src/HOL/Library/Power_By_Squaring.thy
changeset 69790 154cf64e403e
equal deleted inserted replaced
69789:2c3e5e58d93f 69790:154cf64e403e
       
     1 (*
       
     2   File:     Power_By_Squaring.thy
       
     3   Author:   Manuel Eberl, TU München
       
     4   
       
     5   Fast computing of funpow (applying some functon n times) for weakly associative binary
       
     6   functions using exponentiation by squaring. Yields efficient exponentiation algorithms on
       
     7   monoid_mult and for modular exponentiation "b ^ e mod m" (and thus also for "cong")
       
     8 *)
       
     9 section \<open>Exponentiation by Squaring\<close>
       
    10 theory Power_By_Squaring
       
    11   imports Main
       
    12 begin
       
    13 
       
    14 context
       
    15   fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
       
    16 begin
       
    17 
       
    18 function efficient_funpow :: "'a \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a" where
       
    19   "efficient_funpow y x 0 = y"
       
    20 | "efficient_funpow y x (Suc 0) = f x y"
       
    21 | "n \<noteq> 0 \<Longrightarrow> even n \<Longrightarrow> efficient_funpow y x n = efficient_funpow y (f x x) (n div 2)"
       
    22 | "n \<noteq> 1 \<Longrightarrow> odd n \<Longrightarrow> efficient_funpow y x n = efficient_funpow (f x y) (f x x) (n div 2)"
       
    23   by force+
       
    24 termination by (relation "measure (snd \<circ> snd)") (auto elim: oddE)
       
    25 
       
    26 lemma efficient_funpow_code [code]:
       
    27   "efficient_funpow y x n =
       
    28      (if n = 0 then y
       
    29       else if n = 1 then f x y
       
    30       else if even n then efficient_funpow y (f x x) (n div 2)
       
    31       else efficient_funpow (f x y) (f x x) (n div 2))"
       
    32   by (induction y x n rule: efficient_funpow.induct) auto
       
    33 
       
    34 end
       
    35 
       
    36 lemma efficient_funpow_correct:
       
    37   assumes f_assoc: "\<And>x z. f x (f x z) = f (f x x) z"
       
    38   shows "efficient_funpow f y x n = (f x ^^ n) y"
       
    39 proof -
       
    40   have [simp]: "f ^^ 2 = (\<lambda>x. f (f x))" for f :: "'a \<Rightarrow> 'a"
       
    41     by (simp add: eval_nat_numeral o_def)
       
    42   show ?thesis
       
    43     by (induction y x n rule: efficient_funpow.induct[of _ f])
       
    44        (auto elim!: evenE oddE simp: funpow_mult [symmetric] funpow_Suc_right f_assoc
       
    45              simp del: funpow.simps(2))
       
    46 qed
       
    47 
       
    48 (*
       
    49   TODO: This could be used as a code_unfold rule or something like that but the
       
    50   implications are not quite clear. Would this be a good default implementation
       
    51   for powers?
       
    52 *)
       
    53 context monoid_mult
       
    54 begin
       
    55 
       
    56 lemma power_by_squaring: "efficient_funpow (*) (1 :: 'a) = (^)"
       
    57 proof (intro ext)
       
    58   fix x :: 'a and n
       
    59   have "efficient_funpow (*) 1 x n = ((*) x ^^ n) 1"
       
    60     by (subst efficient_funpow_correct) (simp_all add: mult.assoc)
       
    61   also have "\<dots> = x ^ n"
       
    62     by (induction n) simp_all
       
    63   finally show "efficient_funpow (*) 1 x n = x ^ n" .
       
    64 qed
       
    65 
       
    66 end
       
    67 
       
    68 end