src/HOL/Analysis/Measure_Space.thy
changeset 63940 0d82c4c94014
parent 63658 7faa9bf9860b
child 63958 02de4a58e210
equal deleted inserted replaced
63939:d4b89572ae71 63940:0d82c4c94014
   547   also have "\<dots> = emeasure M (A 0) - emeasure M (\<Inter>i. A i)"
   547   also have "\<dots> = emeasure M (A 0) - emeasure M (\<Inter>i. A i)"
   548     using A finite * by (simp, subst emeasure_Diff) auto
   548     using A finite * by (simp, subst emeasure_Diff) auto
   549   finally show ?thesis
   549   finally show ?thesis
   550     by (rule ennreal_minus_cancel[rotated 3])
   550     by (rule ennreal_minus_cancel[rotated 3])
   551        (insert finite A, auto intro: INF_lower emeasure_mono)
   551        (insert finite A, auto intro: INF_lower emeasure_mono)
       
   552 qed
       
   553 
       
   554 lemma INF_emeasure_decseq':
       
   555   assumes A: "\<And>i. A i \<in> sets M" and "decseq A"
       
   556   and finite: "\<exists>i. emeasure M (A i) \<noteq> \<infinity>"
       
   557   shows "(INF n. emeasure M (A n)) = emeasure M (\<Inter>i. A i)"
       
   558 proof -
       
   559   from finite obtain i where i: "emeasure M (A i) < \<infinity>"
       
   560     by (auto simp: less_top)
       
   561   have fin: "i \<le> j \<Longrightarrow> emeasure M (A j) < \<infinity>" for j
       
   562     by (rule le_less_trans[OF emeasure_mono i]) (auto intro!: decseqD[OF \<open>decseq A\<close>] A)
       
   563 
       
   564   have "(INF n. emeasure M (A n)) = (INF n. emeasure M (A (n + i)))"
       
   565   proof (rule INF_eq)
       
   566     show "\<exists>j\<in>UNIV. emeasure M (A (j + i)) \<le> emeasure M (A i')" for i'
       
   567       by (intro bexI[of _ i'] emeasure_mono decseqD[OF \<open>decseq A\<close>] A) auto
       
   568   qed auto
       
   569   also have "\<dots> = emeasure M (INF n. (A (n + i)))"
       
   570     using A \<open>decseq A\<close> fin by (intro INF_emeasure_decseq) (auto simp: decseq_def less_top)
       
   571   also have "(INF n. (A (n + i))) = (INF n. A n)"
       
   572     by (meson INF_eq UNIV_I assms(2) decseqD le_add1)
       
   573   finally show ?thesis .
   552 qed
   574 qed
   553 
   575 
   554 lemma emeasure_INT_decseq_subset:
   576 lemma emeasure_INT_decseq_subset:
   555   fixes F :: "nat \<Rightarrow> 'a set"
   577   fixes F :: "nat \<Rightarrow> 'a set"
   556   assumes I: "I \<noteq> {}" and F: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> i \<le> j \<Longrightarrow> F j \<subseteq> F i"
   578   assumes I: "I \<noteq> {}" and F: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> i \<le> j \<Longrightarrow> F j \<subseteq> F i"