src/HOL/Library/FuncSet.thy
changeset 13586 0f339348df0e
child 13593 e39f0751e4bf
equal deleted inserted replaced
13585:db4005b40cc6 13586:0f339348df0e
       
     1 (*  Title:      HOL/Library/FuncSet.thy
       
     2     ID:         $Id$
       
     3     Author:     Florian Kammueller and Lawrence C Paulson
       
     4 *)
       
     5 
       
     6 header {*
       
     7   \title{Pi and Function Sets}
       
     8   \author{Florian Kammueller and Lawrence C Paulson}
       
     9 *}
       
    10 
       
    11 theory FuncSet = Main:
       
    12 
       
    13 constdefs
       
    14   Pi      :: "['a set, 'a => 'b set] => ('a => 'b) set"
       
    15     "Pi A B == {f. \<forall>x. x \<in> A --> f(x) \<in> B(x)}"
       
    16 
       
    17   extensional :: "'a set => ('a => 'b) set"
       
    18     "extensional A == {f. \<forall>x. x~:A --> f(x) = arbitrary}"
       
    19 
       
    20   restrict :: "['a => 'b, 'a set] => ('a => 'b)"
       
    21     "restrict f A == (%x. if x \<in> A then f x else arbitrary)"
       
    22 
       
    23 syntax
       
    24   "@Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
       
    25   funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr "->" 60)
       
    26   "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
       
    27 
       
    28 syntax (xsymbols)
       
    29   "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
       
    30   funcset :: "['a set, 'b set] => ('a => 'b) set"  (infixr "\<rightarrow>" 60) 
       
    31   "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
       
    32 
       
    33 translations
       
    34   "PI x:A. B" => "Pi A (%x. B)"
       
    35   "A -> B"    => "Pi A (_K B)"
       
    36   "%x:A. f"  == "restrict (%x. f) A"
       
    37 
       
    38 constdefs
       
    39   compose :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
       
    40   "compose A g f == \<lambda>x\<in>A. g (f x)"
       
    41 
       
    42 
       
    43 
       
    44 subsection{*Basic Properties of @{term Pi}*}
       
    45 
       
    46 lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"
       
    47 by (simp add: Pi_def)
       
    48 
       
    49 lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"
       
    50 by (simp add: Pi_def)
       
    51 
       
    52 lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"
       
    53 apply (simp add: Pi_def)
       
    54 done
       
    55 
       
    56 lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"
       
    57 by (simp add: Pi_def)
       
    58 
       
    59 lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
       
    60 apply (simp add: Pi_def)
       
    61 apply auto
       
    62 txt{*Converse direction requires Axiom of Choice to exhibit a function
       
    63 picking an element from each non-empty @{term "B x"}*}
       
    64 apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec) 
       
    65 apply (auto );
       
    66 apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex)
       
    67 apply (auto ); 
       
    68 done
       
    69 
       
    70 lemma Pi_empty: "Pi {} B = UNIV"
       
    71 apply (simp add: Pi_def) 
       
    72 done
       
    73 
       
    74 text{*Covariance of Pi-sets in their second argument*}
       
    75 lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"
       
    76 by (simp add: Pi_def, blast)
       
    77 
       
    78 text{*Contravariance of Pi-sets in their first argument*}
       
    79 lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
       
    80 by (simp add: Pi_def, blast)
       
    81 
       
    82 
       
    83 subsection{*Composition With a Restricted Domain: @{term compose}*}
       
    84 
       
    85 lemma funcset_compose: 
       
    86      "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"
       
    87 by (simp add: Pi_def compose_def restrict_def)
       
    88 
       
    89 lemma compose_assoc:
       
    90      "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] 
       
    91       ==> compose A h (compose A g f) = compose A (compose B h g) f"
       
    92 by (simp add: expand_fun_eq Pi_def compose_def restrict_def) 
       
    93 
       
    94 lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
       
    95 apply (simp add: compose_def restrict_def)
       
    96 done
       
    97 
       
    98 lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
       
    99 apply (auto simp add: image_def compose_eq)
       
   100 done
       
   101 
       
   102 lemma inj_on_compose:
       
   103      "[| f ` A = B; inj_on f A; inj_on g B |] ==> inj_on (compose A g f) A"
       
   104 by (auto simp add: inj_on_def compose_eq)
       
   105 
       
   106 
       
   107 subsection{*Bounded Abstraction: @{term restrict}*}
       
   108 
       
   109 lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"
       
   110 by (simp add: Pi_def restrict_def)
       
   111 
       
   112 
       
   113 lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"
       
   114 by (simp add: Pi_def restrict_def)
       
   115 
       
   116 lemma restrict_apply [simp]:
       
   117      "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)"
       
   118 by (simp add: restrict_def)
       
   119 
       
   120 lemma restrict_ext: 
       
   121     "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
       
   122 by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)
       
   123 
       
   124 lemma inj_on_restrict_eq: "inj_on (restrict f A) A = inj_on f A"
       
   125 apply (simp add: inj_on_def restrict_def)
       
   126 done
       
   127 
       
   128 
       
   129 lemma Id_compose:
       
   130      "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
       
   131 by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
       
   132 
       
   133 lemma compose_Id:
       
   134      "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
       
   135 by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
       
   136 
       
   137 
       
   138 subsection{*Extensionality*}
       
   139 
       
   140 lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary"
       
   141 apply (simp add: extensional_def)
       
   142 done
       
   143 
       
   144 lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
       
   145 by (simp add: restrict_def extensional_def)
       
   146 
       
   147 lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
       
   148 by (simp add: compose_def)
       
   149 
       
   150 lemma extensionalityI:
       
   151      "[| f \<in> extensional A; g \<in> extensional A; 
       
   152          !!x. x\<in>A ==> f x = g x |] ==> f = g"
       
   153 by (force simp add: expand_fun_eq extensional_def)
       
   154 
       
   155 lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A"
       
   156 apply (unfold Inv_def)
       
   157 apply (fast intro: restrict_in_funcset someI2)
       
   158 done
       
   159 
       
   160 lemma compose_Inv_id:
       
   161      "[| inj_on f A;  f ` A = B |]  
       
   162       ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"
       
   163 apply (simp add: compose_def)
       
   164 apply (rule restrict_ext)
       
   165 apply auto
       
   166 apply (erule subst)
       
   167 apply (simp add: Inv_f_f)
       
   168 done
       
   169 
       
   170 lemma compose_id_Inv:
       
   171      "f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"
       
   172 apply (simp add: compose_def)
       
   173 apply (rule restrict_ext)
       
   174 apply (simp add: f_Inv_f)
       
   175 done
       
   176 
       
   177 end