TFL/examples/Subst/Unify.ML
changeset 2113 21266526ac42
child 2597 8b523426e1a4
equal deleted inserted replaced
2112:3902e9af752f 2113:21266526ac42
       
     1 (*---------------------------------------------------------------------------
       
     2  * This file defines a nested unification algorithm, then proves that it 
       
     3  * terminates, then proves 2 correctness theorems: that when the algorithm
       
     4  * succeeds, it 1) returns an MGU; and 2) returns an idempotent substitution.
       
     5  * Although the proofs may seem long, they are actually quite direct, in that
       
     6  * the correctness and termination properties are not mingled as much as in 
       
     7  * previous proofs of this algorithm. 
       
     8  *
       
     9  * Our approach for nested recursive functions is as follows: 
       
    10  *
       
    11  *    0. Prove the wellfoundedness of the termination relation.
       
    12  *    1. Prove the non-nested termination conditions.
       
    13  *    2. Eliminate (0) and (1) from the recursion equations and the 
       
    14  *       induction theorem.
       
    15  *    3. Prove the nested termination conditions by using the induction 
       
    16  *       theorem from (2) and by using the recursion equations from (2). 
       
    17  *       These are constrained by the nested termination conditions, but 
       
    18  *       things work out magically (by wellfoundedness of the termination 
       
    19  *       relation).
       
    20  *    4. Eliminate the nested TCs from the results of (2).
       
    21  *    5. Prove further correctness properties using the results of (4).
       
    22  *
       
    23  * Deeper nestings require iteration of steps (3) and (4).
       
    24  *---------------------------------------------------------------------------*)
       
    25 
       
    26 (* This is just a wrapper for the definition mechanism. *)
       
    27 local fun cread thy s = read_cterm (sign_of thy) (s, (TVar(("DUMMY",0),[])));
       
    28 in
       
    29 fun Rfunc thy R eqs =
       
    30    let val read = term_of o cread thy;
       
    31     in Tfl.Rfunction thy (read R) (read eqs)
       
    32     end
       
    33 end;
       
    34 
       
    35 (*---------------------------------------------------------------------------
       
    36  * The algorithm.
       
    37  *---------------------------------------------------------------------------*)
       
    38 val {theory,induction,rules,tcs} =
       
    39 Rfunc Unify.thy "R"
       
    40   "(Unify(Const m, Const n)  = (if (m=n) then Subst[] else Fail))    & \
       
    41 \  (Unify(Const m, Comb M N) = Fail)                                 & \
       
    42 \  (Unify(Const m, Var v)    = Subst[(v,Const m)])                   & \
       
    43 \  (Unify(Var v, M) = (if (Var v <: M) then Fail else Subst[(v,M)])) & \
       
    44 \  (Unify(Comb M N, Const x) = Fail)                                 & \
       
    45 \  (Unify(Comb M N, Var v) = (if (Var v <: Comb M N) then Fail  \
       
    46 \                             else Subst[(v,Comb M N)]))             & \
       
    47 \  (Unify(Comb M1 N1, Comb M2 N2) =  \
       
    48 \     (case Unify(M1,M2) \
       
    49 \       of Fail => Fail \
       
    50 \        | Subst theta => (case Unify(N1 <| theta, N2 <| theta) \
       
    51 \                           of Fail => Fail \
       
    52 \                             | Subst sigma => Subst (theta <> sigma))))";
       
    53 
       
    54 open Unify;
       
    55 
       
    56 (*---------------------------------------------------------------------------
       
    57  * A slightly augmented strip_tac. 
       
    58  *---------------------------------------------------------------------------*)
       
    59 fun my_strip_tac i = 
       
    60    CHANGED (strip_tac i 
       
    61              THEN REPEAT ((etac exE ORELSE' etac conjE) i)
       
    62              THEN TRY (hyp_subst_tac i));
       
    63 
       
    64 (*---------------------------------------------------------------------------
       
    65  * A slightly augmented fast_tac for sets. It handles the case where the 
       
    66  * top connective is "=".
       
    67  *---------------------------------------------------------------------------*)
       
    68 fun my_fast_set_tac i = (TRY(rtac set_ext i) THEN fast_tac set_cs i);
       
    69 
       
    70 
       
    71 (*---------------------------------------------------------------------------
       
    72  * Wellfoundedness of proper subset on finite sets.
       
    73  *---------------------------------------------------------------------------*)
       
    74 goalw Unify.thy [R0_def] "wf(R0)";
       
    75 by (rtac ((wf_subset RS mp) RS mp) 1);
       
    76 by (rtac wf_measure 1);
       
    77 by(simp_tac(!simpset addsimps[measure_def,inv_image_def,symmetric less_def])1);
       
    78 by (my_strip_tac 1);
       
    79 by (forward_tac[ssubset_card] 1);
       
    80 by (fast_tac set_cs 1);
       
    81 val wf_R0 = result();
       
    82 
       
    83 
       
    84 (*---------------------------------------------------------------------------
       
    85  * Tactic for selecting and working on the first projection of R.
       
    86  *---------------------------------------------------------------------------*)
       
    87 fun R0_tac thms i =
       
    88   (simp_tac (!simpset addsimps (thms@[R_def,lex_prod_def,
       
    89                measure_def,inv_image_def,point_to_prod_def])) i THEN
       
    90    REPEAT (rtac exI i) THEN
       
    91    REPEAT ((rtac conjI THEN' rtac refl) i) THEN
       
    92    rtac disjI1 i THEN
       
    93    simp_tac (!simpset addsimps [R0_def,finite_vars_of]) i);
       
    94 
       
    95 
       
    96 
       
    97 (*---------------------------------------------------------------------------
       
    98  * Tactic for selecting and working on the second projection of R.
       
    99  *---------------------------------------------------------------------------*)
       
   100 fun R1_tac thms i = 
       
   101    (simp_tac (!simpset addsimps (thms@[R_def,lex_prod_def,
       
   102                  measure_def,inv_image_def,point_to_prod_def])) i THEN 
       
   103     REPEAT (rtac exI i) THEN 
       
   104     REPEAT ((rtac conjI THEN' rtac refl) i) THEN
       
   105     rtac disjI2 i THEN
       
   106     asm_simp_tac (!simpset addsimps [R1_def,rprod_def]) i);
       
   107 
       
   108 
       
   109 (*---------------------------------------------------------------------------
       
   110  * The non-nested TC plus the wellfoundedness of R.
       
   111  *---------------------------------------------------------------------------*)
       
   112 Tfl.tgoalw Unify.thy [] rules;
       
   113 by (rtac conjI 1);
       
   114 (* TC *)
       
   115 by (my_strip_tac 1);
       
   116 by (cut_facts_tac [monotone_vars_of] 1); 
       
   117 by (asm_full_simp_tac(!simpset addsimps [subseteq_iff_subset_eq]) 1);
       
   118 by (etac disjE 1);
       
   119 by (R0_tac[] 1);
       
   120 by (R1_tac[] 1);
       
   121 by (simp_tac
       
   122      (!simpset addsimps [measure_def,inv_image_def,less_eq,less_add_Suc1]) 1);
       
   123 
       
   124 (* Wellfoundedness of R *)
       
   125 by (simp_tac (!simpset addsimps [Unify.R_def,Unify.R1_def]) 1);
       
   126 by (REPEAT (resolve_tac [wf_inv_image,wf_lex_prod,wf_R0,
       
   127                          wf_rel_prod, wf_measure] 1));
       
   128 val tc0 = result();
       
   129 
       
   130 
       
   131 (*---------------------------------------------------------------------------
       
   132  * Eliminate tc0 from the recursion equations and the induction theorem.
       
   133  *---------------------------------------------------------------------------*)
       
   134 val [tc,wfr] = Prim.Rules.CONJUNCTS tc0;
       
   135 val rules1 = implies_intr_hyps rules;
       
   136 val rules2 = wfr RS rules1;
       
   137 
       
   138 val [a,b,c,d,e,f,g] = Prim.Rules.CONJUNCTS rules2;
       
   139 val g' = tc RS (g RS mp);
       
   140 val rules4 = standard (Prim.Rules.LIST_CONJ[a,b,c,d,e,f,g']);
       
   141 
       
   142 val induction1 = implies_intr_hyps induction;
       
   143 val induction2 = wfr RS induction1;
       
   144 val induction3 = tc RS induction2;
       
   145 
       
   146 val induction4 = standard
       
   147  (rewrite_rule[fst_conv RS eq_reflection, snd_conv RS eq_reflection]
       
   148    (induction3 RS (read_instantiate_sg (sign_of theory)
       
   149       [("x","%p. Phi (fst p) (snd p)")] spec)));
       
   150 
       
   151 
       
   152 (*---------------------------------------------------------------------------
       
   153  * Some theorems about transitivity of WF combinators. Only the last
       
   154  * (transR) is used, in the proof of termination. The others are generic and
       
   155  * should maybe go somewhere.
       
   156  *---------------------------------------------------------------------------*)
       
   157 goalw WF1.thy [trans_def,lex_prod_def,mem_Collect_eq RS eq_reflection]
       
   158            "trans R1 & trans R2 --> trans (R1 ** R2)";
       
   159 by (my_strip_tac 1);
       
   160 by (res_inst_tac [("x","a")] exI 1);
       
   161 by (res_inst_tac [("x","a'a")] exI 1);
       
   162 by (res_inst_tac [("x","b")] exI 1);
       
   163 by (res_inst_tac [("x","b'a")] exI 1);
       
   164 by (REPEAT (rewrite_tac [Pair_eq RS eq_reflection] THEN my_strip_tac 1));
       
   165 by (Simp_tac 1);
       
   166 by (REPEAT (etac disjE 1));
       
   167 by (rtac disjI1 1);
       
   168 by (ALLGOALS (fast_tac set_cs));
       
   169 val trans_lex_prod = result() RS mp;
       
   170 
       
   171 
       
   172 goalw WF1.thy [trans_def,rprod_def,mem_Collect_eq RS eq_reflection]
       
   173            "trans R1 & trans R2 --> trans (rprod R1  R2)";
       
   174 by (my_strip_tac 1);
       
   175 by (res_inst_tac [("x","a")] exI 1);
       
   176 by (res_inst_tac [("x","a'a")] exI 1);
       
   177 by (res_inst_tac [("x","b")] exI 1);
       
   178 by (res_inst_tac [("x","b'a")] exI 1);
       
   179 by (REPEAT (rewrite_tac [Pair_eq RS eq_reflection] THEN my_strip_tac 1));
       
   180 by (Simp_tac 1);
       
   181 by (fast_tac set_cs 1);
       
   182 val trans_rprod = result() RS mp;
       
   183 
       
   184 
       
   185 goalw Unify.thy [trans_def,inv_image_def,mem_Collect_eq RS eq_reflection]
       
   186  "trans r --> trans (inv_image r f)";
       
   187 by (rewrite_tac [fst_conv RS eq_reflection, snd_conv RS eq_reflection]);
       
   188 by (fast_tac set_cs 1);
       
   189 val trans_inv_image = result() RS mp;
       
   190 
       
   191 goalw Unify.thy [R0_def, trans_def, mem_Collect_eq RS eq_reflection]
       
   192  "trans R0";
       
   193 by (rewrite_tac [fst_conv RS eq_reflection,snd_conv RS eq_reflection,
       
   194                  ssubset_def, set_eq_subset RS eq_reflection]);
       
   195 by (fast_tac set_cs 1);
       
   196 val trans_R0 = result();
       
   197 
       
   198 goalw Unify.thy [R_def,R1_def,measure_def] "trans R";
       
   199 by (REPEAT (resolve_tac[trans_inv_image,trans_lex_prod,conjI, trans_R0,
       
   200                         trans_rprod, trans_inv_image, trans_trancl] 1));
       
   201 val transR = result();
       
   202 
       
   203 
       
   204 (*---------------------------------------------------------------------------
       
   205  * The following lemma is used in the last step of the termination proof for 
       
   206  * the nested call in Unify. Loosely, it says that R doesn't care so much
       
   207  * about term structure.
       
   208  *---------------------------------------------------------------------------*)
       
   209 goalw Unify.thy [R_def,lex_prod_def, inv_image_def,point_to_prod_def]
       
   210      "((X,Y), (Comb A (Comb B C), Comb D (Comb E F))) : R --> \
       
   211     \ ((X,Y), (Comb (Comb A B) C, Comb (Comb D E) F)) : R";
       
   212 by (Simp_tac 1);
       
   213 by (rtac conjI 1);
       
   214 by (strip_tac 1);
       
   215 by (rtac disjI1 1);
       
   216 by (subgoal_tac "(vars_of A Un vars_of B Un vars_of C Un \
       
   217                 \  (vars_of D Un vars_of E Un vars_of F)) = \
       
   218                 \ (vars_of A Un (vars_of B Un vars_of C) Un \
       
   219                 \  (vars_of D Un (vars_of E Un vars_of F)))" 1);
       
   220 by (my_fast_set_tac 2);
       
   221 by (Asm_simp_tac 1);
       
   222 by (strip_tac 1);
       
   223 by (rtac disjI2 1);
       
   224 by (etac conjE 1);
       
   225 by (Asm_simp_tac 1);
       
   226 by (rtac conjI 1);
       
   227 by (my_fast_set_tac 1);
       
   228 by (asm_full_simp_tac (!simpset addsimps [R1_def, measure_def, rprod_def,
       
   229                           less_eq, inv_image_def,add_assoc]) 1);
       
   230 val Rassoc = result() RS mp;
       
   231 
       
   232 (*---------------------------------------------------------------------------
       
   233  * Rewriting support.
       
   234  *---------------------------------------------------------------------------*)
       
   235 
       
   236 val termin_ss = (!simpset addsimps (srange_iff::(subst_rews@al_rews)));
       
   237 
       
   238 
       
   239 (*---------------------------------------------------------------------------
       
   240  * This lemma proves the nested termination condition for the base cases 
       
   241  * 3, 4, and 6. It's a clumsy formulation (requiring two conjuncts, each with
       
   242  * exactly the same proof) of a more general theorem.
       
   243  *---------------------------------------------------------------------------*)
       
   244 goal theory "(~(Var x <: M)) --> [(x, M)] = theta -->       \
       
   245 \ (! N1 N2. (((N1 <| theta, N2 <| theta), (Comb M N1, Comb (Var x) N2)) : R) \
       
   246 \       &   (((N1 <| theta, N2 <| theta), (Comb(Var x) N1, Comb M N2)) : R))";
       
   247 by (my_strip_tac 1);
       
   248 by (case_tac "Var x = M" 1);
       
   249 by (hyp_subst_tac 1);
       
   250 by (case_tac "x:(vars_of N1 Un vars_of N2)" 1);
       
   251 let val case1 = 
       
   252    EVERY1[R1_tac[id_subst_lemma], rtac conjI, my_fast_set_tac,
       
   253           REPEAT o (rtac exI), REPEAT o (rtac conjI THEN' rtac refl),
       
   254           simp_tac (!simpset addsimps [measure_def,inv_image_def,less_eq])];
       
   255 in by (rtac conjI 1);
       
   256    by case1;
       
   257    by case1
       
   258 end;
       
   259 
       
   260 let val case2 = 
       
   261    EVERY1[R0_tac[id_subst_lemma],
       
   262           simp_tac (!simpset addsimps [ssubset_def,set_eq_subset]),
       
   263           fast_tac set_cs]
       
   264 in by (rtac conjI 1);
       
   265    by case2;
       
   266    by case2
       
   267 end;
       
   268 
       
   269 let val case3 =  
       
   270  EVERY1 [R0_tac[],
       
   271         cut_inst_tac [("s2","[(x, M)]"), ("v2", "x"), ("t2","N1")] Var_elim] 
       
   272  THEN ALLGOALS(asm_simp_tac(termin_ss addsimps [vars_iff_occseq]))
       
   273  THEN cut_inst_tac [("s2","[(x, M)]"),("v2", "x"), ("t2","N2")] Var_elim 1
       
   274  THEN ALLGOALS(asm_simp_tac(termin_ss addsimps [vars_iff_occseq]))
       
   275  THEN EVERY1 [simp_tac (HOL_ss addsimps [ssubset_def]),
       
   276              rtac conjI, simp_tac (HOL_ss addsimps [subset_iff]),
       
   277              my_strip_tac, etac UnE, dtac Var_intro] 
       
   278  THEN dtac Var_intro 2
       
   279  THEN ALLGOALS (asm_full_simp_tac (termin_ss addsimps [set_eq_subset])) 
       
   280  THEN TRYALL (fast_tac set_cs)
       
   281 in 
       
   282   by (rtac conjI 1);
       
   283   by case3;
       
   284   by case3
       
   285 end;
       
   286 val var_elimR = result() RS mp RS mp RS spec RS spec;
       
   287 
       
   288 
       
   289 val Some{nchotomy = subst_nchotomy,...} = assoc(!datatypes,"subst");
       
   290 
       
   291 (*---------------------------------------------------------------------------
       
   292  * Do a case analysis on something of type 'a subst. 
       
   293  *---------------------------------------------------------------------------*)
       
   294 
       
   295 fun Subst_case_tac theta =
       
   296 (cut_inst_tac theta (standard (Prim.Rules.SPEC_ALL subst_nchotomy)) 1 
       
   297   THEN etac disjE 1 
       
   298   THEN rotate_tac ~1 1 
       
   299   THEN Asm_full_simp_tac 1 
       
   300   THEN etac exE 1
       
   301   THEN rotate_tac ~1 1 
       
   302   THEN Asm_full_simp_tac 1);
       
   303 
       
   304 
       
   305 goals_limit := 1;
       
   306 
       
   307 (*---------------------------------------------------------------------------
       
   308  * The nested TC. Proved by recursion induction.
       
   309  *---------------------------------------------------------------------------*)
       
   310 goalw_cterm [] 
       
   311      (hd(tl(tl(map (cterm_of (sign_of theory) o USyntax.mk_prop) tcs))));
       
   312 (*---------------------------------------------------------------------------
       
   313  * The extracted TC needs the scope of its quantifiers adjusted, so our 
       
   314  * first step is to restrict the scopes of N1 and N2.
       
   315  *---------------------------------------------------------------------------*)
       
   316 by (subgoal_tac "!M1 M2 theta.  \
       
   317  \     Unify (M1, M2) = Subst theta --> \
       
   318  \    (!N1 N2. ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R)" 1);
       
   319 by (fast_tac HOL_cs 1);
       
   320 by (rtac allI 1); 
       
   321 by (rtac allI 1);
       
   322 (* Apply induction *)
       
   323 by (res_inst_tac [("xa","M1"),("x","M2")] 
       
   324                  (standard (induction4 RS mp RS spec RS spec)) 1);
       
   325 by (simp_tac (!simpset addsimps (rules4::(subst_rews@al_rews))
       
   326                        setloop (split_tac [expand_if])) 1);
       
   327 (* 1 *)
       
   328 by (rtac conjI 1);
       
   329 by (my_strip_tac 1);
       
   330 by (R1_tac[subst_Nil] 1);
       
   331 by (REPEAT (rtac exI 1) THEN REPEAT ((rtac conjI THEN' rtac refl) 1));
       
   332 by (simp_tac (!simpset addsimps [measure_def,inv_image_def,less_eq]) 1);
       
   333 
       
   334 (* 3 *)
       
   335 by (rtac conjI 1);
       
   336 by (my_strip_tac 1);
       
   337 by (rtac (Prim.Rules.CONJUNCT1 var_elimR) 1);
       
   338 by (Simp_tac 1);
       
   339 by (rtac refl 1);
       
   340 
       
   341 (* 4 *)
       
   342 by (rtac conjI 1);
       
   343 by (strip_tac 1);
       
   344 by (rtac (Prim.Rules.CONJUNCT2 var_elimR) 1);
       
   345 by (assume_tac 1);
       
   346 by (rtac refl 1);
       
   347 
       
   348 (* 6 *)
       
   349 by (rtac conjI 1);
       
   350 by (rewrite_tac [symmetric (occs_Comb RS eq_reflection)]);
       
   351 by (my_strip_tac 1);
       
   352 by (rtac (Prim.Rules.CONJUNCT1 var_elimR) 1);
       
   353 by (Asm_simp_tac 1);
       
   354 by (rtac refl 1);
       
   355 
       
   356 (* 7 *)
       
   357 by (REPEAT (rtac allI 1));
       
   358 by (rtac impI 1);
       
   359 by (etac conjE 1);
       
   360 by (rename_tac "foo bar M1 N1 M2 N2" 1);
       
   361 by (Subst_case_tac [("v","Unify(M1, M2)")]);
       
   362 by (rename_tac "foo bar M1 N1 M2 N2 theta" 1);
       
   363 
       
   364 by (Subst_case_tac [("v","Unify(N1 <| theta, N2 <| theta)")]);
       
   365 by (rename_tac "foo bar M1 N1 M2 N2 theta sigma" 1);
       
   366 by (REPEAT (rtac allI 1));
       
   367 by (rename_tac "foo bar M1 N1 M2 N2 theta sigma P Q" 1); 
       
   368 by (simp_tac (HOL_ss addsimps [subst_comp]) 1);
       
   369 by(rtac(rewrite_rule[trans_def] transR RS spec RS spec RS spec RS mp RS mp) 1);
       
   370 by (fast_tac HOL_cs 1);
       
   371 by (simp_tac (HOL_ss addsimps [symmetric (subst_Comb RS eq_reflection)]) 1);
       
   372 by (subgoal_tac "((Comb N1 P <| theta, Comb N2 Q <| theta), \
       
   373                 \ (Comb M1 (Comb N1 P), Comb M2 (Comb N2 Q))) :R" 1);
       
   374 by (asm_simp_tac HOL_ss 2);
       
   375 
       
   376 by (rtac Rassoc 1);
       
   377 by (assume_tac 1);
       
   378 val Unify_TC2 = result();
       
   379 
       
   380 
       
   381 (*---------------------------------------------------------------------------
       
   382  * Now for elimination of nested TC from rules and induction. This step 
       
   383  * would be easier if "rewrite_rule" used context.
       
   384  *---------------------------------------------------------------------------*)
       
   385 goal theory 
       
   386  "(Unify (Comb M1 N1, Comb M2 N2) =  \
       
   387 \   (case Unify (M1, M2) of Fail => Fail \
       
   388 \    | Subst theta => \
       
   389 \        (case if ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R \
       
   390 \              then Unify (N1 <| theta, N2 <| theta) else @ z. True of \
       
   391 \        Fail => Fail | Subst sigma => Subst (theta <> sigma)))) \
       
   392 \  = \
       
   393 \ (Unify (Comb M1 N1, Comb M2 N2) = \
       
   394 \   (case Unify (M1, M2)  \
       
   395 \      of Fail => Fail \
       
   396 \      | Subst theta => (case Unify (N1 <| theta, N2 <| theta) \
       
   397 \                          of Fail => Fail  \
       
   398 \                           | Subst sigma => Subst (theta <> sigma))))";
       
   399 by (cut_inst_tac [("v","Unify(M1, M2)")]
       
   400                  (standard (Prim.Rules.SPEC_ALL subst_nchotomy)) 1);
       
   401 by (etac disjE 1);
       
   402 by (Asm_simp_tac 1);
       
   403 by (etac exE 1);
       
   404 by (Asm_simp_tac 1);
       
   405 by (cut_inst_tac 
       
   406      [("x","list"), ("xb","N1"), ("xa","N2"),("xc","M2"), ("xd","M1")]
       
   407      (standard(Unify_TC2 RS spec RS spec RS spec RS spec RS spec)) 1);
       
   408 by (Asm_full_simp_tac 1);
       
   409 val Unify_rec_simpl = result() RS eq_reflection;
       
   410 
       
   411 val Unify_rules = rewrite_rule[Unify_rec_simpl] rules4;
       
   412 
       
   413 
       
   414 goal theory 
       
   415  "(! M1 N1 M2 N2.  \
       
   416 \       (! theta.  \
       
   417 \           Unify (M1, M2) = Subst theta -->  \
       
   418 \           ((N1 <| theta, N2 <| theta), Comb M1 N1, Comb M2 N2) : R -->  \
       
   419 \           ?Phi (N1 <| theta) (N2 <| theta)) & ?Phi M1 M2 -->  \
       
   420 \       ?Phi (Comb M1 N1) (Comb M2 N2))  \
       
   421 \    =  \
       
   422 \ (! M1 N1 M2 N2.  \
       
   423 \       (! theta.  \
       
   424 \           Unify (M1, M2) = Subst theta -->  \
       
   425 \           ?Phi (N1 <| theta) (N2 <| theta)) & ?Phi M1 M2 -->  \
       
   426 \       ?Phi (Comb M1 N1) (Comb M2 N2))";
       
   427 by (simp_tac (HOL_ss addsimps [Unify_TC2]) 1);
       
   428 val Unify_induction = rewrite_rule[result() RS eq_reflection] induction4;
       
   429 
       
   430 
       
   431 
       
   432 (*---------------------------------------------------------------------------
       
   433  * Correctness. Notice that idempotence is not needed to prove that the 
       
   434  * algorithm terminates and is not needed to prove the algorithm correct, 
       
   435  * if you are only interested in an MGU. This is in contrast to the
       
   436  * approach of M&W, who used idempotence and MGU-ness in the termination proof.
       
   437  *---------------------------------------------------------------------------*)
       
   438 
       
   439 goal theory "!theta. Unify (P,Q) = Subst theta --> MGUnifier theta P Q";
       
   440 by (res_inst_tac [("xa","P"),("x","Q")] 
       
   441                  (standard (Unify_induction RS mp RS spec RS spec)) 1);
       
   442 by (simp_tac (!simpset addsimps [Unify_rules] 
       
   443                        setloop (split_tac [expand_if])) 1);
       
   444 (*1*)
       
   445 by (rtac conjI 1);
       
   446 by (REPEAT (rtac allI 1));
       
   447 by (simp_tac (!simpset addsimps [MGUnifier_def,Unifier_def]) 1);
       
   448 by (my_strip_tac 1);
       
   449 by (rtac MoreGen_Nil 1);
       
   450 
       
   451 (*3*)
       
   452 by (rtac conjI 1);
       
   453 by (my_strip_tac 1);
       
   454 by (rtac (mgu_sym RS iffD1) 1);
       
   455 by (rtac MGUnifier_Var 1);
       
   456 by (Simp_tac 1);
       
   457 
       
   458 (*4*)
       
   459 by (rtac conjI 1);
       
   460 by (my_strip_tac 1);
       
   461 by (rtac MGUnifier_Var 1);
       
   462 by (assume_tac 1);
       
   463 
       
   464 (*6*)
       
   465 by (rtac conjI 1);
       
   466 by (rewrite_tac NNF_rews);
       
   467 by (my_strip_tac 1);
       
   468 by (rtac (mgu_sym RS iffD1) 1);
       
   469 by (rtac MGUnifier_Var 1);
       
   470 by (Asm_simp_tac 1);
       
   471 
       
   472 (*7*) 
       
   473 by (safe_tac HOL_cs);
       
   474 by (Subst_case_tac [("v","Unify(M1, M2)")]);
       
   475 by (Subst_case_tac [("v","Unify(N1 <| list, N2 <| list)")]);
       
   476 by (hyp_subst_tac 1);
       
   477 by (asm_full_simp_tac(HOL_ss addsimps [MGUnifier_def,Unifier_def])1);
       
   478 by (asm_simp_tac (!simpset addsimps [subst_comp]) 1); (* It's a unifier.*)
       
   479 
       
   480 by (prune_params_tac);
       
   481 by (safe_tac HOL_cs);
       
   482 by (rename_tac "M1 N1 M2 N2 theta sigma gamma" 1);
       
   483 
       
   484 by (rewrite_tac [MoreGeneral_def]);
       
   485 by (rotate_tac ~3 1);
       
   486 by (eres_inst_tac [("x","gamma")] allE 1);
       
   487 by (Asm_full_simp_tac 1);
       
   488 by (etac exE 1);
       
   489 by (rename_tac "M1 N1 M2 N2 theta sigma gamma delta" 1);
       
   490 by (eres_inst_tac [("x","delta")] allE 1);
       
   491 by (subgoal_tac "N1 <| theta <| delta = N2 <| theta <| delta" 1);
       
   492 by (dtac mp 1);
       
   493 by (atac 1);
       
   494 by (etac exE 1);
       
   495 by (rename_tac "M1 N1 M2 N2 theta sigma gamma delta rho" 1);
       
   496 
       
   497 by (rtac exI 1);
       
   498 by (rtac subst_trans 1);
       
   499 by (assume_tac 1);
       
   500 
       
   501 by (rtac subst_trans 1);
       
   502 by (rtac (comp_assoc RS subst_sym) 2);
       
   503 by (rtac subst_cong 1);
       
   504 by (rtac (refl RS subst_refl) 1);
       
   505 by (assume_tac 1);
       
   506 
       
   507 by (asm_full_simp_tac (!simpset addsimps [subst_eq_iff,subst_comp]) 1);
       
   508 by (forw_inst_tac [("x","N1")] spec 1);
       
   509 by (dres_inst_tac [("x","N2")] spec 1);
       
   510 by (Asm_full_simp_tac 1);
       
   511 val Unify_gives_MGU = standard(result() RS spec RS mp);
       
   512 
       
   513 
       
   514 (*---------------------------------------------------------------------------
       
   515  * Unify returns idempotent substitutions, when it succeeds.
       
   516  *---------------------------------------------------------------------------*)
       
   517 goal theory "!theta. Unify (P,Q) = Subst theta --> Idem theta";
       
   518 by (res_inst_tac [("xa","P"),("x","Q")] 
       
   519                  (standard (Unify_induction RS mp RS spec RS spec)) 1);
       
   520 (* Blows away all base cases automatically *)
       
   521 by (simp_tac (!simpset addsimps [Unify_rules,Idem_Nil,Var_Idem] 
       
   522                        setloop (split_tac [expand_if])) 1);
       
   523 
       
   524 (*7*)
       
   525 by (safe_tac HOL_cs);
       
   526 by (Subst_case_tac [("v","Unify(M1, M2)")]);
       
   527 by (Subst_case_tac [("v","Unify(N1 <| list, N2 <| list)")]);
       
   528 by (hyp_subst_tac 1);
       
   529 by prune_params_tac;
       
   530 by (rename_tac "M1 N1 M2 N2 theta sigma" 1);
       
   531 
       
   532 by (dtac Unify_gives_MGU 1);
       
   533 by (dtac Unify_gives_MGU 1);
       
   534 by (rewrite_tac [MGUnifier_def]);
       
   535 by (my_strip_tac 1);
       
   536 by (rtac Idem_comp 1);
       
   537 by (atac 1);
       
   538 by (atac 1);
       
   539 
       
   540 by (my_strip_tac 1);
       
   541 by (eres_inst_tac [("x","q")] allE 1);
       
   542 by (Asm_full_simp_tac 1);
       
   543 by (rewrite_tac [MoreGeneral_def]);
       
   544 by (my_strip_tac 1);
       
   545 by (asm_full_simp_tac(termin_ss addsimps [subst_eq_iff,subst_comp,Idem_def])1);
       
   546 val Unify_gives_Idem = result() RS spec RS mp;
       
   547 
       
   548 
       
   549 
       
   550 (*---------------------------------------------------------------------------
       
   551  * Exercise. The given algorithm is a bit inelegant. What about the
       
   552  * following "improvement", which adds a few recursive calls in former
       
   553  * base cases? It seems that the termination relation needs another
       
   554  * case in the lexico. product.
       
   555 
       
   556 val {theory,induction,rules,tcs,typechecks} =
       
   557 Rfunc Unify.thy ??
       
   558   `(Unify(Const m, Const n)  = (if (m=n) then Subst[] else Fail))    &
       
   559    (Unify(Const m, Comb M N) = Fail)                                 &
       
   560    (Unify(Const m, Var v)    = Unify(Var v, Const m))                &
       
   561    (Unify(Var v, M) = (if (Var v <: M) then Fail else Subst[(v,M)])) &
       
   562    (Unify(Comb M N, Const x) = Fail)                                 &
       
   563    (Unify(Comb M N, Var v) = Unify(Var v, Comb M N))                 &
       
   564    (Unify(Comb M1 N1, Comb M2 N2) = 
       
   565       (case Unify(M1,M2)
       
   566         of Fail => Fail
       
   567          | Subst theta => (case Unify(N1 <| theta, N2 <| theta)
       
   568                             of Fail => Fail
       
   569                              | Subst sigma => Subst (theta <> sigma))))`;
       
   570 
       
   571  *---------------------------------------------------------------------------*)