src/HOL/ex/Arith_Examples.thy
changeset 23193 1f2d94b6a8ef
child 23196 fabf2e8a7ba4
equal deleted inserted replaced
23192:ec73b9707d48 23193:1f2d94b6a8ef
       
     1 (*  Title:  HOL/ex/Arith_Examples.thy
       
     2     ID:     $Id$
       
     3     Author: Tjark Weber
       
     4 *)
       
     5 
       
     6 header {* {\tt arith} *}
       
     7 
       
     8 theory Arith_Examples imports Main begin
       
     9 
       
    10 text {*
       
    11   The {\tt arith} tactic is used frequently throughout the Isabelle
       
    12   distribution.  This file merely contains some additional tests and special
       
    13   corner cases.  Some rather technical remarks:
       
    14 
       
    15   {\tt fast_arith_tac} is a very basic version of the tactic.  It performs no
       
    16   meta-to-object-logic conversion, and only some splitting of operators.
       
    17   {\tt simple_arith_tac} performs meta-to-object-logic conversion, full
       
    18   splitting of operators, and NNF normalization of the goal.  The {\tt arith}
       
    19   tactic combines them both, and tries other tactics (e.g.~{\tt presburger})
       
    20   as well.  This is the one that you should use in your proofs!
       
    21 
       
    22   An {\tt arith}-based simproc is available as well (see {\tt
       
    23   Fast_Arith.lin_arith_prover}), which---for performance reasons---however
       
    24   does even less splitting than {\tt fast_arith_tac} at the moment (namely
       
    25   inequalities only).  (On the other hand, it does take apart conjunctions,
       
    26   which {\tt fast_arith_tac} currently does not do.)
       
    27 *}
       
    28 
       
    29 ML {* set trace_arith; *}
       
    30 
       
    31 section {* Splitting of Operators: @{term max}, @{term min}, @{term abs},
       
    32            @{term HOL.minus}, @{term nat}, @{term Divides.mod},
       
    33            @{term Divides.div} *}
       
    34 
       
    35 lemma "(i::nat) <= max i j"
       
    36   by (tactic {* fast_arith_tac 1 *})
       
    37 
       
    38 lemma "(i::int) <= max i j"
       
    39   by (tactic {* fast_arith_tac 1 *})
       
    40 
       
    41 lemma "min i j <= (i::nat)"
       
    42   by (tactic {* fast_arith_tac 1 *})
       
    43 
       
    44 lemma "min i j <= (i::int)"
       
    45   by (tactic {* fast_arith_tac 1 *})
       
    46 
       
    47 lemma "min (i::nat) j <= max i j"
       
    48   by (tactic {* fast_arith_tac 1 *})
       
    49 
       
    50 lemma "min (i::int) j <= max i j"
       
    51   by (tactic {* fast_arith_tac 1 *})
       
    52 
       
    53 lemma "(i::nat) < j ==> min i j < max i j"
       
    54   by (tactic {* fast_arith_tac 1 *})
       
    55 
       
    56 lemma "(i::int) < j ==> min i j < max i j"
       
    57   by (tactic {* fast_arith_tac 1 *})
       
    58 
       
    59 lemma "(0::int) <= abs i"
       
    60   by (tactic {* fast_arith_tac 1 *})
       
    61 
       
    62 lemma "(i::int) <= abs i"
       
    63   by (tactic {* fast_arith_tac 1 *})
       
    64 
       
    65 lemma "abs (abs (i::int)) = abs i"
       
    66   by (tactic {* fast_arith_tac 1 *})
       
    67 
       
    68 text {* Also testing subgoals with bound variables. *}
       
    69 
       
    70 lemma "!!x. (x::nat) <= y ==> x - y = 0"
       
    71   by (tactic {* fast_arith_tac 1 *})
       
    72 
       
    73 lemma "!!x. (x::nat) - y = 0 ==> x <= y"
       
    74   by (tactic {* fast_arith_tac 1 *})
       
    75 
       
    76 lemma "!!x. ((x::nat) <= y) = (x - y = 0)"
       
    77   by (tactic {* simple_arith_tac 1 *})
       
    78 
       
    79 lemma "[| (x::nat) < y; d < 1 |] ==> x - y = d"
       
    80   by (tactic {* fast_arith_tac 1 *})
       
    81 
       
    82 lemma "[| (x::nat) < y; d < 1 |] ==> x - y - x = d - x"
       
    83   by (tactic {* fast_arith_tac 1 *})
       
    84 
       
    85 lemma "(x::int) < y ==> x - y < 0"
       
    86   by (tactic {* fast_arith_tac 1 *})
       
    87 
       
    88 lemma "nat (i + j) <= nat i + nat j"
       
    89   by (tactic {* fast_arith_tac 1 *})
       
    90 
       
    91 lemma "i < j ==> nat (i - j) = 0"
       
    92   by (tactic {* fast_arith_tac 1 *})
       
    93 
       
    94 lemma "(i::nat) mod 0 = i"
       
    95 oops
       
    96 
       
    97 lemma "(i::nat) mod (Suc 0) = 0"
       
    98 oops
       
    99 
       
   100 lemma "(i::nat) div 0 = 0"
       
   101 oops
       
   102 
       
   103 ML {* (#splits (ArithTheoryData.get (the_context ()))); *}
       
   104 
       
   105 lemma "(i::nat) mod (number_of (1::int)) = 0"
       
   106 oops
       
   107 
       
   108 section {* Meta-Logic *}
       
   109 
       
   110 lemma "x < Suc y == x <= y"
       
   111   by (tactic {* simple_arith_tac 1 *})
       
   112 
       
   113 lemma "((x::nat) == z ==> x ~= y) ==> x ~= y | z ~= y"
       
   114   by (tactic {* simple_arith_tac 1 *})
       
   115 
       
   116 section {* Other Examples *}
       
   117 
       
   118 lemma "[| (x::nat) < y; y < z |] ==> x < z"
       
   119   by (tactic {* fast_arith_tac 1 *})
       
   120 
       
   121 lemma "(x::nat) < y & y < z ==> x < z"
       
   122   by (tactic {* simple_arith_tac 1 *})
       
   123 
       
   124 lemma "[| (x::nat) ~= y; a + 2 = b; a < y; y < b; a < x; x < b |] ==> False"
       
   125   by (tactic {* fast_arith_tac 1 *})
       
   126 
       
   127 lemma "[| (x::nat) > y; y > z; z > x |] ==> False"
       
   128   by (tactic {* fast_arith_tac 1 *})
       
   129 
       
   130 lemma "(x::nat) - 5 > y ==> y < x"
       
   131   by (tactic {* fast_arith_tac 1 *})
       
   132 
       
   133 lemma "(x::nat) ~= 0 ==> 0 < x"
       
   134   by (tactic {* fast_arith_tac 1 *})
       
   135 
       
   136 lemma "[| (x::nat) ~= y; x <= y |] ==> x < y"
       
   137   by (tactic {* fast_arith_tac 1 *})
       
   138 
       
   139 lemma "(x::nat) < y \<longrightarrow> P (x - y) \<longrightarrow> P 0"
       
   140   by (tactic {* simple_arith_tac 1 *})
       
   141 
       
   142 lemma "(x - y) - (x::nat) = (x - x) - y"
       
   143   by (tactic {* fast_arith_tac 1 *})
       
   144 
       
   145 lemma "[| (a::nat) < b; c < d |] ==> (a - b) = (c - d)"
       
   146   by (tactic {* fast_arith_tac 1 *})
       
   147 
       
   148 lemma "((a::nat) - (b - (c - (d - e)))) = (a - (b - (c - (d - e))))"
       
   149   by (tactic {* fast_arith_tac 1 *})
       
   150 
       
   151 text {* Splitting of inequalities of different type. *}
       
   152 
       
   153 lemma "[| (a::nat) ~= b; (i::int) ~= j; a < 2; b < 2 |] ==>
       
   154   a + b <= nat (max (abs i) (abs j))"
       
   155   by (tactic {* fast_arith_tac 1 *})
       
   156 
       
   157 lemma "[| (i::int) ~= j; (a::nat) ~= b; a < 2; b < 2 |] ==>
       
   158   a + b <= nat (max (abs i) (abs j))"
       
   159   by (tactic {* fast_arith_tac 1 *})
       
   160 
       
   161 ML {* reset trace_arith; *}
       
   162 
       
   163 end