src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy
changeset 64008 17a20ca86d62
parent 63918 6bf55e6e0b75
child 64267 b9a1486e79be
equal deleted inserted replaced
64007:041cda506fb2 64008:17a20ca86d62
  1690     by (simp add: nn_integral_bij_count_space[symmetric, OF *] nn_integral_count_space_nat)
  1690     by (simp add: nn_integral_bij_count_space[symmetric, OF *] nn_integral_count_space_nat)
  1691   show ?thesis
  1691   show ?thesis
  1692     by (simp add: ** nn_integral_suminf from_nat_into)
  1692     by (simp add: ** nn_integral_suminf from_nat_into)
  1693 qed
  1693 qed
  1694 
  1694 
       
  1695 lemma of_bool_Bex_eq_nn_integral:
       
  1696   assumes unique: "\<And>x y. x \<in> X \<Longrightarrow> y \<in> X \<Longrightarrow> P x \<Longrightarrow> P y \<Longrightarrow> x = y"
       
  1697   shows "of_bool (\<exists>y\<in>X. P y) = (\<integral>\<^sup>+y. of_bool (P y) \<partial>count_space X)"
       
  1698 proof cases
       
  1699   assume "\<exists>y\<in>X. P y"
       
  1700   then obtain y where "P y" "y \<in> X" by auto
       
  1701   then show ?thesis
       
  1702     by (subst nn_integral_count_space'[where A="{y}"]) (auto dest: unique)
       
  1703 qed (auto cong: nn_integral_cong_simp)
       
  1704 
  1695 lemma emeasure_UN_countable:
  1705 lemma emeasure_UN_countable:
  1696   assumes sets[measurable]: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets M" and I[simp]: "countable I"
  1706   assumes sets[measurable]: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets M" and I[simp]: "countable I"
  1697   assumes disj: "disjoint_family_on X I"
  1707   assumes disj: "disjoint_family_on X I"
  1698   shows "emeasure M (UNION I X) = (\<integral>\<^sup>+i. emeasure M (X i) \<partial>count_space I)"
  1708   shows "emeasure M (UNION I X) = (\<integral>\<^sup>+i. emeasure M (X i) \<partial>count_space I)"
  1699 proof -
  1709 proof -