src/HOL/HOLCF/Pcpo.thy
changeset 67312 0d25e02759b7
parent 62175 8ffc4d0e652d
child 68369 6989752bba4b
equal deleted inserted replaced
67311:3869b2400e22 67312:0d25e02759b7
     3 *)
     3 *)
     4 
     4 
     5 section \<open>Classes cpo and pcpo\<close>
     5 section \<open>Classes cpo and pcpo\<close>
     6 
     6 
     7 theory Pcpo
     7 theory Pcpo
     8 imports Porder
     8   imports Porder
     9 begin
     9 begin
    10 
    10 
    11 subsection \<open>Complete partial orders\<close>
    11 subsection \<open>Complete partial orders\<close>
    12 
    12 
    13 text \<open>The class cpo of chain complete partial orders\<close>
    13 text \<open>The class cpo of chain complete partial orders\<close>
    27 text \<open>Properties of the lub\<close>
    27 text \<open>Properties of the lub\<close>
    28 
    28 
    29 lemma is_ub_thelub: "chain S \<Longrightarrow> S x \<sqsubseteq> (\<Squnion>i. S i)"
    29 lemma is_ub_thelub: "chain S \<Longrightarrow> S x \<sqsubseteq> (\<Squnion>i. S i)"
    30   by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1])
    30   by (blast dest: cpo intro: is_lub_lub [THEN is_lub_rangeD1])
    31 
    31 
    32 lemma is_lub_thelub:
    32 lemma is_lub_thelub: "\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
    33   "\<lbrakk>chain S; range S <| x\<rbrakk> \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x"
       
    34   by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2])
    33   by (blast dest: cpo intro: is_lub_lub [THEN is_lubD2])
    35 
    34 
    36 lemma lub_below_iff: "chain S \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x \<longleftrightarrow> (\<forall>i. S i \<sqsubseteq> x)"
    35 lemma lub_below_iff: "chain S \<Longrightarrow> (\<Squnion>i. S i) \<sqsubseteq> x \<longleftrightarrow> (\<forall>i. S i \<sqsubseteq> x)"
    37   by (simp add: is_lub_below_iff [OF cpo_lubI] is_ub_def)
    36   by (simp add: is_lub_below_iff [OF cpo_lubI] is_ub_def)
    38 
    37 
    40   by (simp add: lub_below_iff)
    39   by (simp add: lub_below_iff)
    41 
    40 
    42 lemma below_lub: "\<lbrakk>chain S; x \<sqsubseteq> S i\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. S i)"
    41 lemma below_lub: "\<lbrakk>chain S; x \<sqsubseteq> S i\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. S i)"
    43   by (erule below_trans, erule is_ub_thelub)
    42   by (erule below_trans, erule is_ub_thelub)
    44 
    43 
    45 lemma lub_range_mono:
    44 lemma lub_range_mono: "\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
    46   "\<lbrakk>range X \<subseteq> range Y; chain Y; chain X\<rbrakk>
    45   apply (erule lub_below)
    47     \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
    46   apply (subgoal_tac "\<exists>j. X i = Y j")
    48 apply (erule lub_below)
    47    apply clarsimp
    49 apply (subgoal_tac "\<exists>j. X i = Y j")
    48    apply (erule is_ub_thelub)
    50 apply  clarsimp
    49   apply auto
    51 apply  (erule is_ub_thelub)
    50   done
    52 apply auto
    51 
    53 done
    52 lemma lub_range_shift: "chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)"
    54 
    53   apply (rule below_antisym)
    55 lemma lub_range_shift:
    54    apply (rule lub_range_mono)
    56   "chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)"
    55      apply fast
    57 apply (rule below_antisym)
    56     apply assumption
    58 apply (rule lub_range_mono)
    57    apply (erule chain_shift)
    59 apply    fast
    58   apply (rule lub_below)
    60 apply   assumption
    59    apply assumption
    61 apply (erule chain_shift)
    60   apply (rule_tac i="i" in below_lub)
    62 apply (rule lub_below)
    61    apply (erule chain_shift)
    63 apply assumption
    62   apply (erule chain_mono)
    64 apply (rule_tac i="i" in below_lub)
    63   apply (rule le_add1)
    65 apply (erule chain_shift)
    64   done
    66 apply (erule chain_mono)
    65 
    67 apply (rule le_add1)
    66 lemma maxinch_is_thelub: "chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)"
    68 done
    67   apply (rule iffI)
    69 
    68    apply (fast intro!: lub_eqI lub_finch1)
    70 lemma maxinch_is_thelub:
    69   apply (unfold max_in_chain_def)
    71   "chain Y \<Longrightarrow> max_in_chain i Y = ((\<Squnion>i. Y i) = Y i)"
    70   apply (safe intro!: below_antisym)
    72 apply (rule iffI)
    71    apply (fast elim!: chain_mono)
    73 apply (fast intro!: lub_eqI lub_finch1)
    72   apply (drule sym)
    74 apply (unfold max_in_chain_def)
    73   apply (force elim!: is_ub_thelub)
    75 apply (safe intro!: below_antisym)
    74   done
    76 apply (fast elim!: chain_mono)
       
    77 apply (drule sym)
       
    78 apply (force elim!: is_ub_thelub)
       
    79 done
       
    80 
    75 
    81 text \<open>the \<open>\<sqsubseteq>\<close> relation between two chains is preserved by their lubs\<close>
    76 text \<open>the \<open>\<sqsubseteq>\<close> relation between two chains is preserved by their lubs\<close>
    82 
    77 
    83 lemma lub_mono:
    78 lemma lub_mono: "\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
    84   "\<lbrakk>chain X; chain Y; \<And>i. X i \<sqsubseteq> Y i\<rbrakk> 
    79   by (fast elim: lub_below below_lub)
    85     \<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
       
    86 by (fast elim: lub_below below_lub)
       
    87 
    80 
    88 text \<open>the = relation between two chains is preserved by their lubs\<close>
    81 text \<open>the = relation between two chains is preserved by their lubs\<close>
    89 
    82 
    90 lemma lub_eq:
    83 lemma lub_eq: "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
    91   "(\<And>i. X i = Y i) \<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
       
    92   by simp
    84   by simp
    93 
    85 
    94 lemma ch2ch_lub:
    86 lemma ch2ch_lub:
    95   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
    87   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
    96   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
    88   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
    97   shows "chain (\<lambda>i. \<Squnion>j. Y i j)"
    89   shows "chain (\<lambda>i. \<Squnion>j. Y i j)"
    98 apply (rule chainI)
    90   apply (rule chainI)
    99 apply (rule lub_mono [OF 2 2])
    91   apply (rule lub_mono [OF 2 2])
   100 apply (rule chainE [OF 1])
    92   apply (rule chainE [OF 1])
   101 done
    93   done
   102 
    94 
   103 lemma diag_lub:
    95 lemma diag_lub:
   104   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
    96   assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
   105   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
    97   assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
   106   shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>i. Y i i)"
    98   shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>i. Y i i)"
   107 proof (rule below_antisym)
    99 proof (rule below_antisym)
   108   have 3: "chain (\<lambda>i. Y i i)"
   100   have 3: "chain (\<lambda>i. Y i i)"
   109     apply (rule chainI)
   101     apply (rule chainI)
   110     apply (rule below_trans)
   102     apply (rule below_trans)
   111     apply (rule chainE [OF 1])
   103      apply (rule chainE [OF 1])
   112     apply (rule chainE [OF 2])
   104     apply (rule chainE [OF 2])
   113     done
   105     done
   114   have 4: "chain (\<lambda>i. \<Squnion>j. Y i j)"
   106   have 4: "chain (\<lambda>i. \<Squnion>j. Y i j)"
   115     by (rule ch2ch_lub [OF 1 2])
   107     by (rule ch2ch_lub [OF 1 2])
   116   show "(\<Squnion>i. \<Squnion>j. Y i j) \<sqsubseteq> (\<Squnion>i. Y i i)"
   108   show "(\<Squnion>i. \<Squnion>j. Y i j) \<sqsubseteq> (\<Squnion>i. Y i i)"
   117     apply (rule lub_below [OF 4])
   109     apply (rule lub_below [OF 4])
   118     apply (rule lub_below [OF 2])
   110     apply (rule lub_below [OF 2])
   119     apply (rule below_lub [OF 3])
   111     apply (rule below_lub [OF 3])
   120     apply (rule below_trans)
   112     apply (rule below_trans)
   121     apply (rule chain_mono [OF 1 max.cobounded1])
   113      apply (rule chain_mono [OF 1 max.cobounded1])
   122     apply (rule chain_mono [OF 2 max.cobounded2])
   114     apply (rule chain_mono [OF 2 max.cobounded2])
   123     done
   115     done
   124   show "(\<Squnion>i. Y i i) \<sqsubseteq> (\<Squnion>i. \<Squnion>j. Y i j)"
   116   show "(\<Squnion>i. Y i i) \<sqsubseteq> (\<Squnion>i. \<Squnion>j. Y i j)"
   125     apply (rule lub_mono [OF 3 4])
   117     apply (rule lub_mono [OF 3 4])
   126     apply (rule is_ub_thelub [OF 2])
   118     apply (rule is_ub_thelub [OF 2])
   133   shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>j. \<Squnion>i. Y i j)"
   125   shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>j. \<Squnion>i. Y i j)"
   134   by (simp add: diag_lub 1 2)
   126   by (simp add: diag_lub 1 2)
   135 
   127 
   136 end
   128 end
   137 
   129 
       
   130 
   138 subsection \<open>Pointed cpos\<close>
   131 subsection \<open>Pointed cpos\<close>
   139 
   132 
   140 text \<open>The class pcpo of pointed cpos\<close>
   133 text \<open>The class pcpo of pointed cpos\<close>
   141 
   134 
   142 class pcpo = cpo +
   135 class pcpo = cpo +
   145 
   138 
   146 definition bottom :: "'a"  ("\<bottom>")
   139 definition bottom :: "'a"  ("\<bottom>")
   147   where "bottom = (THE x. \<forall>y. x \<sqsubseteq> y)"
   140   where "bottom = (THE x. \<forall>y. x \<sqsubseteq> y)"
   148 
   141 
   149 lemma minimal [iff]: "\<bottom> \<sqsubseteq> x"
   142 lemma minimal [iff]: "\<bottom> \<sqsubseteq> x"
   150 unfolding bottom_def
   143   unfolding bottom_def
   151 apply (rule the1I2)
   144   apply (rule the1I2)
   152 apply (rule ex_ex1I)
   145    apply (rule ex_ex1I)
   153 apply (rule least)
   146     apply (rule least)
   154 apply (blast intro: below_antisym)
   147    apply (blast intro: below_antisym)
   155 apply simp
   148   apply simp
   156 done
   149   done
   157 
   150 
   158 end
   151 end
   159 
   152 
   160 text \<open>Old "UU" syntax:\<close>
   153 text \<open>Old "UU" syntax:\<close>
   161 
   154 
   162 syntax UU :: logic
   155 syntax UU :: logic
   163 
   156 translations "UU" \<rightharpoonup> "CONST bottom"
   164 translations "UU" => "CONST bottom"
       
   165 
   157 
   166 text \<open>Simproc to rewrite @{term "\<bottom> = x"} to @{term "x = \<bottom>"}.\<close>
   158 text \<open>Simproc to rewrite @{term "\<bottom> = x"} to @{term "x = \<bottom>"}.\<close>
   167 
   159 setup \<open>Reorient_Proc.add (fn Const(\<^const_name>\<open>bottom\<close>, _) => true | _ => false)\<close>
   168 setup \<open>
       
   169   Reorient_Proc.add
       
   170     (fn Const(@{const_name bottom}, _) => true | _ => false)
       
   171 \<close>
       
   172 
       
   173 simproc_setup reorient_bottom ("\<bottom> = x") = Reorient_Proc.proc
   160 simproc_setup reorient_bottom ("\<bottom> = x") = Reorient_Proc.proc
   174 
   161 
   175 text \<open>useful lemmas about @{term \<bottom>}\<close>
   162 text \<open>useful lemmas about @{term \<bottom>}\<close>
   176 
   163 
   177 lemma below_bottom_iff [simp]: "(x \<sqsubseteq> \<bottom>) = (x = \<bottom>)"
   164 lemma below_bottom_iff [simp]: "x \<sqsubseteq> \<bottom> \<longleftrightarrow> x = \<bottom>"
   178 by (simp add: po_eq_conv)
   165   by (simp add: po_eq_conv)
   179 
   166 
   180 lemma eq_bottom_iff: "(x = \<bottom>) = (x \<sqsubseteq> \<bottom>)"
   167 lemma eq_bottom_iff: "x = \<bottom> \<longleftrightarrow> x \<sqsubseteq> \<bottom>"
   181 by simp
   168   by simp
   182 
   169 
   183 lemma bottomI: "x \<sqsubseteq> \<bottom> \<Longrightarrow> x = \<bottom>"
   170 lemma bottomI: "x \<sqsubseteq> \<bottom> \<Longrightarrow> x = \<bottom>"
   184 by (subst eq_bottom_iff)
   171   by (subst eq_bottom_iff)
   185 
   172 
   186 lemma lub_eq_bottom_iff: "chain Y \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom> \<longleftrightarrow> (\<forall>i. Y i = \<bottom>)"
   173 lemma lub_eq_bottom_iff: "chain Y \<Longrightarrow> (\<Squnion>i. Y i) = \<bottom> \<longleftrightarrow> (\<forall>i. Y i = \<bottom>)"
   187 by (simp only: eq_bottom_iff lub_below_iff)
   174   by (simp only: eq_bottom_iff lub_below_iff)
       
   175 
   188 
   176 
   189 subsection \<open>Chain-finite and flat cpos\<close>
   177 subsection \<open>Chain-finite and flat cpos\<close>
   190 
   178 
   191 text \<open>further useful classes for HOLCF domains\<close>
   179 text \<open>further useful classes for HOLCF domains\<close>
   192 
   180 
   193 class chfin = po +
   181 class chfin = po +
   194   assumes chfin: "chain Y \<Longrightarrow> \<exists>n. max_in_chain n Y"
   182   assumes chfin: "chain Y \<Longrightarrow> \<exists>n. max_in_chain n Y"
   195 begin
   183 begin
   196 
   184 
   197 subclass cpo
   185 subclass cpo
   198 apply standard
   186   apply standard
   199 apply (frule chfin)
   187   apply (frule chfin)
   200 apply (blast intro: lub_finch1)
   188   apply (blast intro: lub_finch1)
   201 done
   189   done
   202 
   190 
   203 lemma chfin2finch: "chain Y \<Longrightarrow> finite_chain Y"
   191 lemma chfin2finch: "chain Y \<Longrightarrow> finite_chain Y"
   204   by (simp add: chfin finite_chain_def)
   192   by (simp add: chfin finite_chain_def)
   205 
   193 
   206 end
   194 end
   208 class flat = pcpo +
   196 class flat = pcpo +
   209   assumes ax_flat: "x \<sqsubseteq> y \<Longrightarrow> x = \<bottom> \<or> x = y"
   197   assumes ax_flat: "x \<sqsubseteq> y \<Longrightarrow> x = \<bottom> \<or> x = y"
   210 begin
   198 begin
   211 
   199 
   212 subclass chfin
   200 subclass chfin
   213 apply standard
   201   apply standard
   214 apply (unfold max_in_chain_def)
   202   apply (unfold max_in_chain_def)
   215 apply (case_tac "\<forall>i. Y i = \<bottom>")
   203   apply (case_tac "\<forall>i. Y i = \<bottom>")
   216 apply simp
   204    apply simp
   217 apply simp
   205   apply simp
   218 apply (erule exE)
   206   apply (erule exE)
   219 apply (rule_tac x="i" in exI)
   207   apply (rule_tac x="i" in exI)
   220 apply clarify
   208   apply clarify
   221 apply (blast dest: chain_mono ax_flat)
   209   apply (blast dest: chain_mono ax_flat)
   222 done
   210   done
   223 
   211 
   224 lemma flat_below_iff:
   212 lemma flat_below_iff: "x \<sqsubseteq> y \<longleftrightarrow> x = \<bottom> \<or> x = y"
   225   shows "(x \<sqsubseteq> y) = (x = \<bottom> \<or> x = y)"
       
   226   by (safe dest!: ax_flat)
   213   by (safe dest!: ax_flat)
   227 
   214 
   228 lemma flat_eq: "a \<noteq> \<bottom> \<Longrightarrow> a \<sqsubseteq> b = (a = b)"
   215 lemma flat_eq: "a \<noteq> \<bottom> \<Longrightarrow> a \<sqsubseteq> b = (a = b)"
   229   by (safe dest!: ax_flat)
   216   by (safe dest!: ax_flat)
   230 
   217 
   235 class discrete_cpo = below +
   222 class discrete_cpo = below +
   236   assumes discrete_cpo [simp]: "x \<sqsubseteq> y \<longleftrightarrow> x = y"
   223   assumes discrete_cpo [simp]: "x \<sqsubseteq> y \<longleftrightarrow> x = y"
   237 begin
   224 begin
   238 
   225 
   239 subclass po
   226 subclass po
   240 proof qed simp_all
   227   by standard simp_all
   241 
   228 
   242 text \<open>In a discrete cpo, every chain is constant\<close>
   229 text \<open>In a discrete cpo, every chain is constant\<close>
   243 
   230 
   244 lemma discrete_chain_const:
   231 lemma discrete_chain_const:
   245   assumes S: "chain S"
   232   assumes S: "chain S"
   246   shows "\<exists>x. S = (\<lambda>i. x)"
   233   shows "\<exists>x. S = (\<lambda>i. x)"
   247 proof (intro exI ext)
   234 proof (intro exI ext)
   248   fix i :: nat
   235   fix i :: nat
   249   have "S 0 \<sqsubseteq> S i" using S le0 by (rule chain_mono)
   236   from S le0 have "S 0 \<sqsubseteq> S i" by (rule chain_mono)
   250   hence "S 0 = S i" by simp
   237   then have "S 0 = S i" by simp
   251   thus "S i = S 0" by (rule sym)
   238   then show "S i = S 0" by (rule sym)
   252 qed
   239 qed
   253 
   240 
   254 subclass chfin
   241 subclass chfin
   255 proof
   242 proof
   256   fix S :: "nat \<Rightarrow> 'a"
   243   fix S :: "nat \<Rightarrow> 'a"
   257   assume S: "chain S"
   244   assume S: "chain S"
   258   hence "\<exists>x. S = (\<lambda>i. x)" by (rule discrete_chain_const)
   245   then have "\<exists>x. S = (\<lambda>i. x)"
   259   hence "max_in_chain 0 S"
   246     by (rule discrete_chain_const)
   260     unfolding max_in_chain_def by auto
   247   then have "max_in_chain 0 S"
   261   thus "\<exists>i. max_in_chain i S" ..
   248     by (auto simp: max_in_chain_def)
       
   249   then show "\<exists>i. max_in_chain i S" ..
   262 qed
   250 qed
   263 
   251 
   264 end
   252 end
   265 
   253 
   266 end
   254 end