src/HOL/ex/Primrec.thy
changeset 11024 23bf8d787b04
parent 8703 816d8f6513be
child 11464 ddea204de5bc
equal deleted inserted replaced
11023:6e6c8d1ec89e 11024:23bf8d787b04
     1 (*  Title:      HOL/ex/Primrec
     1 (*  Title:      HOL/ex/Primrec.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1997  University of Cambridge
     4     Copyright   1997  University of Cambridge
     5 
     5 
     6 Primitive Recursive Functions
     6 Primitive Recursive Functions.  Demonstrates recursive definitions,
     7 
     7 the TFL package.
     8 Proof adopted from
       
     9 Nora Szasz, 
       
    10 A Machine Checked Proof that Ackermann's Function is not Primitive Recursive,
       
    11 In: Huet & Plotkin, eds., Logical Environments (CUP, 1993), 317-338.
       
    12 
       
    13 See also E. Mendelson, Introduction to Mathematical Logic.
       
    14 (Van Nostrand, 1964), page 250, exercise 11.
       
    15 
       
    16 Demonstrates recursive definitions, the TFL package
       
    17 *)
     8 *)
    18 
     9 
    19 Primrec = Main +
    10 header {* Primitive Recursive Functions *}
    20 
    11 
    21 consts ack  :: "nat * nat => nat"
    12 theory Primrec = Main:
    22 recdef ack "less_than <*lex*> less_than"
    13 
    23     "ack (0,n) =  Suc n"
    14 text {*
    24     "ack (Suc m,0) = (ack (m, 1))"
    15   Proof adopted from
    25     "ack (Suc m, Suc n) = ack (m, ack (Suc m, n))"
    16 
    26 
    17   Nora Szasz, A Machine Checked Proof that Ackermann's Function is not
    27 consts  list_add :: nat list => nat
    18   Primitive Recursive, In: Huet \& Plotkin, eds., Logical Environments
       
    19   (CUP, 1993), 317-338.
       
    20 
       
    21   See also E. Mendelson, Introduction to Mathematical Logic.  (Van
       
    22   Nostrand, 1964), page 250, exercise 11.
       
    23   \medskip
       
    24 *}
       
    25 
       
    26 consts ack :: "nat * nat => nat"
       
    27 recdef ack  "less_than <*lex*> less_than"
       
    28   "ack (0, n) =  Suc n"
       
    29   "ack (Suc m, 0) = ack (m, 1)"
       
    30   "ack (Suc m, Suc n) = ack (m, ack (Suc m, n))"
       
    31 
       
    32 consts list_add :: "nat list => nat"
    28 primrec
    33 primrec
    29   "list_add []     = 0"
    34   "list_add [] = 0"
    30   "list_add (m#ms) = m + list_add ms"
    35   "list_add (m # ms) = m + list_add ms"
    31 
    36 
    32 consts  zeroHd  :: nat list => nat
    37 consts zeroHd :: "nat list => nat"
    33 primrec
    38 primrec
    34   "zeroHd []     = 0"
    39   "zeroHd [] = 0"
    35   "zeroHd (m#ms) = m"
    40   "zeroHd (m # ms) = m"
    36 
    41 
    37 
    42 
    38 (** The set of primitive recursive functions of type  nat list => nat **)
    43 text {* The set of primitive recursive functions of type @{typ "nat list => nat"}. *}
    39 consts
    44 
    40     PRIMREC :: (nat list => nat) set
    45 constdefs
    41     SC      :: nat list => nat
    46   SC :: "nat list => nat"
    42     CONST   :: [nat, nat list] => nat
    47   "SC l == Suc (zeroHd l)"
    43     PROJ    :: [nat, nat list] => nat
    48 
    44     COMP    :: [nat list => nat, (nat list => nat)list, nat list] => nat
    49   CONST :: "nat => nat list => nat"
    45     PREC    :: [nat list => nat, nat list => nat, nat list] => nat
    50   "CONST k l == k"
    46 
    51 
    47 defs
    52   PROJ :: "nat => nat list => nat"
    48 
    53   "PROJ i l == zeroHd (drop i l)"
    49   SC_def    "SC l        == Suc (zeroHd l)"
    54 
    50 
    55   COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat"
    51   CONST_def "CONST k l   == k"
    56   "COMP g fs l == g (map (\<lambda>f. f l) fs)"
    52 
    57 
    53   PROJ_def  "PROJ i l    == zeroHd (drop i l)"
    58   PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat"
    54 
    59   "PREC f g l ==
    55   COMP_def  "COMP g fs l == g (map (%f. f l) fs)"
    60     case l of
    56 
    61       [] => 0
    57   (*Note that g is applied first to PREC f g y and then to y!*)
    62     | x # l' => nat_rec (f l') (\<lambda>y r. g (r # y # l')) x"
    58   PREC_def  "PREC f g l == case l of
    63   -- {* Note that @{term g} is applied first to @{term "PREC f g y"} and then to @{term y}! *}
    59                              []   => 0
    64 
    60                            | x#l' => nat_rec (f l') (%y r. g (r#y#l')) x"
    65 consts PRIMREC :: "(nat list => nat) set"
    61 
       
    62   
       
    63 inductive PRIMREC
    66 inductive PRIMREC
    64   intrs
    67   intros
    65     SC       "SC : PRIMREC"
    68     SC: "SC \<in> PRIMREC"
    66     CONST    "CONST k : PRIMREC"
    69     CONST: "CONST k \<in> PRIMREC"
    67     PROJ     "PROJ i : PRIMREC"
    70     PROJ: "PROJ i \<in> PRIMREC"
    68     COMP     "[| g: PRIMREC; fs: lists PRIMREC |] ==> COMP g fs : PRIMREC"
    71     COMP: "g \<in> PRIMREC ==> fs \<in> lists PRIMREC ==> COMP g fs \<in> PRIMREC"
    69     PREC     "[| f: PRIMREC; g: PRIMREC |] ==> PREC f g: PRIMREC"
    72     PREC: "f \<in> PRIMREC ==> g \<in> PRIMREC ==> PREC f g \<in> PRIMREC"
    70   monos      lists_mono
    73 
       
    74 
       
    75 text {* Useful special cases of evaluation *}
       
    76 
       
    77 lemma SC [simp]: "SC (x # l) = Suc x"
       
    78   apply (simp add: SC_def)
       
    79   done
       
    80 
       
    81 lemma CONST [simp]: "CONST k l = k"
       
    82   apply (simp add: CONST_def)
       
    83   done
       
    84 
       
    85 lemma PROJ_0 [simp]: "PROJ 0 (x # l) = x"
       
    86   apply (simp add: PROJ_def)
       
    87   done
       
    88 
       
    89 lemma COMP_1 [simp]: "COMP g [f] l = g [f l]"
       
    90   apply (simp add: COMP_def)
       
    91   done
       
    92 
       
    93 lemma PREC_0 [simp]: "PREC f g (0 # l) = f l"
       
    94   apply (simp add: PREC_def)
       
    95   done
       
    96 
       
    97 lemma PREC_Suc [simp]: "PREC f g (Suc x # l) = g (PREC f g (x # l) # x # l)"
       
    98   apply (simp add: PREC_def)
       
    99   done
       
   100 
       
   101 
       
   102 text {* PROPERTY A 4 *}
       
   103 
       
   104 lemma less_ack2 [iff]: "j < ack (i, j)"
       
   105   apply (induct i j rule: ack.induct)
       
   106     apply simp_all
       
   107   done
       
   108 
       
   109 
       
   110 text {* PROPERTY A 5-, the single-step lemma *}
       
   111 
       
   112 lemma ack_less_ack_Suc2 [iff]: "ack(i, j) < ack (i, Suc j)"
       
   113   apply (induct i j rule: ack.induct)
       
   114     apply simp_all
       
   115   done
       
   116 
       
   117 
       
   118 text {* PROPERTY A 5, monotonicity for @{text "<"} *}
       
   119 
       
   120 lemma ack_less_mono2: "j < k ==> ack (i, j) < ack (i, k)"
       
   121   apply (induct i k rule: ack.induct)
       
   122     apply simp_all
       
   123   apply (blast elim!: less_SucE intro: less_trans)
       
   124   done
       
   125 
       
   126 
       
   127 text {* PROPERTY A 5', monotonicity for @{text \<le>} *}
       
   128 
       
   129 lemma ack_le_mono2: "j \<le> k ==> ack (i, j) \<le> ack (i, k)"
       
   130   apply (simp add: order_le_less)
       
   131   apply (blast intro: ack_less_mono2)
       
   132   done
       
   133 
       
   134 
       
   135 text {* PROPERTY A 6 *}
       
   136 
       
   137 lemma ack2_le_ack1 [iff]: "ack (i, Suc j) \<le> ack (Suc i, j)"
       
   138   apply (induct j)
       
   139    apply simp_all
       
   140   apply (blast intro: ack_le_mono2 less_ack2 [THEN Suc_leI] le_trans)
       
   141   done
       
   142 
       
   143 
       
   144 text {* PROPERTY A 7-, the single-step lemma *}
       
   145 
       
   146 lemma ack_less_ack_Suc1 [iff]: "ack (i, j) < ack (Suc i, j)"
       
   147   apply (blast intro: ack_less_mono2 less_le_trans)
       
   148   done
       
   149 
       
   150 
       
   151 text {* PROPERTY A 4'? Extra lemma needed for @{term CONST} case, constant functions *}
       
   152 
       
   153 lemma less_ack1 [iff]: "i < ack (i, j)"
       
   154   apply (induct i)
       
   155    apply simp_all
       
   156   apply (blast intro: Suc_leI le_less_trans)
       
   157   done
       
   158 
       
   159 
       
   160 text {* PROPERTY A 8 *}
       
   161 
       
   162 lemma ack_1 [simp]: "ack (1, j) = j + #2"
       
   163   apply (induct j)
       
   164    apply simp_all
       
   165   done
       
   166 
       
   167 
       
   168 text {* PROPERTY A 9.  The unary @{term 1} and @{term 2} in @{term
       
   169   ack} is essential for the rewriting. *}
       
   170 
       
   171 lemma ack_2 [simp]: "ack (2, j) = #2 * j + #3"
       
   172   apply (induct j)
       
   173    apply simp_all
       
   174   done
       
   175 
       
   176 
       
   177 text {* PROPERTY A 7, monotonicity for @{text "<"} [not clear why
       
   178   @{thm [source] ack_1} is now needed first!] *}
       
   179 
       
   180 lemma ack_less_mono1_aux: "ack (i, k) < ack (Suc (i +i'), k)"
       
   181   apply (induct i k rule: ack.induct)
       
   182     apply simp_all
       
   183    prefer 2
       
   184    apply (blast intro: less_trans ack_less_mono2)
       
   185   apply (induct_tac i' n rule: ack.induct)
       
   186     apply simp_all
       
   187   apply (blast intro: Suc_leI [THEN le_less_trans] ack_less_mono2)
       
   188   done
       
   189 
       
   190 lemma ack_less_mono1: "i < j ==> ack (i, k) < ack (j, k)"
       
   191   apply (drule less_imp_Suc_add)
       
   192   apply (blast intro!: ack_less_mono1_aux)
       
   193   done
       
   194 
       
   195 
       
   196 text {* PROPERTY A 7', monotonicity for @{text "\<le>"} *}
       
   197 
       
   198 lemma ack_le_mono1: "i \<le> j ==> ack (i, k) \<le> ack (j, k)"
       
   199   apply (simp add: order_le_less)
       
   200   apply (blast intro: ack_less_mono1)
       
   201   done
       
   202 
       
   203 
       
   204 text {* PROPERTY A 10 *}
       
   205 
       
   206 lemma ack_nest_bound: "ack(i1, ack (i2, j)) < ack (#2 + (i1 + i2), j)"
       
   207   apply (simp add: numerals)
       
   208   apply (rule ack2_le_ack1 [THEN [2] less_le_trans])
       
   209   apply simp
       
   210   apply (rule le_add1 [THEN ack_le_mono1, THEN le_less_trans])
       
   211   apply (rule ack_less_mono1 [THEN ack_less_mono2])
       
   212   apply (simp add: le_imp_less_Suc le_add2)
       
   213   done
       
   214 
       
   215 
       
   216 text {* PROPERTY A 11 *}
       
   217 
       
   218 lemma ack_add_bound: "ack (i1, j) + ack (i2, j) < ack (#4 + (i1 + i2), j)"
       
   219   apply (rule_tac j = "ack (2, ack (i1 + i2, j))" in less_trans)
       
   220    prefer 2
       
   221    apply (rule ack_nest_bound [THEN less_le_trans])
       
   222    apply (simp add: Suc3_eq_add_3)
       
   223   apply simp
       
   224   apply (cut_tac i = i1 and m1 = i2 and k = j in le_add1 [THEN ack_le_mono1])
       
   225   apply (cut_tac i = "i2" and m1 = i1 and k = j in le_add2 [THEN ack_le_mono1])
       
   226   apply auto
       
   227   done
       
   228 
       
   229 
       
   230 text {* PROPERTY A 12.  Article uses existential quantifier but the ALF proof
       
   231   used @{text "k + 4"}.  Quantified version must be nested @{text
       
   232   "\<exists>k'. \<forall>i j. ..."} *}
       
   233 
       
   234 lemma ack_add_bound2: "i < ack (k, j) ==> i + j < ack (#4 + k, j)"
       
   235   apply (rule_tac j = "ack (k, j) + ack (0, j)" in less_trans)
       
   236    prefer 2
       
   237    apply (rule ack_add_bound [THEN less_le_trans])
       
   238    apply simp
       
   239   apply (rule add_less_mono less_ack2 | assumption)+
       
   240   done
       
   241 
       
   242 
       
   243 
       
   244 text {* Inductive definition of the @{term PR} functions *}
       
   245 
       
   246 text {* MAIN RESULT *}
       
   247 
       
   248 lemma SC_case: "SC l < ack (1, list_add l)"
       
   249   apply (unfold SC_def)
       
   250   apply (induct l)
       
   251   apply (simp_all add: le_add1 le_imp_less_Suc)
       
   252   done
       
   253 
       
   254 lemma CONST_case: "CONST k l < ack (k, list_add l)"
       
   255   apply simp
       
   256   done
       
   257 
       
   258 lemma PROJ_case [rule_format]: "\<forall>i. PROJ i l < ack (0, list_add l)"
       
   259   apply (simp add: PROJ_def)
       
   260   apply (induct l)
       
   261    apply simp_all
       
   262   apply (rule allI)
       
   263   apply (case_tac i)
       
   264   apply (simp (no_asm_simp) add: le_add1 le_imp_less_Suc)
       
   265   apply (simp (no_asm_simp))
       
   266   apply (blast intro: less_le_trans intro!: le_add2)
       
   267   done
       
   268 
       
   269 
       
   270 text {* @{term COMP} case *}
       
   271 
       
   272 lemma COMP_map_aux: "fs \<in> lists (PRIMREC \<inter> {f. \<exists>kf. \<forall>l. f l < ack (kf, list_add l)})
       
   273   ==> \<exists>k. \<forall>l. list_add (map (\<lambda>f. f l) fs) < ack (k, list_add l)"
       
   274   apply (erule lists.induct)
       
   275   apply (rule_tac x = 0 in exI)
       
   276    apply simp
       
   277   apply safe
       
   278   apply simp
       
   279   apply (rule exI)
       
   280   apply (blast intro: add_less_mono ack_add_bound less_trans)
       
   281   done
       
   282 
       
   283 lemma COMP_case:
       
   284   "\<forall>l. g l < ack (kg, list_add l) ==>
       
   285   fs \<in> lists(PRIMREC Int {f. \<exists>kf. \<forall>l. f l < ack(kf, list_add l)})
       
   286   ==> \<exists>k. \<forall>l. COMP g fs  l < ack(k, list_add l)"
       
   287   apply (unfold COMP_def)
       
   288   apply (frule Int_lower1 [THEN lists_mono, THEN subsetD])
       
   289   apply (erule COMP_map_aux [THEN exE])
       
   290   apply (rule exI)
       
   291   apply (rule allI)
       
   292   apply (drule spec)+
       
   293   apply (erule less_trans)
       
   294   apply (blast intro: ack_less_mono2 ack_nest_bound less_trans)
       
   295   done
       
   296 
       
   297 
       
   298 text {* @{term PREC} case *}
       
   299 
       
   300 lemma PREC_case_aux:
       
   301   "\<forall>l. f l + list_add l < ack (kf, list_add l) ==>
       
   302     \<forall>l. g l + list_add l < ack (kg, list_add l) ==>
       
   303     PREC f g l + list_add l < ack (Suc (kf + kg), list_add l)"
       
   304   apply (unfold PREC_def)
       
   305   apply (case_tac l)
       
   306    apply simp_all
       
   307    apply (blast intro: less_trans)
       
   308   apply (erule ssubst) -- {* get rid of the needless assumption *}
       
   309   apply (induct_tac a)
       
   310    apply simp_all
       
   311    txt {* base case *}
       
   312    apply (blast intro: le_add1 [THEN le_imp_less_Suc, THEN ack_less_mono1] less_trans)
       
   313   txt {* induction step *}
       
   314   apply (rule Suc_leI [THEN le_less_trans])
       
   315    apply (rule le_refl [THEN add_le_mono, THEN le_less_trans])
       
   316     prefer 2
       
   317     apply (erule spec)
       
   318    apply (simp add: le_add2)
       
   319   txt {* final part of the simplification *}
       
   320   apply simp
       
   321   apply (rule le_add2 [THEN ack_le_mono1, THEN le_less_trans])
       
   322   apply (erule ack_less_mono2)
       
   323   done
       
   324 
       
   325 lemma PREC_case:
       
   326   "\<forall>l. f l < ack (kf, list_add l) ==>
       
   327     \<forall>l. g l < ack (kg, list_add l) ==>
       
   328     \<exists>k. \<forall>l. PREC f g l < ack (k, list_add l)"
       
   329   apply (rule exI)
       
   330   apply (rule allI)
       
   331   apply (rule le_less_trans [OF le_add1 PREC_case_aux])
       
   332    apply (blast intro: ack_add_bound2)+
       
   333   done
       
   334 
       
   335 lemma ack_bounds_PRIMREC: "f \<in> PRIMREC ==> \<exists>k. \<forall>l. f l < ack (k, list_add l)"
       
   336   apply (erule PRIMREC.induct)
       
   337       apply (blast intro: SC_case CONST_case PROJ_case COMP_case PREC_case)+
       
   338   done
       
   339 
       
   340 lemma ack_not_PRIMREC: "(\<lambda>l. case l of [] => 0 | x # l' => ack (x, x)) \<notin> PRIMREC"
       
   341   apply (rule notI)
       
   342   apply (erule ack_bounds_PRIMREC [THEN exE])
       
   343   apply (rule less_irrefl)
       
   344   apply (drule_tac x = "[x]" in spec)
       
   345   apply simp
       
   346   done
    71 
   347 
    72 end
   348 end