src/HOL/Real/Rational.thy
changeset 28952 15a4b2cf8c34
parent 28948 1860f016886d
child 28953 48cd567f6940
equal deleted inserted replaced
28948:1860f016886d 28952:15a4b2cf8c34
     1 (*  Title:  HOL/Library/Rational.thy
       
     2     ID:     $Id$
       
     3     Author: Markus Wenzel, TU Muenchen
       
     4 *)
       
     5 
       
     6 header {* Rational numbers *}
       
     7 
       
     8 theory Rational
       
     9 imports "../Nat_Int_Bij" "~~/src/HOL/Library/GCD"
       
    10 uses ("rat_arith.ML")
       
    11 begin
       
    12 
       
    13 subsection {* Rational numbers as quotient *}
       
    14 
       
    15 subsubsection {* Construction of the type of rational numbers *}
       
    16 
       
    17 definition
       
    18   ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
       
    19   "ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
       
    20 
       
    21 lemma ratrel_iff [simp]:
       
    22   "(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
       
    23   by (simp add: ratrel_def)
       
    24 
       
    25 lemma refl_ratrel: "refl {x. snd x \<noteq> 0} ratrel"
       
    26   by (auto simp add: refl_def ratrel_def)
       
    27 
       
    28 lemma sym_ratrel: "sym ratrel"
       
    29   by (simp add: ratrel_def sym_def)
       
    30 
       
    31 lemma trans_ratrel: "trans ratrel"
       
    32 proof (rule transI, unfold split_paired_all)
       
    33   fix a b a' b' a'' b'' :: int
       
    34   assume A: "((a, b), (a', b')) \<in> ratrel"
       
    35   assume B: "((a', b'), (a'', b'')) \<in> ratrel"
       
    36   have "b' * (a * b'') = b'' * (a * b')" by simp
       
    37   also from A have "a * b' = a' * b" by auto
       
    38   also have "b'' * (a' * b) = b * (a' * b'')" by simp
       
    39   also from B have "a' * b'' = a'' * b'" by auto
       
    40   also have "b * (a'' * b') = b' * (a'' * b)" by simp
       
    41   finally have "b' * (a * b'') = b' * (a'' * b)" .
       
    42   moreover from B have "b' \<noteq> 0" by auto
       
    43   ultimately have "a * b'' = a'' * b" by simp
       
    44   with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
       
    45 qed
       
    46   
       
    47 lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
       
    48   by (rule equiv.intro [OF refl_ratrel sym_ratrel trans_ratrel])
       
    49 
       
    50 lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
       
    51 lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
       
    52 
       
    53 lemma equiv_ratrel_iff [iff]: 
       
    54   assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
       
    55   shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
       
    56   by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
       
    57 
       
    58 typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
       
    59 proof
       
    60   have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
       
    61   then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
       
    62 qed
       
    63 
       
    64 lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
       
    65   by (simp add: Rat_def quotientI)
       
    66 
       
    67 declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
       
    68 
       
    69 
       
    70 subsubsection {* Representation and basic operations *}
       
    71 
       
    72 definition
       
    73   Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
       
    74   [code del]: "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
       
    75 
       
    76 code_datatype Fract
       
    77 
       
    78 lemma Rat_cases [case_names Fract, cases type: rat]:
       
    79   assumes "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> C"
       
    80   shows C
       
    81   using assms by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
       
    82 
       
    83 lemma Rat_induct [case_names Fract, induct type: rat]:
       
    84   assumes "\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)"
       
    85   shows "P q"
       
    86   using assms by (cases q) simp
       
    87 
       
    88 lemma eq_rat:
       
    89   shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
       
    90   and "\<And>a. Fract a 0 = Fract 0 1"
       
    91   and "\<And>a c. Fract 0 a = Fract 0 c"
       
    92   by (simp_all add: Fract_def)
       
    93 
       
    94 instantiation rat :: "{comm_ring_1, recpower}"
       
    95 begin
       
    96 
       
    97 definition
       
    98   Zero_rat_def [code, code unfold]: "0 = Fract 0 1"
       
    99 
       
   100 definition
       
   101   One_rat_def [code, code unfold]: "1 = Fract 1 1"
       
   102 
       
   103 definition
       
   104   add_rat_def [code del]:
       
   105   "q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
       
   106     ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
       
   107 
       
   108 lemma add_rat [simp]:
       
   109   assumes "b \<noteq> 0" and "d \<noteq> 0"
       
   110   shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
       
   111 proof -
       
   112   have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
       
   113     respects2 ratrel"
       
   114   by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
       
   115   with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
       
   116 qed
       
   117 
       
   118 definition
       
   119   minus_rat_def [code del]:
       
   120   "- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
       
   121 
       
   122 lemma minus_rat [simp, code]: "- Fract a b = Fract (- a) b"
       
   123 proof -
       
   124   have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
       
   125     by (simp add: congruent_def)
       
   126   then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
       
   127 qed
       
   128 
       
   129 lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
       
   130   by (cases "b = 0") (simp_all add: eq_rat)
       
   131 
       
   132 definition
       
   133   diff_rat_def [code del]: "q - r = q + - (r::rat)"
       
   134 
       
   135 lemma diff_rat [simp]:
       
   136   assumes "b \<noteq> 0" and "d \<noteq> 0"
       
   137   shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
       
   138   using assms by (simp add: diff_rat_def)
       
   139 
       
   140 definition
       
   141   mult_rat_def [code del]:
       
   142   "q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
       
   143     ratrel``{(fst x * fst y, snd x * snd y)})"
       
   144 
       
   145 lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
       
   146 proof -
       
   147   have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
       
   148     by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
       
   149   then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
       
   150 qed
       
   151 
       
   152 lemma mult_rat_cancel:
       
   153   assumes "c \<noteq> 0"
       
   154   shows "Fract (c * a) (c * b) = Fract a b"
       
   155 proof -
       
   156   from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
       
   157   then show ?thesis by (simp add: mult_rat [symmetric])
       
   158 qed
       
   159 
       
   160 primrec power_rat
       
   161 where
       
   162   rat_power_0:     "q ^ 0 = (1\<Colon>rat)"
       
   163   | rat_power_Suc: "q ^ Suc n = (q\<Colon>rat) * (q ^ n)"
       
   164 
       
   165 instance proof
       
   166   fix q r s :: rat show "(q * r) * s = q * (r * s)" 
       
   167     by (cases q, cases r, cases s) (simp add: eq_rat)
       
   168 next
       
   169   fix q r :: rat show "q * r = r * q"
       
   170     by (cases q, cases r) (simp add: eq_rat)
       
   171 next
       
   172   fix q :: rat show "1 * q = q"
       
   173     by (cases q) (simp add: One_rat_def eq_rat)
       
   174 next
       
   175   fix q r s :: rat show "(q + r) + s = q + (r + s)"
       
   176     by (cases q, cases r, cases s) (simp add: eq_rat ring_simps)
       
   177 next
       
   178   fix q r :: rat show "q + r = r + q"
       
   179     by (cases q, cases r) (simp add: eq_rat)
       
   180 next
       
   181   fix q :: rat show "0 + q = q"
       
   182     by (cases q) (simp add: Zero_rat_def eq_rat)
       
   183 next
       
   184   fix q :: rat show "- q + q = 0"
       
   185     by (cases q) (simp add: Zero_rat_def eq_rat)
       
   186 next
       
   187   fix q r :: rat show "q - r = q + - r"
       
   188     by (cases q, cases r) (simp add: eq_rat)
       
   189 next
       
   190   fix q r s :: rat show "(q + r) * s = q * s + r * s"
       
   191     by (cases q, cases r, cases s) (simp add: eq_rat ring_simps)
       
   192 next
       
   193   show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
       
   194 next
       
   195   fix q :: rat show "q * 1 = q"
       
   196     by (cases q) (simp add: One_rat_def eq_rat)
       
   197 next
       
   198   fix q :: rat
       
   199   fix n :: nat
       
   200   show "q ^ 0 = 1" by simp
       
   201   show "q ^ (Suc n) = q * (q ^ n)" by simp
       
   202 qed
       
   203 
       
   204 end
       
   205 
       
   206 lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
       
   207   by (induct k) (simp_all add: Zero_rat_def One_rat_def)
       
   208 
       
   209 lemma of_int_rat: "of_int k = Fract k 1"
       
   210   by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
       
   211 
       
   212 lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
       
   213   by (rule of_nat_rat [symmetric])
       
   214 
       
   215 lemma Fract_of_int_eq: "Fract k 1 = of_int k"
       
   216   by (rule of_int_rat [symmetric])
       
   217 
       
   218 instantiation rat :: number_ring
       
   219 begin
       
   220 
       
   221 definition
       
   222   rat_number_of_def [code del]: "number_of w = Fract w 1"
       
   223 
       
   224 instance by intro_classes (simp add: rat_number_of_def of_int_rat)
       
   225 
       
   226 end
       
   227 
       
   228 lemma rat_number_collapse [code post]:
       
   229   "Fract 0 k = 0"
       
   230   "Fract 1 1 = 1"
       
   231   "Fract (number_of k) 1 = number_of k"
       
   232   "Fract k 0 = 0"
       
   233   by (cases "k = 0")
       
   234     (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
       
   235 
       
   236 lemma rat_number_expand [code unfold]:
       
   237   "0 = Fract 0 1"
       
   238   "1 = Fract 1 1"
       
   239   "number_of k = Fract (number_of k) 1"
       
   240   by (simp_all add: rat_number_collapse)
       
   241 
       
   242 lemma iszero_rat [simp]:
       
   243   "iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
       
   244   by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
       
   245 
       
   246 lemma Rat_cases_nonzero [case_names Fract 0]:
       
   247   assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> C"
       
   248   assumes 0: "q = 0 \<Longrightarrow> C"
       
   249   shows C
       
   250 proof (cases "q = 0")
       
   251   case True then show C using 0 by auto
       
   252 next
       
   253   case False
       
   254   then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
       
   255   moreover with False have "0 \<noteq> Fract a b" by simp
       
   256   with `b \<noteq> 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
       
   257   with Fract `q = Fract a b` `b \<noteq> 0` show C by auto
       
   258 qed
       
   259   
       
   260 
       
   261 
       
   262 subsubsection {* The field of rational numbers *}
       
   263 
       
   264 instantiation rat :: "{field, division_by_zero}"
       
   265 begin
       
   266 
       
   267 definition
       
   268   inverse_rat_def [code del]:
       
   269   "inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
       
   270      ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
       
   271 
       
   272 lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
       
   273 proof -
       
   274   have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
       
   275     by (auto simp add: congruent_def mult_commute)
       
   276   then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
       
   277 qed
       
   278 
       
   279 definition
       
   280   divide_rat_def [code del]: "q / r = q * inverse (r::rat)"
       
   281 
       
   282 lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
       
   283   by (simp add: divide_rat_def)
       
   284 
       
   285 instance proof
       
   286   show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
       
   287     (simp add: rat_number_collapse)
       
   288 next
       
   289   fix q :: rat
       
   290   assume "q \<noteq> 0"
       
   291   then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
       
   292    (simp_all add: mult_rat  inverse_rat rat_number_expand eq_rat)
       
   293 next
       
   294   fix q r :: rat
       
   295   show "q / r = q * inverse r" by (simp add: divide_rat_def)
       
   296 qed
       
   297 
       
   298 end
       
   299 
       
   300 
       
   301 subsubsection {* Various *}
       
   302 
       
   303 lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
       
   304   by (simp add: rat_number_expand)
       
   305 
       
   306 lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
       
   307   by (simp add: Fract_of_int_eq [symmetric])
       
   308 
       
   309 lemma Fract_number_of_quotient [code post]:
       
   310   "Fract (number_of k) (number_of l) = number_of k / number_of l"
       
   311   unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
       
   312 
       
   313 lemma Fract_1_number_of [code post]:
       
   314   "Fract 1 (number_of k) = 1 / number_of k"
       
   315   unfolding Fract_of_int_quotient number_of_eq by simp
       
   316 
       
   317 subsubsection {* The ordered field of rational numbers *}
       
   318 
       
   319 instantiation rat :: linorder
       
   320 begin
       
   321 
       
   322 definition
       
   323   le_rat_def [code del]:
       
   324    "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
       
   325       {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
       
   326 
       
   327 lemma le_rat [simp]:
       
   328   assumes "b \<noteq> 0" and "d \<noteq> 0"
       
   329   shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   330 proof -
       
   331   have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
       
   332     respects2 ratrel"
       
   333   proof (clarsimp simp add: congruent2_def)
       
   334     fix a b a' b' c d c' d'::int
       
   335     assume neq: "b \<noteq> 0"  "b' \<noteq> 0"  "d \<noteq> 0"  "d' \<noteq> 0"
       
   336     assume eq1: "a * b' = a' * b"
       
   337     assume eq2: "c * d' = c' * d"
       
   338 
       
   339     let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
       
   340     {
       
   341       fix a b c d x :: int assume x: "x \<noteq> 0"
       
   342       have "?le a b c d = ?le (a * x) (b * x) c d"
       
   343       proof -
       
   344         from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
       
   345         hence "?le a b c d =
       
   346             ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
       
   347           by (simp add: mult_le_cancel_right)
       
   348         also have "... = ?le (a * x) (b * x) c d"
       
   349           by (simp add: mult_ac)
       
   350         finally show ?thesis .
       
   351       qed
       
   352     } note le_factor = this
       
   353 
       
   354     let ?D = "b * d" and ?D' = "b' * d'"
       
   355     from neq have D: "?D \<noteq> 0" by simp
       
   356     from neq have "?D' \<noteq> 0" by simp
       
   357     hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
       
   358       by (rule le_factor)
       
   359     also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')" 
       
   360       by (simp add: mult_ac)
       
   361     also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
       
   362       by (simp only: eq1 eq2)
       
   363     also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
       
   364       by (simp add: mult_ac)
       
   365     also from D have "... = ?le a' b' c' d'"
       
   366       by (rule le_factor [symmetric])
       
   367     finally show "?le a b c d = ?le a' b' c' d'" .
       
   368   qed
       
   369   with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
       
   370 qed
       
   371 
       
   372 definition
       
   373   less_rat_def [code del]: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
       
   374 
       
   375 lemma less_rat [simp]:
       
   376   assumes "b \<noteq> 0" and "d \<noteq> 0"
       
   377   shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
       
   378   using assms by (simp add: less_rat_def eq_rat order_less_le)
       
   379 
       
   380 instance proof
       
   381   fix q r s :: rat
       
   382   {
       
   383     assume "q \<le> r" and "r \<le> s"
       
   384     show "q \<le> s"
       
   385     proof (insert prems, induct q, induct r, induct s)
       
   386       fix a b c d e f :: int
       
   387       assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
       
   388       assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
       
   389       show "Fract a b \<le> Fract e f"
       
   390       proof -
       
   391         from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
       
   392           by (auto simp add: zero_less_mult_iff linorder_neq_iff)
       
   393         have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
       
   394         proof -
       
   395           from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   396             by simp
       
   397           with ff show ?thesis by (simp add: mult_le_cancel_right)
       
   398         qed
       
   399         also have "... = (c * f) * (d * f) * (b * b)" by algebra
       
   400         also have "... \<le> (e * d) * (d * f) * (b * b)"
       
   401         proof -
       
   402           from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
       
   403             by simp
       
   404           with bb show ?thesis by (simp add: mult_le_cancel_right)
       
   405         qed
       
   406         finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
       
   407           by (simp only: mult_ac)
       
   408         with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
       
   409           by (simp add: mult_le_cancel_right)
       
   410         with neq show ?thesis by simp
       
   411       qed
       
   412     qed
       
   413   next
       
   414     assume "q \<le> r" and "r \<le> q"
       
   415     show "q = r"
       
   416     proof (insert prems, induct q, induct r)
       
   417       fix a b c d :: int
       
   418       assume neq: "b \<noteq> 0"  "d \<noteq> 0"
       
   419       assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
       
   420       show "Fract a b = Fract c d"
       
   421       proof -
       
   422         from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   423           by simp
       
   424         also have "... \<le> (a * d) * (b * d)"
       
   425         proof -
       
   426           from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
       
   427             by simp
       
   428           thus ?thesis by (simp only: mult_ac)
       
   429         qed
       
   430         finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
       
   431         moreover from neq have "b * d \<noteq> 0" by simp
       
   432         ultimately have "a * d = c * b" by simp
       
   433         with neq show ?thesis by (simp add: eq_rat)
       
   434       qed
       
   435     qed
       
   436   next
       
   437     show "q \<le> q"
       
   438       by (induct q) simp
       
   439     show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
       
   440       by (induct q, induct r) (auto simp add: le_less mult_commute)
       
   441     show "q \<le> r \<or> r \<le> q"
       
   442       by (induct q, induct r)
       
   443          (simp add: mult_commute, rule linorder_linear)
       
   444   }
       
   445 qed
       
   446 
       
   447 end
       
   448 
       
   449 instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
       
   450 begin
       
   451 
       
   452 definition
       
   453   abs_rat_def [code del]: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
       
   454 
       
   455 lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
       
   456   by (auto simp add: abs_rat_def zabs_def Zero_rat_def less_rat not_less le_less minus_rat eq_rat zero_compare_simps)
       
   457 
       
   458 definition
       
   459   sgn_rat_def [code del]: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
       
   460 
       
   461 lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
       
   462   unfolding Fract_of_int_eq
       
   463   by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
       
   464     (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
       
   465 
       
   466 definition
       
   467   "(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
       
   468 
       
   469 definition
       
   470   "(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
       
   471 
       
   472 instance by intro_classes
       
   473   (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
       
   474 
       
   475 end
       
   476 
       
   477 instance rat :: ordered_field
       
   478 proof
       
   479   fix q r s :: rat
       
   480   show "q \<le> r ==> s + q \<le> s + r"
       
   481   proof (induct q, induct r, induct s)
       
   482     fix a b c d e f :: int
       
   483     assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
       
   484     assume le: "Fract a b \<le> Fract c d"
       
   485     show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
       
   486     proof -
       
   487       let ?F = "f * f" from neq have F: "0 < ?F"
       
   488         by (auto simp add: zero_less_mult_iff)
       
   489       from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
       
   490         by simp
       
   491       with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
       
   492         by (simp add: mult_le_cancel_right)
       
   493       with neq show ?thesis by (simp add: mult_ac int_distrib)
       
   494     qed
       
   495   qed
       
   496   show "q < r ==> 0 < s ==> s * q < s * r"
       
   497   proof (induct q, induct r, induct s)
       
   498     fix a b c d e f :: int
       
   499     assume neq: "b \<noteq> 0"  "d \<noteq> 0"  "f \<noteq> 0"
       
   500     assume le: "Fract a b < Fract c d"
       
   501     assume gt: "0 < Fract e f"
       
   502     show "Fract e f * Fract a b < Fract e f * Fract c d"
       
   503     proof -
       
   504       let ?E = "e * f" and ?F = "f * f"
       
   505       from neq gt have "0 < ?E"
       
   506         by (auto simp add: Zero_rat_def order_less_le eq_rat)
       
   507       moreover from neq have "0 < ?F"
       
   508         by (auto simp add: zero_less_mult_iff)
       
   509       moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
       
   510         by simp
       
   511       ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
       
   512         by (simp add: mult_less_cancel_right)
       
   513       with neq show ?thesis
       
   514         by (simp add: mult_ac)
       
   515     qed
       
   516   qed
       
   517 qed auto
       
   518 
       
   519 lemma Rat_induct_pos [case_names Fract, induct type: rat]:
       
   520   assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
       
   521   shows "P q"
       
   522 proof (cases q)
       
   523   have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
       
   524   proof -
       
   525     fix a::int and b::int
       
   526     assume b: "b < 0"
       
   527     hence "0 < -b" by simp
       
   528     hence "P (Fract (-a) (-b))" by (rule step)
       
   529     thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
       
   530   qed
       
   531   case (Fract a b)
       
   532   thus "P q" by (force simp add: linorder_neq_iff step step')
       
   533 qed
       
   534 
       
   535 lemma zero_less_Fract_iff:
       
   536   "0 < b ==> (0 < Fract a b) = (0 < a)"
       
   537 by (simp add: Zero_rat_def order_less_imp_not_eq2 zero_less_mult_iff)
       
   538 
       
   539 
       
   540 subsection {* Arithmetic setup *}
       
   541 
       
   542 use "rat_arith.ML"
       
   543 declaration {* K rat_arith_setup *}
       
   544 
       
   545 
       
   546 subsection {* Embedding from Rationals to other Fields *}
       
   547 
       
   548 class field_char_0 = field + ring_char_0
       
   549 
       
   550 subclass (in ordered_field) field_char_0 ..
       
   551 
       
   552 context field_char_0
       
   553 begin
       
   554 
       
   555 definition of_rat :: "rat \<Rightarrow> 'a" where
       
   556   [code del]: "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
       
   557 
       
   558 end
       
   559 
       
   560 lemma of_rat_congruent:
       
   561   "(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
       
   562 apply (rule congruent.intro)
       
   563 apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
       
   564 apply (simp only: of_int_mult [symmetric])
       
   565 done
       
   566 
       
   567 lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
       
   568   unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
       
   569 
       
   570 lemma of_rat_0 [simp]: "of_rat 0 = 0"
       
   571 by (simp add: Zero_rat_def of_rat_rat)
       
   572 
       
   573 lemma of_rat_1 [simp]: "of_rat 1 = 1"
       
   574 by (simp add: One_rat_def of_rat_rat)
       
   575 
       
   576 lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
       
   577 by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
       
   578 
       
   579 lemma of_rat_minus: "of_rat (- a) = - of_rat a"
       
   580 by (induct a, simp add: of_rat_rat)
       
   581 
       
   582 lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
       
   583 by (simp only: diff_minus of_rat_add of_rat_minus)
       
   584 
       
   585 lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
       
   586 apply (induct a, induct b, simp add: of_rat_rat)
       
   587 apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
       
   588 done
       
   589 
       
   590 lemma nonzero_of_rat_inverse:
       
   591   "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
       
   592 apply (rule inverse_unique [symmetric])
       
   593 apply (simp add: of_rat_mult [symmetric])
       
   594 done
       
   595 
       
   596 lemma of_rat_inverse:
       
   597   "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
       
   598    inverse (of_rat a)"
       
   599 by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
       
   600 
       
   601 lemma nonzero_of_rat_divide:
       
   602   "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
       
   603 by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
       
   604 
       
   605 lemma of_rat_divide:
       
   606   "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
       
   607    = of_rat a / of_rat b"
       
   608 by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
       
   609 
       
   610 lemma of_rat_power:
       
   611   "(of_rat (a ^ n)::'a::{field_char_0,recpower}) = of_rat a ^ n"
       
   612 by (induct n) (simp_all add: of_rat_mult power_Suc)
       
   613 
       
   614 lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
       
   615 apply (induct a, induct b)
       
   616 apply (simp add: of_rat_rat eq_rat)
       
   617 apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
       
   618 apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
       
   619 done
       
   620 
       
   621 lemma of_rat_less:
       
   622   "(of_rat r :: 'a::ordered_field) < of_rat s \<longleftrightarrow> r < s"
       
   623 proof (induct r, induct s)
       
   624   fix a b c d :: int
       
   625   assume not_zero: "b > 0" "d > 0"
       
   626   then have "b * d > 0" by (rule mult_pos_pos)
       
   627   have of_int_divide_less_eq:
       
   628     "(of_int a :: 'a) / of_int b < of_int c / of_int d
       
   629       \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
       
   630     using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
       
   631   show "(of_rat (Fract a b) :: 'a::ordered_field) < of_rat (Fract c d)
       
   632     \<longleftrightarrow> Fract a b < Fract c d"
       
   633     using not_zero `b * d > 0`
       
   634     by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
       
   635       (auto intro: mult_strict_right_mono mult_right_less_imp_less)
       
   636 qed
       
   637 
       
   638 lemma of_rat_less_eq:
       
   639   "(of_rat r :: 'a::ordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
       
   640   unfolding le_less by (auto simp add: of_rat_less)
       
   641 
       
   642 lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
       
   643 
       
   644 lemma of_rat_eq_id [simp]: "of_rat = id"
       
   645 proof
       
   646   fix a
       
   647   show "of_rat a = id a"
       
   648   by (induct a)
       
   649      (simp add: of_rat_rat Fract_of_int_eq [symmetric])
       
   650 qed
       
   651 
       
   652 text{*Collapse nested embeddings*}
       
   653 lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
       
   654 by (induct n) (simp_all add: of_rat_add)
       
   655 
       
   656 lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
       
   657 by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
       
   658 
       
   659 lemma of_rat_number_of_eq [simp]:
       
   660   "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
       
   661 by (simp add: number_of_eq)
       
   662 
       
   663 lemmas zero_rat = Zero_rat_def
       
   664 lemmas one_rat = One_rat_def
       
   665 
       
   666 abbreviation
       
   667   rat_of_nat :: "nat \<Rightarrow> rat"
       
   668 where
       
   669   "rat_of_nat \<equiv> of_nat"
       
   670 
       
   671 abbreviation
       
   672   rat_of_int :: "int \<Rightarrow> rat"
       
   673 where
       
   674   "rat_of_int \<equiv> of_int"
       
   675 
       
   676 subsection {* The Set of Rational Numbers *}
       
   677 
       
   678 context field_char_0
       
   679 begin
       
   680 
       
   681 definition
       
   682   Rats  :: "'a set" where
       
   683   [code del]: "Rats = range of_rat"
       
   684 
       
   685 notation (xsymbols)
       
   686   Rats  ("\<rat>")
       
   687 
       
   688 end
       
   689 
       
   690 lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
       
   691 by (simp add: Rats_def)
       
   692 
       
   693 lemma Rats_of_int [simp]: "of_int z \<in> Rats"
       
   694 by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
       
   695 
       
   696 lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
       
   697 by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
       
   698 
       
   699 lemma Rats_number_of [simp]:
       
   700   "(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
       
   701 by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
       
   702 
       
   703 lemma Rats_0 [simp]: "0 \<in> Rats"
       
   704 apply (unfold Rats_def)
       
   705 apply (rule range_eqI)
       
   706 apply (rule of_rat_0 [symmetric])
       
   707 done
       
   708 
       
   709 lemma Rats_1 [simp]: "1 \<in> Rats"
       
   710 apply (unfold Rats_def)
       
   711 apply (rule range_eqI)
       
   712 apply (rule of_rat_1 [symmetric])
       
   713 done
       
   714 
       
   715 lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
       
   716 apply (auto simp add: Rats_def)
       
   717 apply (rule range_eqI)
       
   718 apply (rule of_rat_add [symmetric])
       
   719 done
       
   720 
       
   721 lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
       
   722 apply (auto simp add: Rats_def)
       
   723 apply (rule range_eqI)
       
   724 apply (rule of_rat_minus [symmetric])
       
   725 done
       
   726 
       
   727 lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
       
   728 apply (auto simp add: Rats_def)
       
   729 apply (rule range_eqI)
       
   730 apply (rule of_rat_diff [symmetric])
       
   731 done
       
   732 
       
   733 lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
       
   734 apply (auto simp add: Rats_def)
       
   735 apply (rule range_eqI)
       
   736 apply (rule of_rat_mult [symmetric])
       
   737 done
       
   738 
       
   739 lemma nonzero_Rats_inverse:
       
   740   fixes a :: "'a::field_char_0"
       
   741   shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
       
   742 apply (auto simp add: Rats_def)
       
   743 apply (rule range_eqI)
       
   744 apply (erule nonzero_of_rat_inverse [symmetric])
       
   745 done
       
   746 
       
   747 lemma Rats_inverse [simp]:
       
   748   fixes a :: "'a::{field_char_0,division_by_zero}"
       
   749   shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
       
   750 apply (auto simp add: Rats_def)
       
   751 apply (rule range_eqI)
       
   752 apply (rule of_rat_inverse [symmetric])
       
   753 done
       
   754 
       
   755 lemma nonzero_Rats_divide:
       
   756   fixes a b :: "'a::field_char_0"
       
   757   shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
       
   758 apply (auto simp add: Rats_def)
       
   759 apply (rule range_eqI)
       
   760 apply (erule nonzero_of_rat_divide [symmetric])
       
   761 done
       
   762 
       
   763 lemma Rats_divide [simp]:
       
   764   fixes a b :: "'a::{field_char_0,division_by_zero}"
       
   765   shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
       
   766 apply (auto simp add: Rats_def)
       
   767 apply (rule range_eqI)
       
   768 apply (rule of_rat_divide [symmetric])
       
   769 done
       
   770 
       
   771 lemma Rats_power [simp]:
       
   772   fixes a :: "'a::{field_char_0,recpower}"
       
   773   shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
       
   774 apply (auto simp add: Rats_def)
       
   775 apply (rule range_eqI)
       
   776 apply (rule of_rat_power [symmetric])
       
   777 done
       
   778 
       
   779 lemma Rats_cases [cases set: Rats]:
       
   780   assumes "q \<in> \<rat>"
       
   781   obtains (of_rat) r where "q = of_rat r"
       
   782   unfolding Rats_def
       
   783 proof -
       
   784   from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
       
   785   then obtain r where "q = of_rat r" ..
       
   786   then show thesis ..
       
   787 qed
       
   788 
       
   789 lemma Rats_induct [case_names of_rat, induct set: Rats]:
       
   790   "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
       
   791   by (rule Rats_cases) auto
       
   792 
       
   793 
       
   794 subsection {* The Rationals are Countably Infinite *}
       
   795 
       
   796 definition nat_to_rat_surj :: "nat \<Rightarrow> rat" where
       
   797 "nat_to_rat_surj n = (let (a,b) = nat_to_nat2 n
       
   798                       in Fract (nat_to_int_bij a) (nat_to_int_bij b))"
       
   799 
       
   800 lemma surj_nat_to_rat_surj: "surj nat_to_rat_surj"
       
   801 unfolding surj_def
       
   802 proof
       
   803   fix r::rat
       
   804   show "\<exists>n. r = nat_to_rat_surj n"
       
   805   proof(cases r)
       
   806     fix i j assume [simp]: "r = Fract i j" and "j \<noteq> 0"
       
   807     have "r = (let m = inv nat_to_int_bij i; n = inv nat_to_int_bij j
       
   808                in nat_to_rat_surj(nat2_to_nat (m,n)))"
       
   809       using nat2_to_nat_inj surj_f_inv_f[OF surj_nat_to_int_bij]
       
   810       by(simp add:Let_def nat_to_rat_surj_def nat_to_nat2_def)
       
   811     thus "\<exists>n. r = nat_to_rat_surj n" by(auto simp:Let_def)
       
   812   qed
       
   813 qed
       
   814 
       
   815 lemma Rats_eq_range_nat_to_rat_surj: "\<rat> = range nat_to_rat_surj"
       
   816 by (simp add: Rats_def surj_nat_to_rat_surj surj_range)
       
   817 
       
   818 context field_char_0
       
   819 begin
       
   820 
       
   821 lemma Rats_eq_range_of_rat_o_nat_to_rat_surj:
       
   822   "\<rat> = range (of_rat o nat_to_rat_surj)"
       
   823 using surj_nat_to_rat_surj
       
   824 by (auto simp: Rats_def image_def surj_def)
       
   825    (blast intro: arg_cong[where f = of_rat])
       
   826 
       
   827 lemma surj_of_rat_nat_to_rat_surj:
       
   828   "r\<in>\<rat> \<Longrightarrow> \<exists>n. r = of_rat(nat_to_rat_surj n)"
       
   829 by(simp add: Rats_eq_range_of_rat_o_nat_to_rat_surj image_def)
       
   830 
       
   831 end
       
   832 
       
   833 
       
   834 subsection {* Implementation of rational numbers as pairs of integers *}
       
   835 
       
   836 lemma Fract_norm: "Fract (a div zgcd a b) (b div zgcd a b) = Fract a b"
       
   837 proof (cases "a = 0 \<or> b = 0")
       
   838   case True then show ?thesis by (auto simp add: eq_rat)
       
   839 next
       
   840   let ?c = "zgcd a b"
       
   841   case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
       
   842   then have "?c \<noteq> 0" by simp
       
   843   then have "Fract ?c ?c = Fract 1 1" by (simp add: eq_rat)
       
   844   moreover have "Fract (a div ?c * ?c + a mod ?c) (b div ?c * ?c + b mod ?c) = Fract a b"
       
   845    by (simp add: semiring_div_class.mod_div_equality)
       
   846   moreover have "a mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
       
   847   moreover have "b mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
       
   848   ultimately show ?thesis
       
   849     by (simp add: mult_rat [symmetric])
       
   850 qed
       
   851 
       
   852 definition Fract_norm :: "int \<Rightarrow> int \<Rightarrow> rat" where
       
   853   [simp, code del]: "Fract_norm a b = Fract a b"
       
   854 
       
   855 lemma [code]: "Fract_norm a b = (if a = 0 \<or> b = 0 then 0 else let c = zgcd a b in
       
   856   if b > 0 then Fract (a div c) (b div c) else Fract (- (a div c)) (- (b div c)))"
       
   857   by (simp add: eq_rat Zero_rat_def Let_def Fract_norm)
       
   858 
       
   859 lemma [code]:
       
   860   "of_rat (Fract a b) = (if b \<noteq> 0 then of_int a / of_int b else 0)"
       
   861   by (cases "b = 0") (simp_all add: rat_number_collapse of_rat_rat)
       
   862 
       
   863 instantiation rat :: eq
       
   864 begin
       
   865 
       
   866 definition [code del]: "eq_class.eq (a\<Colon>rat) b \<longleftrightarrow> a - b = 0"
       
   867 
       
   868 instance by default (simp add: eq_rat_def)
       
   869 
       
   870 lemma rat_eq_code [code]:
       
   871   "eq_class.eq (Fract a b) (Fract c d) \<longleftrightarrow> (if b = 0
       
   872        then c = 0 \<or> d = 0
       
   873      else if d = 0
       
   874        then a = 0 \<or> b = 0
       
   875      else a * d =  b * c)"
       
   876   by (auto simp add: eq eq_rat)
       
   877 
       
   878 lemma rat_eq_refl [code nbe]:
       
   879   "eq_class.eq (r::rat) r \<longleftrightarrow> True"
       
   880   by (rule HOL.eq_refl)
       
   881 
       
   882 end
       
   883 
       
   884 lemma le_rat':
       
   885   assumes "b \<noteq> 0"
       
   886     and "d \<noteq> 0"
       
   887   shows "Fract a b \<le> Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
       
   888 proof -
       
   889   have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
       
   890   have "a * d * (b * d) \<le> c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) \<le> c * b * (sgn b * sgn d)"
       
   891   proof (cases "b * d > 0")
       
   892     case True
       
   893     moreover from True have "sgn b * sgn d = 1"
       
   894       by (simp add: sgn_times [symmetric] sgn_1_pos)
       
   895     ultimately show ?thesis by (simp add: mult_le_cancel_right)
       
   896   next
       
   897     case False with assms have "b * d < 0" by (simp add: less_le)
       
   898     moreover from this have "sgn b * sgn d = - 1"
       
   899       by (simp only: sgn_times [symmetric] sgn_1_neg)
       
   900     ultimately show ?thesis by (simp add: mult_le_cancel_right)
       
   901   qed
       
   902   also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
       
   903     by (simp add: abs_sgn mult_ac)
       
   904   finally show ?thesis using assms by simp
       
   905 qed
       
   906 
       
   907 lemma less_rat': 
       
   908   assumes "b \<noteq> 0"
       
   909     and "d \<noteq> 0"
       
   910   shows "Fract a b < Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
       
   911 proof -
       
   912   have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
       
   913   have "a * d * (b * d) < c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) < c * b * (sgn b * sgn d)"
       
   914   proof (cases "b * d > 0")
       
   915     case True
       
   916     moreover from True have "sgn b * sgn d = 1"
       
   917       by (simp add: sgn_times [symmetric] sgn_1_pos)
       
   918     ultimately show ?thesis by (simp add: mult_less_cancel_right)
       
   919   next
       
   920     case False with assms have "b * d < 0" by (simp add: less_le)
       
   921     moreover from this have "sgn b * sgn d = - 1"
       
   922       by (simp only: sgn_times [symmetric] sgn_1_neg)
       
   923     ultimately show ?thesis by (simp add: mult_less_cancel_right)
       
   924   qed
       
   925   also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
       
   926     by (simp add: abs_sgn mult_ac)
       
   927   finally show ?thesis using assms by simp
       
   928 qed
       
   929 
       
   930 lemma rat_less_eq_code [code]:
       
   931   "Fract a b \<le> Fract c d \<longleftrightarrow> (if b = 0
       
   932        then sgn c * sgn d \<ge> 0
       
   933      else if d = 0
       
   934        then sgn a * sgn b \<le> 0
       
   935      else a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d)"
       
   936 by (auto simp add: sgn_times mult_le_0_iff zero_le_mult_iff le_rat' eq_rat simp del: le_rat)
       
   937   (auto simp add: sgn_times sgn_0_0 le_less sgn_1_pos [symmetric] sgn_1_neg [symmetric])
       
   938 
       
   939 lemma rat_le_eq_code [code]:
       
   940   "Fract a b < Fract c d \<longleftrightarrow> (if b = 0
       
   941        then sgn c * sgn d > 0
       
   942      else if d = 0
       
   943        then sgn a * sgn b < 0
       
   944      else a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d)"
       
   945 by (auto simp add: sgn_times mult_less_0_iff zero_less_mult_iff less_rat' eq_rat simp del: less_rat)
       
   946    (auto simp add: sgn_times sgn_0_0 sgn_1_pos [symmetric] sgn_1_neg [symmetric],
       
   947      auto simp add: sgn_1_pos)
       
   948 
       
   949 lemma rat_plus_code [code]:
       
   950   "Fract a b + Fract c d = (if b = 0
       
   951      then Fract c d
       
   952    else if d = 0
       
   953      then Fract a b
       
   954    else Fract_norm (a * d + c * b) (b * d))"
       
   955   by (simp add: eq_rat, simp add: Zero_rat_def)
       
   956 
       
   957 lemma rat_times_code [code]:
       
   958   "Fract a b * Fract c d = Fract_norm (a * c) (b * d)"
       
   959   by simp
       
   960 
       
   961 lemma rat_minus_code [code]:
       
   962   "Fract a b - Fract c d = (if b = 0
       
   963      then Fract (- c) d
       
   964    else if d = 0
       
   965      then Fract a b
       
   966    else Fract_norm (a * d - c * b) (b * d))"
       
   967   by (simp add: eq_rat, simp add: Zero_rat_def)
       
   968 
       
   969 lemma rat_inverse_code [code]:
       
   970   "inverse (Fract a b) = (if b = 0 then Fract 1 0
       
   971     else if a < 0 then Fract (- b) (- a)
       
   972     else Fract b a)"
       
   973   by (simp add: eq_rat)
       
   974 
       
   975 lemma rat_divide_code [code]:
       
   976   "Fract a b / Fract c d = Fract_norm (a * d) (b * c)"
       
   977   by simp
       
   978 
       
   979 hide (open) const Fract_norm
       
   980 
       
   981 text {* Setup for SML code generator *}
       
   982 
       
   983 types_code
       
   984   rat ("(int */ int)")
       
   985 attach (term_of) {*
       
   986 fun term_of_rat (p, q) =
       
   987   let
       
   988     val rT = Type ("Rational.rat", [])
       
   989   in
       
   990     if q = 1 orelse p = 0 then HOLogic.mk_number rT p
       
   991     else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
       
   992       HOLogic.mk_number rT p $ HOLogic.mk_number rT q
       
   993   end;
       
   994 *}
       
   995 attach (test) {*
       
   996 fun gen_rat i =
       
   997   let
       
   998     val p = random_range 0 i;
       
   999     val q = random_range 1 (i + 1);
       
  1000     val g = Integer.gcd p q;
       
  1001     val p' = p div g;
       
  1002     val q' = q div g;
       
  1003     val r = (if one_of [true, false] then p' else ~ p',
       
  1004       if p' = 0 then 0 else q')
       
  1005   in
       
  1006     (r, fn () => term_of_rat r)
       
  1007   end;
       
  1008 *}
       
  1009 
       
  1010 consts_code
       
  1011   Fract ("(_,/ _)")
       
  1012 
       
  1013 consts_code
       
  1014   "of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
       
  1015 attach {*
       
  1016 fun rat_of_int 0 = (0, 0)
       
  1017   | rat_of_int i = (i, 1);
       
  1018 *}
       
  1019 
       
  1020 end