src/ZF/Constructible/Wellorderings.thy
changeset 13564 1500a2e48d44
parent 13513 b9e14471629c
child 13611 2edf034c902a
equal deleted inserted replaced
13563:7d6c9817c432 13564:1500a2e48d44
    47 	transitive_rel(M,A,r) & linear_rel(M,A,r) & wellfounded_on(M,A,r)"
    47 	transitive_rel(M,A,r) & linear_rel(M,A,r) & wellfounded_on(M,A,r)"
    48 
    48 
    49 
    49 
    50 subsubsection {*Trivial absoluteness proofs*}
    50 subsubsection {*Trivial absoluteness proofs*}
    51 
    51 
    52 lemma (in M_axioms) irreflexive_abs [simp]: 
    52 lemma (in M_basic) irreflexive_abs [simp]: 
    53      "M(A) ==> irreflexive(M,A,r) <-> irrefl(A,r)"
    53      "M(A) ==> irreflexive(M,A,r) <-> irrefl(A,r)"
    54 by (simp add: irreflexive_def irrefl_def)
    54 by (simp add: irreflexive_def irrefl_def)
    55 
    55 
    56 lemma (in M_axioms) transitive_rel_abs [simp]: 
    56 lemma (in M_basic) transitive_rel_abs [simp]: 
    57      "M(A) ==> transitive_rel(M,A,r) <-> trans[A](r)"
    57      "M(A) ==> transitive_rel(M,A,r) <-> trans[A](r)"
    58 by (simp add: transitive_rel_def trans_on_def)
    58 by (simp add: transitive_rel_def trans_on_def)
    59 
    59 
    60 lemma (in M_axioms) linear_rel_abs [simp]: 
    60 lemma (in M_basic) linear_rel_abs [simp]: 
    61      "M(A) ==> linear_rel(M,A,r) <-> linear(A,r)"
    61      "M(A) ==> linear_rel(M,A,r) <-> linear(A,r)"
    62 by (simp add: linear_rel_def linear_def)
    62 by (simp add: linear_rel_def linear_def)
    63 
    63 
    64 lemma (in M_axioms) wellordered_is_trans_on: 
    64 lemma (in M_basic) wellordered_is_trans_on: 
    65     "[| wellordered(M,A,r); M(A) |] ==> trans[A](r)"
    65     "[| wellordered(M,A,r); M(A) |] ==> trans[A](r)"
    66 by (auto simp add: wellordered_def)
    66 by (auto simp add: wellordered_def)
    67 
    67 
    68 lemma (in M_axioms) wellordered_is_linear: 
    68 lemma (in M_basic) wellordered_is_linear: 
    69     "[| wellordered(M,A,r); M(A) |] ==> linear(A,r)"
    69     "[| wellordered(M,A,r); M(A) |] ==> linear(A,r)"
    70 by (auto simp add: wellordered_def)
    70 by (auto simp add: wellordered_def)
    71 
    71 
    72 lemma (in M_axioms) wellordered_is_wellfounded_on: 
    72 lemma (in M_basic) wellordered_is_wellfounded_on: 
    73     "[| wellordered(M,A,r); M(A) |] ==> wellfounded_on(M,A,r)"
    73     "[| wellordered(M,A,r); M(A) |] ==> wellfounded_on(M,A,r)"
    74 by (auto simp add: wellordered_def)
    74 by (auto simp add: wellordered_def)
    75 
    75 
    76 lemma (in M_axioms) wellfounded_imp_wellfounded_on: 
    76 lemma (in M_basic) wellfounded_imp_wellfounded_on: 
    77     "[| wellfounded(M,r); M(A) |] ==> wellfounded_on(M,A,r)"
    77     "[| wellfounded(M,r); M(A) |] ==> wellfounded_on(M,A,r)"
    78 by (auto simp add: wellfounded_def wellfounded_on_def)
    78 by (auto simp add: wellfounded_def wellfounded_on_def)
    79 
    79 
    80 lemma (in M_axioms) wellfounded_on_subset_A:
    80 lemma (in M_basic) wellfounded_on_subset_A:
    81      "[| wellfounded_on(M,A,r);  B<=A |] ==> wellfounded_on(M,B,r)"
    81      "[| wellfounded_on(M,A,r);  B<=A |] ==> wellfounded_on(M,B,r)"
    82 by (simp add: wellfounded_on_def, blast)
    82 by (simp add: wellfounded_on_def, blast)
    83 
    83 
    84 
    84 
    85 subsubsection {*Well-founded relations*}
    85 subsubsection {*Well-founded relations*}
    86 
    86 
    87 lemma  (in M_axioms) wellfounded_on_iff_wellfounded:
    87 lemma  (in M_basic) wellfounded_on_iff_wellfounded:
    88      "wellfounded_on(M,A,r) <-> wellfounded(M, r \<inter> A*A)"
    88      "wellfounded_on(M,A,r) <-> wellfounded(M, r \<inter> A*A)"
    89 apply (simp add: wellfounded_on_def wellfounded_def, safe)
    89 apply (simp add: wellfounded_on_def wellfounded_def, safe)
    90  apply blast 
    90  apply blast 
    91 apply (drule_tac x=x in rspec, assumption, blast) 
    91 apply (drule_tac x=x in rspec, assumption, blast) 
    92 done
    92 done
    93 
    93 
    94 lemma (in M_axioms) wellfounded_on_imp_wellfounded:
    94 lemma (in M_basic) wellfounded_on_imp_wellfounded:
    95      "[|wellfounded_on(M,A,r); r \<subseteq> A*A|] ==> wellfounded(M,r)"
    95      "[|wellfounded_on(M,A,r); r \<subseteq> A*A|] ==> wellfounded(M,r)"
    96 by (simp add: wellfounded_on_iff_wellfounded subset_Int_iff)
    96 by (simp add: wellfounded_on_iff_wellfounded subset_Int_iff)
    97 
    97 
    98 lemma (in M_axioms) wellfounded_on_field_imp_wellfounded:
    98 lemma (in M_basic) wellfounded_on_field_imp_wellfounded:
    99      "wellfounded_on(M, field(r), r) ==> wellfounded(M,r)"
    99      "wellfounded_on(M, field(r), r) ==> wellfounded(M,r)"
   100 by (simp add: wellfounded_def wellfounded_on_iff_wellfounded, fast)
   100 by (simp add: wellfounded_def wellfounded_on_iff_wellfounded, fast)
   101 
   101 
   102 lemma (in M_axioms) wellfounded_iff_wellfounded_on_field:
   102 lemma (in M_basic) wellfounded_iff_wellfounded_on_field:
   103      "M(r) ==> wellfounded(M,r) <-> wellfounded_on(M, field(r), r)"
   103      "M(r) ==> wellfounded(M,r) <-> wellfounded_on(M, field(r), r)"
   104 by (blast intro: wellfounded_imp_wellfounded_on
   104 by (blast intro: wellfounded_imp_wellfounded_on
   105                  wellfounded_on_field_imp_wellfounded)
   105                  wellfounded_on_field_imp_wellfounded)
   106 
   106 
   107 (*Consider the least z in domain(r) such that P(z) does not hold...*)
   107 (*Consider the least z in domain(r) such that P(z) does not hold...*)
   108 lemma (in M_axioms) wellfounded_induct: 
   108 lemma (in M_basic) wellfounded_induct: 
   109      "[| wellfounded(M,r); M(a); M(r); separation(M, \<lambda>x. ~P(x));  
   109      "[| wellfounded(M,r); M(a); M(r); separation(M, \<lambda>x. ~P(x));  
   110          \<forall>x. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |]
   110          \<forall>x. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |]
   111       ==> P(a)";
   111       ==> P(a)";
   112 apply (simp (no_asm_use) add: wellfounded_def)
   112 apply (simp (no_asm_use) add: wellfounded_def)
   113 apply (drule_tac x="{z \<in> domain(r). ~P(z)}" in rspec)
   113 apply (drule_tac x="{z \<in> domain(r). ~P(z)}" in rspec)
   114 apply (blast dest: transM)+
   114 apply (blast dest: transM)+
   115 done
   115 done
   116 
   116 
   117 lemma (in M_axioms) wellfounded_on_induct: 
   117 lemma (in M_basic) wellfounded_on_induct: 
   118      "[| a\<in>A;  wellfounded_on(M,A,r);  M(A);  
   118      "[| a\<in>A;  wellfounded_on(M,A,r);  M(A);  
   119        separation(M, \<lambda>x. x\<in>A --> ~P(x));  
   119        separation(M, \<lambda>x. x\<in>A --> ~P(x));  
   120        \<forall>x\<in>A. M(x) & (\<forall>y\<in>A. <y,x> \<in> r --> P(y)) --> P(x) |]
   120        \<forall>x\<in>A. M(x) & (\<forall>y\<in>A. <y,x> \<in> r --> P(y)) --> P(x) |]
   121       ==> P(a)";
   121       ==> P(a)";
   122 apply (simp (no_asm_use) add: wellfounded_on_def)
   122 apply (simp (no_asm_use) add: wellfounded_on_def)
   124 apply (blast intro: transM)+
   124 apply (blast intro: transM)+
   125 done
   125 done
   126 
   126 
   127 text{*The assumption @{term "r \<subseteq> A*A"} justifies strengthening the induction
   127 text{*The assumption @{term "r \<subseteq> A*A"} justifies strengthening the induction
   128       hypothesis by removing the restriction to @{term A}.*}
   128       hypothesis by removing the restriction to @{term A}.*}
   129 lemma (in M_axioms) wellfounded_on_induct2: 
   129 lemma (in M_basic) wellfounded_on_induct2: 
   130      "[| a\<in>A;  wellfounded_on(M,A,r);  M(A);  r \<subseteq> A*A;  
   130      "[| a\<in>A;  wellfounded_on(M,A,r);  M(A);  r \<subseteq> A*A;  
   131        separation(M, \<lambda>x. x\<in>A --> ~P(x));  
   131        separation(M, \<lambda>x. x\<in>A --> ~P(x));  
   132        \<forall>x\<in>A. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |]
   132        \<forall>x\<in>A. M(x) & (\<forall>y. <y,x> \<in> r --> P(y)) --> P(x) |]
   133       ==> P(a)";
   133       ==> P(a)";
   134 by (rule wellfounded_on_induct, assumption+, blast)
   134 by (rule wellfounded_on_induct, assumption+, blast)
   135 
   135 
   136 
   136 
   137 subsubsection {*Kunen's lemma IV 3.14, page 123*}
   137 subsubsection {*Kunen's lemma IV 3.14, page 123*}
   138 
   138 
   139 lemma (in M_axioms) linear_imp_relativized: 
   139 lemma (in M_basic) linear_imp_relativized: 
   140      "linear(A,r) ==> linear_rel(M,A,r)" 
   140      "linear(A,r) ==> linear_rel(M,A,r)" 
   141 by (simp add: linear_def linear_rel_def) 
   141 by (simp add: linear_def linear_rel_def) 
   142 
   142 
   143 lemma (in M_axioms) trans_on_imp_relativized: 
   143 lemma (in M_basic) trans_on_imp_relativized: 
   144      "trans[A](r) ==> transitive_rel(M,A,r)" 
   144      "trans[A](r) ==> transitive_rel(M,A,r)" 
   145 by (unfold transitive_rel_def trans_on_def, blast) 
   145 by (unfold transitive_rel_def trans_on_def, blast) 
   146 
   146 
   147 lemma (in M_axioms) wf_on_imp_relativized: 
   147 lemma (in M_basic) wf_on_imp_relativized: 
   148      "wf[A](r) ==> wellfounded_on(M,A,r)" 
   148      "wf[A](r) ==> wellfounded_on(M,A,r)" 
   149 apply (simp add: wellfounded_on_def wf_def wf_on_def, clarify) 
   149 apply (simp add: wellfounded_on_def wf_def wf_on_def, clarify) 
   150 apply (drule_tac x=x in spec, blast) 
   150 apply (drule_tac x=x in spec, blast) 
   151 done
   151 done
   152 
   152 
   153 lemma (in M_axioms) wf_imp_relativized: 
   153 lemma (in M_basic) wf_imp_relativized: 
   154      "wf(r) ==> wellfounded(M,r)" 
   154      "wf(r) ==> wellfounded(M,r)" 
   155 apply (simp add: wellfounded_def wf_def, clarify) 
   155 apply (simp add: wellfounded_def wf_def, clarify) 
   156 apply (drule_tac x=x in spec, blast) 
   156 apply (drule_tac x=x in spec, blast) 
   157 done
   157 done
   158 
   158 
   159 lemma (in M_axioms) well_ord_imp_relativized: 
   159 lemma (in M_basic) well_ord_imp_relativized: 
   160      "well_ord(A,r) ==> wellordered(M,A,r)" 
   160      "well_ord(A,r) ==> wellordered(M,A,r)" 
   161 by (simp add: wellordered_def well_ord_def tot_ord_def part_ord_def
   161 by (simp add: wellordered_def well_ord_def tot_ord_def part_ord_def
   162        linear_imp_relativized trans_on_imp_relativized wf_on_imp_relativized)
   162        linear_imp_relativized trans_on_imp_relativized wf_on_imp_relativized)
   163 
   163 
   164 
   164 
   165 subsection{* Relativized versions of order-isomorphisms and order types *}
   165 subsection{* Relativized versions of order-isomorphisms and order types *}
   166 
   166 
   167 lemma (in M_axioms) order_isomorphism_abs [simp]: 
   167 lemma (in M_basic) order_isomorphism_abs [simp]: 
   168      "[| M(A); M(B); M(f) |] 
   168      "[| M(A); M(B); M(f) |] 
   169       ==> order_isomorphism(M,A,r,B,s,f) <-> f \<in> ord_iso(A,r,B,s)"
   169       ==> order_isomorphism(M,A,r,B,s,f) <-> f \<in> ord_iso(A,r,B,s)"
   170 by (simp add: apply_closed order_isomorphism_def ord_iso_def)
   170 by (simp add: apply_closed order_isomorphism_def ord_iso_def)
   171 
   171 
   172 lemma (in M_axioms) pred_set_abs [simp]: 
   172 lemma (in M_basic) pred_set_abs [simp]: 
   173      "[| M(r); M(B) |] ==> pred_set(M,A,x,r,B) <-> B = Order.pred(A,x,r)"
   173      "[| M(r); M(B) |] ==> pred_set(M,A,x,r,B) <-> B = Order.pred(A,x,r)"
   174 apply (simp add: pred_set_def Order.pred_def)
   174 apply (simp add: pred_set_def Order.pred_def)
   175 apply (blast dest: transM) 
   175 apply (blast dest: transM) 
   176 done
   176 done
   177 
   177 
   178 lemma (in M_axioms) pred_closed [intro,simp]: 
   178 lemma (in M_basic) pred_closed [intro,simp]: 
   179      "[| M(A); M(r); M(x) |] ==> M(Order.pred(A,x,r))"
   179      "[| M(A); M(r); M(x) |] ==> M(Order.pred(A,x,r))"
   180 apply (simp add: Order.pred_def) 
   180 apply (simp add: Order.pred_def) 
   181 apply (insert pred_separation [of r x], simp) 
   181 apply (insert pred_separation [of r x], simp) 
   182 done
   182 done
   183 
   183 
   184 lemma (in M_axioms) membership_abs [simp]: 
   184 lemma (in M_basic) membership_abs [simp]: 
   185      "[| M(r); M(A) |] ==> membership(M,A,r) <-> r = Memrel(A)"
   185      "[| M(r); M(A) |] ==> membership(M,A,r) <-> r = Memrel(A)"
   186 apply (simp add: membership_def Memrel_def, safe)
   186 apply (simp add: membership_def Memrel_def, safe)
   187   apply (rule equalityI) 
   187   apply (rule equalityI) 
   188    apply clarify 
   188    apply clarify 
   189    apply (frule transM, assumption)
   189    apply (frule transM, assumption)
   192   apply (subgoal_tac "M(<xb,ya>)", blast) 
   192   apply (subgoal_tac "M(<xb,ya>)", blast) 
   193   apply (blast dest: transM) 
   193   apply (blast dest: transM) 
   194  apply auto 
   194  apply auto 
   195 done
   195 done
   196 
   196 
   197 lemma (in M_axioms) M_Memrel_iff:
   197 lemma (in M_basic) M_Memrel_iff:
   198      "M(A) ==> 
   198      "M(A) ==> 
   199       Memrel(A) = {z \<in> A*A. \<exists>x[M]. \<exists>y[M]. z = \<langle>x,y\<rangle> & x \<in> y}"
   199       Memrel(A) = {z \<in> A*A. \<exists>x[M]. \<exists>y[M]. z = \<langle>x,y\<rangle> & x \<in> y}"
   200 apply (simp add: Memrel_def) 
   200 apply (simp add: Memrel_def) 
   201 apply (blast dest: transM)
   201 apply (blast dest: transM)
   202 done 
   202 done 
   203 
   203 
   204 lemma (in M_axioms) Memrel_closed [intro,simp]: 
   204 lemma (in M_basic) Memrel_closed [intro,simp]: 
   205      "M(A) ==> M(Memrel(A))"
   205      "M(A) ==> M(Memrel(A))"
   206 apply (simp add: M_Memrel_iff) 
   206 apply (simp add: M_Memrel_iff) 
   207 apply (insert Memrel_separation, simp)
   207 apply (insert Memrel_separation, simp)
   208 done
   208 done
   209 
   209 
   231 		    wellfounded_on_subset)
   231 		    wellfounded_on_subset)
   232 done
   232 done
   233 
   233 
   234 text{*Inductive argument for Kunen's Lemma 6.1, etc.
   234 text{*Inductive argument for Kunen's Lemma 6.1, etc.
   235       Simple proof from Halmos, page 72*}
   235       Simple proof from Halmos, page 72*}
   236 lemma  (in M_axioms) wellordered_iso_subset_lemma: 
   236 lemma  (in M_basic) wellordered_iso_subset_lemma: 
   237      "[| wellordered(M,A,r);  f \<in> ord_iso(A,r, A',r);  A'<= A;  y \<in> A;  
   237      "[| wellordered(M,A,r);  f \<in> ord_iso(A,r, A',r);  A'<= A;  y \<in> A;  
   238        M(A);  M(f);  M(r) |] ==> ~ <f`y, y> \<in> r"
   238        M(A);  M(f);  M(r) |] ==> ~ <f`y, y> \<in> r"
   239 apply (unfold wellordered_def ord_iso_def)
   239 apply (unfold wellordered_def ord_iso_def)
   240 apply (elim conjE CollectE) 
   240 apply (elim conjE CollectE) 
   241 apply (erule wellfounded_on_induct, assumption+)
   241 apply (erule wellfounded_on_induct, assumption+)
   245 done
   245 done
   246 
   246 
   247 
   247 
   248 text{*Kunen's Lemma 6.1: there's no order-isomorphism to an initial segment
   248 text{*Kunen's Lemma 6.1: there's no order-isomorphism to an initial segment
   249       of a well-ordering*}
   249       of a well-ordering*}
   250 lemma (in M_axioms) wellordered_iso_predD:
   250 lemma (in M_basic) wellordered_iso_predD:
   251      "[| wellordered(M,A,r);  f \<in> ord_iso(A, r, Order.pred(A,x,r), r);  
   251      "[| wellordered(M,A,r);  f \<in> ord_iso(A, r, Order.pred(A,x,r), r);  
   252        M(A);  M(f);  M(r) |] ==> x \<notin> A"
   252        M(A);  M(f);  M(r) |] ==> x \<notin> A"
   253 apply (rule notI) 
   253 apply (rule notI) 
   254 apply (frule wellordered_iso_subset_lemma, assumption)
   254 apply (frule wellordered_iso_subset_lemma, assumption)
   255 apply (auto elim: predE)  
   255 apply (auto elim: predE)  
   258 (*Now we also know f`x  \<in> pred(A,x,r);  contradiction! *)
   258 (*Now we also know f`x  \<in> pred(A,x,r);  contradiction! *)
   259 apply (simp add: Order.pred_def)
   259 apply (simp add: Order.pred_def)
   260 done
   260 done
   261 
   261 
   262 
   262 
   263 lemma (in M_axioms) wellordered_iso_pred_eq_lemma:
   263 lemma (in M_basic) wellordered_iso_pred_eq_lemma:
   264      "[| f \<in> \<langle>Order.pred(A,y,r), r\<rangle> \<cong> \<langle>Order.pred(A,x,r), r\<rangle>;
   264      "[| f \<in> \<langle>Order.pred(A,y,r), r\<rangle> \<cong> \<langle>Order.pred(A,x,r), r\<rangle>;
   265        wellordered(M,A,r); x\<in>A; y\<in>A; M(A); M(f); M(r) |] ==> <x,y> \<notin> r"
   265        wellordered(M,A,r); x\<in>A; y\<in>A; M(A); M(f); M(r) |] ==> <x,y> \<notin> r"
   266 apply (frule wellordered_is_trans_on, assumption)
   266 apply (frule wellordered_is_trans_on, assumption)
   267 apply (rule notI) 
   267 apply (rule notI) 
   268 apply (drule_tac x2=y and x=x and r2=r in 
   268 apply (drule_tac x2=y and x=x and r2=r in 
   271 apply (blast intro: predI dest: transM)+
   271 apply (blast intro: predI dest: transM)+
   272 done
   272 done
   273 
   273 
   274 
   274 
   275 text{*Simple consequence of Lemma 6.1*}
   275 text{*Simple consequence of Lemma 6.1*}
   276 lemma (in M_axioms) wellordered_iso_pred_eq:
   276 lemma (in M_basic) wellordered_iso_pred_eq:
   277      "[| wellordered(M,A,r);
   277      "[| wellordered(M,A,r);
   278        f \<in> ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r);   
   278        f \<in> ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r);   
   279        M(A);  M(f);  M(r);  a\<in>A;  c\<in>A |] ==> a=c"
   279        M(A);  M(f);  M(r);  a\<in>A;  c\<in>A |] ==> a=c"
   280 apply (frule wellordered_is_trans_on, assumption)
   280 apply (frule wellordered_is_trans_on, assumption)
   281 apply (frule wellordered_is_linear, assumption)
   281 apply (frule wellordered_is_linear, assumption)
   283 apply (drule ord_iso_sym)
   283 apply (drule ord_iso_sym)
   284 (*two symmetric cases*)
   284 (*two symmetric cases*)
   285 apply (blast dest: wellordered_iso_pred_eq_lemma)+ 
   285 apply (blast dest: wellordered_iso_pred_eq_lemma)+ 
   286 done
   286 done
   287 
   287 
   288 lemma (in M_axioms) wellfounded_on_asym:
   288 lemma (in M_basic) wellfounded_on_asym:
   289      "[| wellfounded_on(M,A,r);  <a,x>\<in>r;  a\<in>A; x\<in>A;  M(A) |] ==> <x,a>\<notin>r"
   289      "[| wellfounded_on(M,A,r);  <a,x>\<in>r;  a\<in>A; x\<in>A;  M(A) |] ==> <x,a>\<notin>r"
   290 apply (simp add: wellfounded_on_def) 
   290 apply (simp add: wellfounded_on_def) 
   291 apply (drule_tac x="{x,a}" in rspec) 
   291 apply (drule_tac x="{x,a}" in rspec) 
   292 apply (blast dest: transM)+
   292 apply (blast dest: transM)+
   293 done
   293 done
   294 
   294 
   295 lemma (in M_axioms) wellordered_asym:
   295 lemma (in M_basic) wellordered_asym:
   296      "[| wellordered(M,A,r);  <a,x>\<in>r;  a\<in>A; x\<in>A;  M(A) |] ==> <x,a>\<notin>r"
   296      "[| wellordered(M,A,r);  <a,x>\<in>r;  a\<in>A; x\<in>A;  M(A) |] ==> <x,a>\<notin>r"
   297 by (simp add: wellordered_def, blast dest: wellfounded_on_asym)
   297 by (simp add: wellordered_def, blast dest: wellfounded_on_asym)
   298 
   298 
   299 
   299 
   300 text{*Surely a shorter proof using lemmas in @{text Order}?
   300 text{*Surely a shorter proof using lemmas in @{text Order}?
   301      Like @{text well_ord_iso_preserving}?*}
   301      Like @{text well_ord_iso_preserving}?*}
   302 lemma (in M_axioms) ord_iso_pred_imp_lt:
   302 lemma (in M_basic) ord_iso_pred_imp_lt:
   303      "[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
   303      "[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i));
   304        g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
   304        g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j));
   305        wellordered(M,A,r);  x \<in> A;  y \<in> A; M(A); M(r); M(f); M(g); M(j);
   305        wellordered(M,A,r);  x \<in> A;  y \<in> A; M(A); M(r); M(f); M(g); M(j);
   306        Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |]
   306        Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |]
   307       ==> i < j"
   307       ==> i < j"
   370   otype :: "[i=>o,i,i,i] => o"  --{*the order types themselves*}
   370   otype :: "[i=>o,i,i,i] => o"  --{*the order types themselves*}
   371    "otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)"
   371    "otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)"
   372 
   372 
   373 
   373 
   374 
   374 
   375 lemma (in M_axioms) obase_iff:
   375 lemma (in M_basic) obase_iff:
   376      "[| M(A); M(r); M(z) |] 
   376      "[| M(A); M(r); M(z) |] 
   377       ==> obase(M,A,r,z) <-> 
   377       ==> obase(M,A,r,z) <-> 
   378           z = {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) & 
   378           z = {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) & 
   379                           g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
   379                           g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}"
   380 apply (simp add: obase_def Memrel_closed pred_closed)
   380 apply (simp add: obase_def Memrel_closed pred_closed)
   385 apply (clarify, frule transM, assumption, force)
   385 apply (clarify, frule transM, assumption, force)
   386 done
   386 done
   387 
   387 
   388 text{*Can also be proved with the premise @{term "M(z)"} instead of
   388 text{*Can also be proved with the premise @{term "M(z)"} instead of
   389       @{term "M(f)"}, but that version is less useful.*}
   389       @{term "M(f)"}, but that version is less useful.*}
   390 lemma (in M_axioms) omap_iff:
   390 lemma (in M_basic) omap_iff:
   391      "[| omap(M,A,r,f); M(A); M(r); M(f) |] 
   391      "[| omap(M,A,r,f); M(A); M(r); M(f) |] 
   392       ==> z \<in> f <->
   392       ==> z \<in> f <->
   393       (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & 
   393       (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & 
   394                         g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
   394                         g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))"
   395 apply (rotate_tac 1) 
   395 apply (rotate_tac 1) 
   398  apply (drule_tac [2] x=z in rspec)
   398  apply (drule_tac [2] x=z in rspec)
   399  apply (drule_tac x=z in rspec)
   399  apply (drule_tac x=z in rspec)
   400  apply (blast dest: transM)+
   400  apply (blast dest: transM)+
   401 done
   401 done
   402 
   402 
   403 lemma (in M_axioms) omap_unique:
   403 lemma (in M_basic) omap_unique:
   404      "[| omap(M,A,r,f); omap(M,A,r,f'); M(A); M(r); M(f); M(f') |] ==> f' = f" 
   404      "[| omap(M,A,r,f); omap(M,A,r,f'); M(A); M(r); M(f); M(f') |] ==> f' = f" 
   405 apply (rule equality_iffI) 
   405 apply (rule equality_iffI) 
   406 apply (simp add: omap_iff) 
   406 apply (simp add: omap_iff) 
   407 done
   407 done
   408 
   408 
   409 lemma (in M_axioms) omap_yields_Ord:
   409 lemma (in M_basic) omap_yields_Ord:
   410      "[| omap(M,A,r,f); \<langle>a,x\<rangle> \<in> f; M(a); M(x) |]  ==> Ord(x)"
   410      "[| omap(M,A,r,f); \<langle>a,x\<rangle> \<in> f; M(a); M(x) |]  ==> Ord(x)"
   411 apply (simp add: omap_def, blast) 
   411 apply (simp add: omap_def, blast) 
   412 done
   412 done
   413 
   413 
   414 lemma (in M_axioms) otype_iff:
   414 lemma (in M_basic) otype_iff:
   415      "[| otype(M,A,r,i); M(A); M(r); M(i) |] 
   415      "[| otype(M,A,r,i); M(A); M(r); M(i) |] 
   416       ==> x \<in> i <-> 
   416       ==> x \<in> i <-> 
   417           (M(x) & Ord(x) & 
   417           (M(x) & Ord(x) & 
   418            (\<exists>a\<in>A. \<exists>g[M]. g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))"
   418            (\<exists>a\<in>A. \<exists>g[M]. g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))"
   419 apply (auto simp add: omap_iff otype_def)
   419 apply (auto simp add: omap_iff otype_def)
   421 apply (rule rangeI) 
   421 apply (rule rangeI) 
   422 apply (frule transM, assumption)
   422 apply (frule transM, assumption)
   423 apply (simp add: omap_iff, blast)
   423 apply (simp add: omap_iff, blast)
   424 done
   424 done
   425 
   425 
   426 lemma (in M_axioms) otype_eq_range:
   426 lemma (in M_basic) otype_eq_range:
   427      "[| omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i) |] 
   427      "[| omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i) |] 
   428       ==> i = range(f)"
   428       ==> i = range(f)"
   429 apply (auto simp add: otype_def omap_iff)
   429 apply (auto simp add: otype_def omap_iff)
   430 apply (blast dest: omap_unique) 
   430 apply (blast dest: omap_unique) 
   431 done
   431 done
   432 
   432 
   433 
   433 
   434 lemma (in M_axioms) Ord_otype:
   434 lemma (in M_basic) Ord_otype:
   435      "[| otype(M,A,r,i); trans[A](r); M(A); M(r); M(i) |] ==> Ord(i)"
   435      "[| otype(M,A,r,i); trans[A](r); M(A); M(r); M(i) |] ==> Ord(i)"
   436 apply (rotate_tac 1) 
   436 apply (rotate_tac 1) 
   437 apply (rule OrdI) 
   437 apply (rule OrdI) 
   438 prefer 2 
   438 prefer 2 
   439     apply (simp add: Ord_def otype_def omap_def) 
   439     apply (simp add: Ord_def otype_def omap_def) 
   450  apply (frule_tac a="converse(g) ` y" in ord_iso_restrict_pred, assumption) 
   450  apply (frule_tac a="converse(g) ` y" in ord_iso_restrict_pred, assumption) 
   451 apply (safe elim!: predE) 
   451 apply (safe elim!: predE) 
   452 apply (blast intro: restrict_ord_iso ord_iso_sym ltI dest: transM)
   452 apply (blast intro: restrict_ord_iso ord_iso_sym ltI dest: transM)
   453 done
   453 done
   454 
   454 
   455 lemma (in M_axioms) domain_omap:
   455 lemma (in M_basic) domain_omap:
   456      "[| omap(M,A,r,f);  obase(M,A,r,B); M(A); M(r); M(B); M(f) |] 
   456      "[| omap(M,A,r,f);  obase(M,A,r,B); M(A); M(r); M(B); M(f) |] 
   457       ==> domain(f) = B"
   457       ==> domain(f) = B"
   458 apply (rotate_tac 2) 
   458 apply (rotate_tac 2) 
   459 apply (simp add: domain_closed obase_iff) 
   459 apply (simp add: domain_closed obase_iff) 
   460 apply (rule equality_iffI) 
   460 apply (rule equality_iffI) 
   461 apply (simp add: domain_iff omap_iff, blast) 
   461 apply (simp add: domain_iff omap_iff, blast) 
   462 done
   462 done
   463 
   463 
   464 lemma (in M_axioms) omap_subset: 
   464 lemma (in M_basic) omap_subset: 
   465      "[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   465      "[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   466        M(A); M(r); M(f); M(B); M(i) |] ==> f \<subseteq> B * i"
   466        M(A); M(r); M(f); M(B); M(i) |] ==> f \<subseteq> B * i"
   467 apply (rotate_tac 3, clarify) 
   467 apply (rotate_tac 3, clarify) 
   468 apply (simp add: omap_iff obase_iff) 
   468 apply (simp add: omap_iff obase_iff) 
   469 apply (force simp add: otype_iff) 
   469 apply (force simp add: otype_iff) 
   470 done
   470 done
   471 
   471 
   472 lemma (in M_axioms) omap_funtype: 
   472 lemma (in M_basic) omap_funtype: 
   473      "[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   473      "[| omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   474        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> B -> i"
   474        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> B -> i"
   475 apply (rotate_tac 3) 
   475 apply (rotate_tac 3) 
   476 apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff) 
   476 apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff) 
   477 apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) 
   477 apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) 
   478 done
   478 done
   479 
   479 
   480 
   480 
   481 lemma (in M_axioms) wellordered_omap_bij:
   481 lemma (in M_basic) wellordered_omap_bij:
   482      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   482      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   483        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> bij(B,i)"
   483        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> bij(B,i)"
   484 apply (insert omap_funtype [of A r f B i]) 
   484 apply (insert omap_funtype [of A r f B i]) 
   485 apply (auto simp add: bij_def inj_def) 
   485 apply (auto simp add: bij_def inj_def) 
   486 prefer 2  apply (blast intro: fun_is_surj dest: otype_eq_range) 
   486 prefer 2  apply (blast intro: fun_is_surj dest: otype_eq_range) 
   490 apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans) 
   490 apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans) 
   491 done
   491 done
   492 
   492 
   493 
   493 
   494 text{*This is not the final result: we must show @{term "oB(A,r) = A"}*}
   494 text{*This is not the final result: we must show @{term "oB(A,r) = A"}*}
   495 lemma (in M_axioms) omap_ord_iso:
   495 lemma (in M_basic) omap_ord_iso:
   496      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   496      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   497        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(B,r,i,Memrel(i))"
   497        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(B,r,i,Memrel(i))"
   498 apply (rule ord_isoI)
   498 apply (rule ord_isoI)
   499  apply (erule wellordered_omap_bij, assumption+) 
   499  apply (erule wellordered_omap_bij, assumption+) 
   500 apply (insert omap_funtype [of A r f B i], simp) 
   500 apply (insert omap_funtype [of A r f B i], simp) 
   511 apply (blast elim: mem_irrefl) 
   511 apply (blast elim: mem_irrefl) 
   512 txt{*the case @{term "\<langle>y,x\<rangle> \<in> r"}: handle like the opposite direction*}
   512 txt{*the case @{term "\<langle>y,x\<rangle> \<in> r"}: handle like the opposite direction*}
   513 apply (blast dest: ord_iso_pred_imp_lt ltD elim: mem_asym) 
   513 apply (blast dest: ord_iso_pred_imp_lt ltD elim: mem_asym) 
   514 done
   514 done
   515 
   515 
   516 lemma (in M_axioms) Ord_omap_image_pred:
   516 lemma (in M_basic) Ord_omap_image_pred:
   517      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   517      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   518        M(A); M(r); M(f); M(B); M(i); b \<in> A |] ==> Ord(f `` Order.pred(A,b,r))"
   518        M(A); M(r); M(f); M(B); M(i); b \<in> A |] ==> Ord(f `` Order.pred(A,b,r))"
   519 apply (frule wellordered_is_trans_on, assumption)
   519 apply (frule wellordered_is_trans_on, assumption)
   520 apply (rule OrdI) 
   520 apply (rule OrdI) 
   521 	prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast) 
   521 	prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast) 
   537  apply (erule_tac b=c in trans_onD) 
   537  apply (erule_tac b=c in trans_onD) 
   538  apply (rule ord_iso_converse1 [OF omap_ord_iso [of A r f B i]])
   538  apply (rule ord_iso_converse1 [OF omap_ord_iso [of A r f B i]])
   539 apply (auto simp add: obase_iff)
   539 apply (auto simp add: obase_iff)
   540 done
   540 done
   541 
   541 
   542 lemma (in M_axioms) restrict_omap_ord_iso:
   542 lemma (in M_basic) restrict_omap_ord_iso:
   543      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   543      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i); 
   544        D \<subseteq> B; M(A); M(r); M(f); M(B); M(i) |] 
   544        D \<subseteq> B; M(A); M(r); M(f); M(B); M(i) |] 
   545       ==> restrict(f,D) \<in> (\<langle>D,r\<rangle> \<cong> \<langle>f``D, Memrel(f``D)\<rangle>)"
   545       ==> restrict(f,D) \<in> (\<langle>D,r\<rangle> \<cong> \<langle>f``D, Memrel(f``D)\<rangle>)"
   546 apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f B i]], 
   546 apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f B i]], 
   547        assumption+)
   547        assumption+)
   548 apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel]) 
   548 apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel]) 
   549 apply (blast dest: subsetD [OF omap_subset]) 
   549 apply (blast dest: subsetD [OF omap_subset]) 
   550 apply (drule ord_iso_sym, simp) 
   550 apply (drule ord_iso_sym, simp) 
   551 done
   551 done
   552 
   552 
   553 lemma (in M_axioms) obase_equals: 
   553 lemma (in M_basic) obase_equals: 
   554      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i);
   554      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i);
   555        M(A); M(r); M(f); M(B); M(i) |] ==> B = A"
   555        M(A); M(r); M(f); M(B); M(i) |] ==> B = A"
   556 apply (rotate_tac 4)
   556 apply (rotate_tac 4)
   557 apply (rule equalityI, force simp add: obase_iff, clarify) 
   557 apply (rule equalityI, force simp add: obase_iff, clarify) 
   558 apply (subst obase_iff [of A r B, THEN iffD1], assumption+, simp) 
   558 apply (subst obase_iff [of A r B, THEN iffD1], assumption+, simp) 
   568 
   568 
   569 
   569 
   570 
   570 
   571 text{*Main result: @{term om} gives the order-isomorphism 
   571 text{*Main result: @{term om} gives the order-isomorphism 
   572       @{term "\<langle>A,r\<rangle> \<cong> \<langle>i, Memrel(i)\<rangle>"} *}
   572       @{term "\<langle>A,r\<rangle> \<cong> \<langle>i, Memrel(i)\<rangle>"} *}
   573 theorem (in M_axioms) omap_ord_iso_otype:
   573 theorem (in M_basic) omap_ord_iso_otype:
   574      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i);
   574      "[| wellordered(M,A,r); omap(M,A,r,f); obase(M,A,r,B); otype(M,A,r,i);
   575        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(A, r, i, Memrel(i))"
   575        M(A); M(r); M(f); M(B); M(i) |] ==> f \<in> ord_iso(A, r, i, Memrel(i))"
   576 apply (frule omap_ord_iso, assumption+) 
   576 apply (frule omap_ord_iso, assumption+) 
   577 apply (frule obase_equals, assumption+, blast) 
   577 apply (frule obase_equals, assumption+, blast) 
   578 done 
   578 done 
   579 
   579 
   580 lemma (in M_axioms) obase_exists:
   580 lemma (in M_basic) obase_exists:
   581      "[| M(A); M(r) |] ==> \<exists>z[M]. obase(M,A,r,z)"
   581      "[| M(A); M(r) |] ==> \<exists>z[M]. obase(M,A,r,z)"
   582 apply (simp add: obase_def) 
   582 apply (simp add: obase_def) 
   583 apply (insert obase_separation [of A r])
   583 apply (insert obase_separation [of A r])
   584 apply (simp add: separation_def)  
   584 apply (simp add: separation_def)  
   585 done
   585 done
   586 
   586 
   587 lemma (in M_axioms) omap_exists:
   587 lemma (in M_basic) omap_exists:
   588      "[| M(A); M(r) |] ==> \<exists>z[M]. omap(M,A,r,z)"
   588      "[| M(A); M(r) |] ==> \<exists>z[M]. omap(M,A,r,z)"
   589 apply (insert obase_exists [of A r]) 
   589 apply (insert obase_exists [of A r]) 
   590 apply (simp add: omap_def) 
   590 apply (simp add: omap_def) 
   591 apply (insert omap_replacement [of A r])
   591 apply (insert omap_replacement [of A r])
   592 apply (simp add: strong_replacement_def, clarify) 
   592 apply (simp add: strong_replacement_def, clarify) 
   599 apply (simp add: Memrel_closed pred_closed obase_iff, blast, assumption)
   599 apply (simp add: Memrel_closed pred_closed obase_iff, blast, assumption)
   600 done
   600 done
   601 
   601 
   602 declare rall_simps [simp] rex_simps [simp]
   602 declare rall_simps [simp] rex_simps [simp]
   603 
   603 
   604 lemma (in M_axioms) otype_exists:
   604 lemma (in M_basic) otype_exists:
   605      "[| wellordered(M,A,r); M(A); M(r) |] ==> \<exists>i[M]. otype(M,A,r,i)"
   605      "[| wellordered(M,A,r); M(A); M(r) |] ==> \<exists>i[M]. otype(M,A,r,i)"
   606 apply (insert omap_exists [of A r])  
   606 apply (insert omap_exists [of A r])  
   607 apply (simp add: otype_def, safe)
   607 apply (simp add: otype_def, safe)
   608 apply (rule_tac x="range(x)" in rexI) 
   608 apply (rule_tac x="range(x)" in rexI) 
   609 apply blast+
   609 apply blast+
   610 done
   610 done
   611 
   611 
   612 theorem (in M_axioms) omap_ord_iso_otype':
   612 theorem (in M_basic) omap_ord_iso_otype':
   613      "[| wellordered(M,A,r); M(A); M(r) |]
   613      "[| wellordered(M,A,r); M(A); M(r) |]
   614       ==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))"
   614       ==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))"
   615 apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
   615 apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
   616 apply (rename_tac i) 
   616 apply (rename_tac i) 
   617 apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype) 
   617 apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype) 
   618 apply (rule Ord_otype) 
   618 apply (rule Ord_otype) 
   619     apply (force simp add: otype_def range_closed) 
   619     apply (force simp add: otype_def range_closed) 
   620    apply (simp_all add: wellordered_is_trans_on) 
   620    apply (simp_all add: wellordered_is_trans_on) 
   621 done
   621 done
   622 
   622 
   623 lemma (in M_axioms) ordertype_exists:
   623 lemma (in M_basic) ordertype_exists:
   624      "[| wellordered(M,A,r); M(A); M(r) |]
   624      "[| wellordered(M,A,r); M(A); M(r) |]
   625       ==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))"
   625       ==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))"
   626 apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
   626 apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify)
   627 apply (rename_tac i) 
   627 apply (rename_tac i) 
   628 apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype')
   628 apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype')
   630     apply (force simp add: otype_def range_closed) 
   630     apply (force simp add: otype_def range_closed) 
   631    apply (simp_all add: wellordered_is_trans_on) 
   631    apply (simp_all add: wellordered_is_trans_on) 
   632 done
   632 done
   633 
   633 
   634 
   634 
   635 lemma (in M_axioms) relativized_imp_well_ord: 
   635 lemma (in M_basic) relativized_imp_well_ord: 
   636      "[| wellordered(M,A,r); M(A); M(r) |] ==> well_ord(A,r)" 
   636      "[| wellordered(M,A,r); M(A); M(r) |] ==> well_ord(A,r)" 
   637 apply (insert ordertype_exists [of A r], simp)
   637 apply (insert ordertype_exists [of A r], simp)
   638 apply (blast intro: well_ord_ord_iso well_ord_Memrel)  
   638 apply (blast intro: well_ord_ord_iso well_ord_Memrel)  
   639 done
   639 done
   640 
   640 
   641 subsection {*Kunen's theorem 5.4, poage 127*}
   641 subsection {*Kunen's theorem 5.4, poage 127*}
   642 
   642 
   643 text{*(a) The notion of Wellordering is absolute*}
   643 text{*(a) The notion of Wellordering is absolute*}
   644 theorem (in M_axioms) well_ord_abs [simp]: 
   644 theorem (in M_basic) well_ord_abs [simp]: 
   645      "[| M(A); M(r) |] ==> wellordered(M,A,r) <-> well_ord(A,r)" 
   645      "[| M(A); M(r) |] ==> wellordered(M,A,r) <-> well_ord(A,r)" 
   646 by (blast intro: well_ord_imp_relativized relativized_imp_well_ord)  
   646 by (blast intro: well_ord_imp_relativized relativized_imp_well_ord)  
   647 
   647 
   648 
   648 
   649 text{*(b) Order types are absolute*}
   649 text{*(b) Order types are absolute*}
   650 lemma (in M_axioms) 
   650 lemma (in M_basic) 
   651      "[| wellordered(M,A,r); f \<in> ord_iso(A, r, i, Memrel(i));
   651      "[| wellordered(M,A,r); f \<in> ord_iso(A, r, i, Memrel(i));
   652        M(A); M(r); M(f); M(i); Ord(i) |] ==> i = ordertype(A,r)"
   652        M(A); M(r); M(f); M(i); Ord(i) |] ==> i = ordertype(A,r)"
   653 by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso
   653 by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso
   654                  Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
   654                  Ord_iso_implies_eq ord_iso_sym ord_iso_trans)
   655 
   655