src/HOL/Tools/Sledgehammer/meson_clausifier.ML
changeset 39720 0b93a954da4f
parent 39561 3857a4a81fa7
child 39721 76a61ca09d5d
equal deleted inserted replaced
39719:b876d7525e72 39720:0b93a954da4f
       
     1 (*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
       
     2     Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
       
     3     Author:     Jasmin Blanchette, TU Muenchen
       
     4 
       
     5 Transformation of axiom rules (elim/intro/etc) into CNF forms.
       
     6 *)
       
     7 
       
     8 signature MESON_CLAUSIFIER =
       
     9 sig
       
    10   val extensionalize_theorem : thm -> thm
       
    11   val introduce_combinators_in_cterm : cterm -> thm
       
    12   val introduce_combinators_in_theorem : thm -> thm
       
    13   val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
       
    14   val cnf_axiom : theory -> thm -> thm list
       
    15   val meson_general_tac : Proof.context -> thm list -> int -> tactic
       
    16   val setup: theory -> theory
       
    17 end;
       
    18 
       
    19 structure Meson_Clausifier : MESON_CLAUSIFIER =
       
    20 struct
       
    21 
       
    22 (**** Transformation of Elimination Rules into First-Order Formulas****)
       
    23 
       
    24 val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
       
    25 val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
       
    26 
       
    27 (* Converts an elim-rule into an equivalent theorem that does not have the
       
    28    predicate variable. Leaves other theorems unchanged. We simply instantiate
       
    29    the conclusion variable to False. (Cf. "transform_elim_term" in
       
    30    "Sledgehammer_Util".) *)
       
    31 fun transform_elim_theorem th =
       
    32   case concl_of th of    (*conclusion variable*)
       
    33        @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
       
    34            Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
       
    35     | v as Var(_, @{typ prop}) =>
       
    36            Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
       
    37     | _ => th
       
    38 
       
    39 
       
    40 (**** SKOLEMIZATION BY INFERENCE (lcp) ****)
       
    41 
       
    42 fun mk_skolem t =
       
    43   let val T = fastype_of t in
       
    44     Const (@{const_name skolem}, T --> T) $ t
       
    45   end
       
    46 
       
    47 fun beta_eta_under_lambdas (Abs (s, T, t')) =
       
    48     Abs (s, T, beta_eta_under_lambdas t')
       
    49   | beta_eta_under_lambdas t = Envir.beta_eta_contract t
       
    50 
       
    51 (*Traverse a theorem, accumulating Skolem function definitions.*)
       
    52 fun assume_skolem_funs th =
       
    53   let
       
    54     fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
       
    55         (*Existential: declare a Skolem function, then insert into body and continue*)
       
    56         let
       
    57           val args = OldTerm.term_frees body
       
    58           (* Forms a lambda-abstraction over the formal parameters *)
       
    59           val rhs =
       
    60             list_abs_free (map dest_Free args,
       
    61                            HOLogic.choice_const T $ beta_eta_under_lambdas body)
       
    62             |> mk_skolem
       
    63           val comb = list_comb (rhs, args)
       
    64         in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
       
    65       | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
       
    66         (*Universal quant: insert a free variable into body and continue*)
       
    67         let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
       
    68         in dec_sko (subst_bound (Free(fname,T), p)) rhss end
       
    69       | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
       
    70       | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
       
    71       | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
       
    72       | dec_sko _ rhss = rhss
       
    73   in  dec_sko (prop_of th) []  end;
       
    74 
       
    75 
       
    76 (**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
       
    77 
       
    78 val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
       
    79 
       
    80 (* Removes the lambdas from an equation of the form "t = (%x. u)".
       
    81    (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
       
    82 fun extensionalize_theorem th =
       
    83   case prop_of th of
       
    84     _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
       
    85          $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
       
    86   | _ => th
       
    87 
       
    88 fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
       
    89   | is_quasi_lambda_free (t1 $ t2) =
       
    90     is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
       
    91   | is_quasi_lambda_free (Abs _) = false
       
    92   | is_quasi_lambda_free _ = true
       
    93 
       
    94 val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
       
    95 val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
       
    96 val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
       
    97 
       
    98 (* FIXME: Requires more use of cterm constructors. *)
       
    99 fun abstract ct =
       
   100   let
       
   101       val thy = theory_of_cterm ct
       
   102       val Abs(x,_,body) = term_of ct
       
   103       val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
       
   104       val cxT = ctyp_of thy xT
       
   105       val cbodyT = ctyp_of thy bodyT
       
   106       fun makeK () =
       
   107         instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
       
   108                      @{thm abs_K}
       
   109   in
       
   110       case body of
       
   111           Const _ => makeK()
       
   112         | Free _ => makeK()
       
   113         | Var _ => makeK()  (*though Var isn't expected*)
       
   114         | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
       
   115         | rator$rand =>
       
   116             if loose_bvar1 (rator,0) then (*C or S*)
       
   117                if loose_bvar1 (rand,0) then (*S*)
       
   118                  let val crator = cterm_of thy (Abs(x,xT,rator))
       
   119                      val crand = cterm_of thy (Abs(x,xT,rand))
       
   120                      val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
       
   121                      val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
       
   122                  in
       
   123                    Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
       
   124                  end
       
   125                else (*C*)
       
   126                  let val crator = cterm_of thy (Abs(x,xT,rator))
       
   127                      val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
       
   128                      val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
       
   129                  in
       
   130                    Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
       
   131                  end
       
   132             else if loose_bvar1 (rand,0) then (*B or eta*)
       
   133                if rand = Bound 0 then Thm.eta_conversion ct
       
   134                else (*B*)
       
   135                  let val crand = cterm_of thy (Abs(x,xT,rand))
       
   136                      val crator = cterm_of thy rator
       
   137                      val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
       
   138                      val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
       
   139                  in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
       
   140             else makeK()
       
   141         | _ => raise Fail "abstract: Bad term"
       
   142   end;
       
   143 
       
   144 (* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
       
   145 fun introduce_combinators_in_cterm ct =
       
   146   if is_quasi_lambda_free (term_of ct) then
       
   147     Thm.reflexive ct
       
   148   else case term_of ct of
       
   149     Abs _ =>
       
   150     let
       
   151       val (cv, cta) = Thm.dest_abs NONE ct
       
   152       val (v, _) = dest_Free (term_of cv)
       
   153       val u_th = introduce_combinators_in_cterm cta
       
   154       val cu = Thm.rhs_of u_th
       
   155       val comb_eq = abstract (Thm.cabs cv cu)
       
   156     in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
       
   157   | _ $ _ =>
       
   158     let val (ct1, ct2) = Thm.dest_comb ct in
       
   159         Thm.combination (introduce_combinators_in_cterm ct1)
       
   160                         (introduce_combinators_in_cterm ct2)
       
   161     end
       
   162 
       
   163 fun introduce_combinators_in_theorem th =
       
   164   if is_quasi_lambda_free (prop_of th) then
       
   165     th
       
   166   else
       
   167     let
       
   168       val th = Drule.eta_contraction_rule th
       
   169       val eqth = introduce_combinators_in_cterm (cprop_of th)
       
   170     in Thm.equal_elim eqth th end
       
   171     handle THM (msg, _, _) =>
       
   172            (warning ("Error in the combinator translation of " ^
       
   173                      Display.string_of_thm_without_context th ^
       
   174                      "\nException message: " ^ msg ^ ".");
       
   175             (* A type variable of sort "{}" will make abstraction fail. *)
       
   176             TrueI)
       
   177 
       
   178 (*cterms are used throughout for efficiency*)
       
   179 val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
       
   180 
       
   181 (*Given an abstraction over n variables, replace the bound variables by free
       
   182   ones. Return the body, along with the list of free variables.*)
       
   183 fun c_variant_abs_multi (ct0, vars) =
       
   184       let val (cv,ct) = Thm.dest_abs NONE ct0
       
   185       in  c_variant_abs_multi (ct, cv::vars)  end
       
   186       handle CTERM _ => (ct0, rev vars);
       
   187 
       
   188 val skolem_def_raw = @{thms skolem_def_raw}
       
   189 
       
   190 (* Given the definition of a Skolem function, return a theorem to replace
       
   191    an existential formula by a use of that function.
       
   192    Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
       
   193 fun skolem_theorem_of_def thy rhs0 =
       
   194   let
       
   195     val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
       
   196     val rhs' = rhs |> Thm.dest_comb |> snd
       
   197     val (ch, frees) = c_variant_abs_multi (rhs', [])
       
   198     val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
       
   199     val T =
       
   200       case hilbert of
       
   201         Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
       
   202       | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
       
   203     val cex = cterm_of thy (HOLogic.exists_const T)
       
   204     val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
       
   205     val conc =
       
   206       Drule.list_comb (rhs, frees)
       
   207       |> Drule.beta_conv cabs |> Thm.capply cTrueprop
       
   208     fun tacf [prem] =
       
   209       rewrite_goals_tac skolem_def_raw
       
   210       THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
       
   211   in
       
   212     Goal.prove_internal [ex_tm] conc tacf
       
   213     |> forall_intr_list frees
       
   214     |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
       
   215     |> Thm.varifyT_global
       
   216   end
       
   217 
       
   218 (* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
       
   219    into NNF. *)
       
   220 fun to_nnf th ctxt0 =
       
   221   let
       
   222     val th1 = th |> transform_elim_theorem |> zero_var_indexes
       
   223     val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
       
   224     val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
       
   225                   |> extensionalize_theorem
       
   226                   |> Meson.make_nnf ctxt
       
   227   in (th3, ctxt) end
       
   228 
       
   229 fun to_definitional_cnf_with_quantifiers thy th =
       
   230   let
       
   231     val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
       
   232     val eqth = eqth RS @{thm eq_reflection}
       
   233     val eqth = eqth RS @{thm TruepropI}
       
   234   in Thm.equal_elim eqth th end
       
   235 
       
   236 (* Convert a theorem to CNF, with Skolem functions as additional premises. *)
       
   237 fun cnf_axiom thy th =
       
   238   let
       
   239     val ctxt0 = Variable.global_thm_context th
       
   240     val (nnf_th, ctxt) = to_nnf th ctxt0
       
   241     fun aux th =
       
   242       Meson.make_cnf (map (skolem_theorem_of_def thy) (assume_skolem_funs th))
       
   243                      th ctxt
       
   244     val (cnf_ths, ctxt) =
       
   245       aux nnf_th
       
   246       |> (fn ([], _) => aux (to_definitional_cnf_with_quantifiers thy nnf_th)
       
   247            | p => p)
       
   248   in
       
   249     cnf_ths |> map introduce_combinators_in_theorem
       
   250             |> Variable.export ctxt ctxt0
       
   251             |> Meson.finish_cnf
       
   252             |> map Thm.close_derivation
       
   253   end
       
   254   handle THM _ => []
       
   255 
       
   256 fun meson_general_tac ctxt ths =
       
   257   let
       
   258     val thy = ProofContext.theory_of ctxt
       
   259     val ctxt0 = Classical.put_claset HOL_cs ctxt
       
   260   in Meson.meson_tac ctxt0 (maps (cnf_axiom thy) ths) end
       
   261 
       
   262 val setup =
       
   263   Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
       
   264     SIMPLE_METHOD' (CHANGED_PROP o meson_general_tac ctxt ths)))
       
   265     "MESON resolution proof procedure";
       
   266 
       
   267 end;