src/HOL/Analysis/Conformal_Mappings.thy
changeset 67135 1a94352812f4
parent 66884 c2128ab11f61
child 67399 eab6ce8368fa
equal deleted inserted replaced
67134:66ce07e8dbf2 67135:1a94352812f4
  2987   hence "g holomorphic_on (s-{z})"
  2987   hence "g holomorphic_on (s-{z})"
  2988     apply (subst holomorphic_cong[where t="s-{z}" and g="inverse o f"])
  2988     apply (subst holomorphic_cong[where t="s-{z}" and g="inverse o f"])
  2989     by (auto simp add:g_def)
  2989     by (auto simp add:g_def)
  2990   ultimately show ?thesis unfolding g_def using \<open>open s\<close>
  2990   ultimately show ?thesis unfolding g_def using \<open>open s\<close>
  2991     by (auto elim!: no_isolated_singularity)
  2991     by (auto elim!: no_isolated_singularity)
       
  2992 qed
       
  2993 
       
  2994 lemma not_is_pole_holomorphic:
       
  2995   assumes "open A" "x \<in> A" "f holomorphic_on A"
       
  2996   shows   "\<not>is_pole f x"
       
  2997 proof -
       
  2998   have "continuous_on A f" by (intro holomorphic_on_imp_continuous_on) fact
       
  2999   with assms have "isCont f x" by (simp add: continuous_on_eq_continuous_at)
       
  3000   hence "f \<midarrow>x\<rightarrow> f x" by (simp add: isCont_def)
       
  3001   thus "\<not>is_pole f x" unfolding is_pole_def
       
  3002     using not_tendsto_and_filterlim_at_infinity[of "at x" f "f x"] by auto
  2992 qed
  3003 qed
  2993 
  3004 
  2994 
  3005 
  2995 (*order of the zero of f at z*)
  3006 (*order of the zero of f at z*)
  2996 definition zorder::"(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> nat" where
  3007 definition zorder::"(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> nat" where