238 apply (erule not_finite_nat_set_iff2 [THEN iffD1], auto)
       
   239 apply (drule inj_fun_not_hypnat_in_SHNat)
       
   240 apply (drule range_subset_mem_starsetNat)
       
   241 apply (auto simp add: SHNat_eq)
       
   242 done
       
   243 
       
   244 lemma starsetNat_eq_hypnat_of_nat_image_finite: "*s* A =  hypnat_of_nat ` A ==> finite A"
       
   245 apply (rule ccontr)
       
   246 apply (auto dest: hypnat_infinite_has_nonstandard)
       
   247 done
       
   248 
       
   249 lemma finite_starsetNat_iff: "( *s* A = hypnat_of_nat ` A) = (finite A)"
       
   250 by (blast intro!: starsetNat_eq_hypnat_of_nat_image_finite NatStar_hypnat_of_nat)
       
   251 
       
   252 lemma hypnat_infinite_has_nonstandard_iff: "(~ finite A) = (hypnat_of_nat ` A < *s* A)"
       
   253 apply (rule iffI)
       
   254 apply (blast intro!: hypnat_infinite_has_nonstandard)
       
   255 apply (auto simp add: finite_starsetNat_iff [symmetric])
       
   256 done
       
   257 
       
   258 subsection{*Existence of Infinitely Many Primes: a Nonstandard Proof*}
       
   259 
       
   260 lemma lemma_not_dvd_hypnat_one: "~ (\<forall>n \<in> - {0}. hypnat_of_nat n hdvd 1)"
       
   261 apply auto
       
   262 apply (rule_tac x = 2 in bexI)
       
   263 apply (transfer, auto)
       
   264 done
       
   265 declare lemma_not_dvd_hypnat_one [simp]
       
   266 
       
   267 lemma lemma_not_dvd_hypnat_one2: "\<exists>n \<in> - {0}. ~ hypnat_of_nat n hdvd 1"
       
   268 apply (cut_tac lemma_not_dvd_hypnat_one)
       
   269 apply (auto simp del: lemma_not_dvd_hypnat_one)
       
   270 done
       
   271 declare lemma_not_dvd_hypnat_one2 [simp]
       
   272 
       
   273 (* not needed here *)
       
   274 lemma hypnat_gt_zero_gt_one:
       
   275   "!!N. [| 0 < (N::hypnat); N \<noteq> 1 |] ==> 1 < N"
       
   276 by (transfer, simp)
       
   277 
       
   278 lemma hypnat_add_one_gt_one:
       
   279     "!!N. 0 < N ==> 1 < (N::hypnat) + 1"
       
   280 by (transfer, simp)
       
   281 
       
   282 lemma zero_not_prime: "\<not> prime 0"
       
   283 apply safe
       
   284 apply (drule prime_g_zero, auto)
       
   285 done
       
   286 declare zero_not_prime [simp]
       
   287 
       
   288 lemma hypnat_of_nat_zero_not_prime: "hypnat_of_nat 0 \<notin> starprime"
       
   289 by (transfer, simp)
       
   290 declare hypnat_of_nat_zero_not_prime [simp]
       
   291 
       
   292 lemma hypnat_zero_not_prime:
       
   293    "0 \<notin> starprime"
       
   294 by (cut_tac hypnat_of_nat_zero_not_prime, simp)
       
   295 declare hypnat_zero_not_prime [simp]
       
   296 
       
   297 lemma one_not_prime: "\<not> prime 1"
       
   298 apply safe
       
   299 apply (drule prime_g_one, auto)
       
   300 done
       
   301 declare one_not_prime [simp]
       
   302 
       
   303 lemma one_not_prime2: "\<not> prime(Suc 0)"
       
   304 apply safe
       
   305 apply (drule prime_g_one, auto)
       
   306 done
       
   307 declare one_not_prime2 [simp]
       
   308 
       
   309 lemma hypnat_of_nat_one_not_prime: "hypnat_of_nat 1 \<notin> starprime"
       
   310 by (transfer, simp)
       
   311 declare hypnat_of_nat_one_not_prime [simp]
       
   312 
       
   313 lemma hypnat_one_not_prime: "1 \<notin> starprime"
       
   314 by (cut_tac hypnat_of_nat_one_not_prime, simp)
       
   315 declare hypnat_one_not_prime [simp]
       
   316 
       
   317 lemma hdvd_diff: "!!k m n. [| k hdvd m; k hdvd n |] ==> k hdvd (m - n)"
       
   318 by (transfer, rule dvd_diff)
       
   319 
       
   320 lemma dvd_one_eq_one: "x dvd (1::nat) ==> x = 1"
       
   321 by (unfold dvd_def, auto)
       
   322 
       
   323 lemma hdvd_one_eq_one: "!!x. x hdvd 1 ==> x = 1"
       
   324 by (transfer, rule dvd_one_eq_one)
       
   325 
       
   326 theorem not_finite_prime: "~ finite {p. prime p}"
       
   327 apply (rule hypnat_infinite_has_nonstandard_iff [THEN iffD2])
       
   328 apply (cut_tac hypnat_dvd_all_hypnat_of_nat)
       
   329 apply (erule exE)
       
   330 apply (erule conjE)
       
   331 apply (subgoal_tac "1 < N + 1")
       
   332 prefer 2 apply (blast intro: hypnat_add_one_gt_one)
       
   333 apply (drule hyperprime_factor_exists)
       
   334 apply auto
       
   335 apply (subgoal_tac "k \<notin> hypnat_of_nat ` {p. prime p}")
       
   336 apply (force simp add: starprime_def, safe)
       
   337 apply (drule_tac x = x in bspec)
       
   338 apply (rule ccontr, simp)
       
   339 apply (drule hdvd_diff, assumption)
       
   340 apply (auto dest: hdvd_one_eq_one)
       
   341 done
       
   342 
       
   343 end