src/HOL/ex/linrtac.ML
changeset 28952 15a4b2cf8c34
parent 28290 4cc2b6046258
child 29265 5b4247055bd7
equal deleted inserted replaced
28948:1860f016886d 28952:15a4b2cf8c34
       
     1 structure LinrTac =
       
     2 struct
       
     3 
       
     4 val trace = ref false;
       
     5 fun trace_msg s = if !trace then tracing s else ();
       
     6 
       
     7 val ferrack_ss = let val ths = [@{thm real_of_int_inject}, @{thm real_of_int_less_iff}, 
       
     8 				@{thm real_of_int_le_iff}]
       
     9 	     in @{simpset} delsimps ths addsimps (map (fn th => th RS sym) ths)
       
    10 	     end;
       
    11 
       
    12 val binarith =
       
    13   @{thms normalize_bin_simps} @ @{thms pred_bin_simps} @ @{thms succ_bin_simps} @
       
    14   @{thms add_bin_simps} @ @{thms minus_bin_simps} @  @{thms mult_bin_simps};
       
    15 val comp_arith = binarith @ simp_thms
       
    16 
       
    17 val zdvd_int = @{thm zdvd_int};
       
    18 val zdiff_int_split = @{thm zdiff_int_split};
       
    19 val all_nat = @{thm all_nat};
       
    20 val ex_nat = @{thm ex_nat};
       
    21 val number_of1 = @{thm number_of1};
       
    22 val number_of2 = @{thm number_of2};
       
    23 val split_zdiv = @{thm split_zdiv};
       
    24 val split_zmod = @{thm split_zmod};
       
    25 val mod_div_equality' = @{thm mod_div_equality'};
       
    26 val split_div' = @{thm split_div'};
       
    27 val Suc_plus1 = @{thm Suc_plus1};
       
    28 val imp_le_cong = @{thm imp_le_cong};
       
    29 val conj_le_cong = @{thm conj_le_cong};
       
    30 val nat_mod_add_eq = @{thm mod_add1_eq} RS sym;
       
    31 val nat_mod_add_left_eq = @{thm mod_add_left_eq} RS sym;
       
    32 val nat_mod_add_right_eq = @{thm mod_add_right_eq} RS sym;
       
    33 val int_mod_add_eq = @{thm zmod_zadd1_eq} RS sym;
       
    34 val int_mod_add_left_eq = @{thm zmod_zadd_left_eq} RS sym;
       
    35 val int_mod_add_right_eq = @{thm zmod_zadd_right_eq} RS sym;
       
    36 val nat_div_add_eq = @{thm div_add1_eq} RS sym;
       
    37 val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym;
       
    38 val ZDIVISION_BY_ZERO_MOD = @{thm DIVISION_BY_ZERO} RS conjunct2;
       
    39 val ZDIVISION_BY_ZERO_DIV = @{thm DIVISION_BY_ZERO} RS conjunct1;
       
    40 
       
    41 fun prepare_for_linr sg q fm = 
       
    42   let
       
    43     val ps = Logic.strip_params fm
       
    44     val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
       
    45     val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
       
    46     fun mk_all ((s, T), (P,n)) =
       
    47       if 0 mem loose_bnos P then
       
    48         (HOLogic.all_const T $ Abs (s, T, P), n)
       
    49       else (incr_boundvars ~1 P, n-1)
       
    50     fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
       
    51       val rhs = hs
       
    52 (*    val (rhs,irhs) = List.partition (relevant (rev ps)) hs *)
       
    53     val np = length ps
       
    54     val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
       
    55       (foldr HOLogic.mk_imp c rhs, np) ps
       
    56     val (vs, _) = List.partition (fn t => q orelse (type_of t) = HOLogic.natT)
       
    57       (term_frees fm' @ term_vars fm');
       
    58     val fm2 = foldr mk_all2 fm' vs
       
    59   in (fm2, np + length vs, length rhs) end;
       
    60 
       
    61 (*Object quantifier to meta --*)
       
    62 fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
       
    63 
       
    64 (* object implication to meta---*)
       
    65 fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
       
    66 
       
    67 
       
    68 fun linr_tac ctxt q i = 
       
    69     (ObjectLogic.atomize_prems_tac i) 
       
    70 	THEN (REPEAT_DETERM (split_tac [@{thm split_min}, @{thm split_max}, @{thm abs_split}] i))
       
    71 	THEN (fn st =>
       
    72   let
       
    73     val g = List.nth (prems_of st, i - 1)
       
    74     val thy = ProofContext.theory_of ctxt
       
    75     (* Transform the term*)
       
    76     val (t,np,nh) = prepare_for_linr thy q g
       
    77     (* Some simpsets for dealing with mod div abs and nat*)
       
    78     val simpset0 = Simplifier.theory_context thy HOL_basic_ss addsimps comp_arith
       
    79     val ct = cterm_of thy (HOLogic.mk_Trueprop t)
       
    80     (* Theorem for the nat --> int transformation *)
       
    81    val pre_thm = Seq.hd (EVERY
       
    82       [simp_tac simpset0 1,
       
    83        TRY (simp_tac (Simplifier.theory_context thy ferrack_ss) 1)]
       
    84       (trivial ct))
       
    85     fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
       
    86     (* The result of the quantifier elimination *)
       
    87     val (th, tac) = case (prop_of pre_thm) of
       
    88         Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
       
    89     let val pth = linr_oracle (cterm_of thy (Pattern.eta_long [] t1))
       
    90     in 
       
    91           (trace_msg ("calling procedure with term:\n" ^
       
    92              Syntax.string_of_term ctxt t1);
       
    93            ((pth RS iffD2) RS pre_thm,
       
    94             assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
       
    95     end
       
    96       | _ => (pre_thm, assm_tac i)
       
    97   in (rtac (((mp_step nh) o (spec_step np)) th) i 
       
    98       THEN tac) st
       
    99   end handle Subscript => no_tac st);
       
   100 
       
   101 fun linr_meth src =
       
   102   Method.syntax (Args.mode "no_quantify") src
       
   103   #> (fn (q, ctxt) => Method.SIMPLE_METHOD' (linr_tac ctxt (not q)));
       
   104 
       
   105 val setup =
       
   106   Method.add_method ("rferrack", linr_meth,
       
   107      "decision procedure for linear real arithmetic");
       
   108 
       
   109 end