src/HOL/Old_Number_Theory/Euler.thy
changeset 64282 261d42f0bfac
parent 64281 bfc2e92d9b4c
child 64283 979cdfdf7a79
equal deleted inserted replaced
64281:bfc2e92d9b4c 64282:261d42f0bfac
     1 (*  Title:      HOL/Old_Number_Theory/Euler.thy
       
     2     Authors:    Jeremy Avigad, David Gray, and Adam Kramer
       
     3 *)
       
     4 
       
     5 section \<open>Euler's criterion\<close>
       
     6 
       
     7 theory Euler
       
     8 imports Residues EvenOdd
       
     9 begin
       
    10 
       
    11 definition MultInvPair :: "int => int => int => int set"
       
    12   where "MultInvPair a p j = {StandardRes p j, StandardRes p (a * (MultInv p j))}"
       
    13 
       
    14 definition SetS :: "int => int => int set set"
       
    15   where "SetS a p = MultInvPair a p ` SRStar p"
       
    16 
       
    17 
       
    18 subsection \<open>Property for MultInvPair\<close>
       
    19 
       
    20 lemma MultInvPair_prop1a:
       
    21   "[| zprime p; 2 < p; ~([a = 0](mod p));
       
    22       X \<in> (SetS a p); Y \<in> (SetS a p);
       
    23       ~((X \<inter> Y) = {}) |] ==> X = Y"
       
    24   apply (auto simp add: SetS_def)
       
    25   apply (drule StandardRes_SRStar_prop1a)+ defer 1
       
    26   apply (drule StandardRes_SRStar_prop1a)+
       
    27   apply (auto simp add: MultInvPair_def StandardRes_prop2 zcong_sym)
       
    28   apply (drule notE, rule MultInv_zcong_prop1, auto)[]
       
    29   apply (drule notE, rule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
       
    30   apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
       
    31   apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
       
    32   apply (drule MultInv_zcong_prop1, auto)[]
       
    33   apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
       
    34   apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
       
    35   apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
       
    36   done
       
    37 
       
    38 lemma MultInvPair_prop1b:
       
    39   "[| zprime p; 2 < p; ~([a = 0](mod p));
       
    40       X \<in> (SetS a p); Y \<in> (SetS a p);
       
    41       X \<noteq> Y |] ==> X \<inter> Y = {}"
       
    42   apply (rule notnotD)
       
    43   apply (rule notI)
       
    44   apply (drule MultInvPair_prop1a, auto)
       
    45   done
       
    46 
       
    47 lemma MultInvPair_prop1c: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==>  
       
    48     \<forall>X \<in> SetS a p. \<forall>Y \<in> SetS a p. X \<noteq> Y --> X\<inter>Y = {}"
       
    49   by (auto simp add: MultInvPair_prop1b)
       
    50 
       
    51 lemma MultInvPair_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
       
    52                           \<Union>(SetS a p) = SRStar p"
       
    53   apply (auto simp add: SetS_def MultInvPair_def StandardRes_SRStar_prop4 
       
    54     SRStar_mult_prop2)
       
    55   apply (frule StandardRes_SRStar_prop3)
       
    56   apply (rule bexI, auto)
       
    57   done
       
    58 
       
    59 lemma MultInvPair_distinct:
       
    60   assumes "zprime p" and "2 < p" and
       
    61     "~([a = 0] (mod p))" and
       
    62     "~([j = 0] (mod p))" and
       
    63     "~(QuadRes p a)"
       
    64   shows "~([j = a * MultInv p j] (mod p))"
       
    65 proof
       
    66   assume "[j = a * MultInv p j] (mod p)"
       
    67   then have "[j * j = (a * MultInv p j) * j] (mod p)"
       
    68     by (auto simp add: zcong_scalar)
       
    69   then have a:"[j * j = a * (MultInv p j * j)] (mod p)"
       
    70     by (auto simp add: ac_simps)
       
    71   have "[j * j = a] (mod p)"
       
    72   proof -
       
    73     from assms(1,2,4) have "[MultInv p j * j = 1] (mod p)"
       
    74       by (simp add: MultInv_prop2a)
       
    75     from this and a show ?thesis
       
    76       by (auto simp add: zcong_zmult_prop2)
       
    77   qed
       
    78   then have "[j\<^sup>2 = a] (mod p)" by (simp add: power2_eq_square)
       
    79   with assms show False by (simp add: QuadRes_def)
       
    80 qed
       
    81 
       
    82 lemma MultInvPair_card_two: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
       
    83                                 ~(QuadRes p a); ~([j = 0] (mod p)) |]  ==> 
       
    84                              card (MultInvPair a p j) = 2"
       
    85   apply (auto simp add: MultInvPair_def)
       
    86   apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))")
       
    87   apply auto
       
    88   apply (metis MultInvPair_distinct StandardRes_def aux)
       
    89   done
       
    90 
       
    91 
       
    92 subsection \<open>Properties of SetS\<close>
       
    93 
       
    94 lemma SetS_finite: "2 < p ==> finite (SetS a p)"
       
    95   by (auto simp add: SetS_def SRStar_finite [of p])
       
    96 
       
    97 lemma SetS_elems_finite: "\<forall>X \<in> SetS a p. finite X"
       
    98   by (auto simp add: SetS_def MultInvPair_def)
       
    99 
       
   100 lemma SetS_elems_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
       
   101                         ~(QuadRes p a) |]  ==>
       
   102                         \<forall>X \<in> SetS a p. card X = 2"
       
   103   apply (auto simp add: SetS_def)
       
   104   apply (frule StandardRes_SRStar_prop1a)
       
   105   apply (rule MultInvPair_card_two, auto)
       
   106   done
       
   107 
       
   108 lemma Union_SetS_finite: "2 < p ==> finite (\<Union>(SetS a p))"
       
   109   by (auto simp add: SetS_finite SetS_elems_finite)
       
   110 
       
   111 lemma card_sum_aux: "[| finite S; \<forall>X \<in> S. finite (X::int set); 
       
   112     \<forall>X \<in> S. card X = n |] ==> sum card S = sum (%x. n) S"
       
   113   by (induct set: finite) auto
       
   114 
       
   115 lemma SetS_card:
       
   116   assumes "zprime p" and "2 < p" and "~([a = 0] (mod p))" and "~(QuadRes p a)"
       
   117   shows "int(card(SetS a p)) = (p - 1) div 2"
       
   118 proof -
       
   119   have "(p - 1) = 2 * int(card(SetS a p))"
       
   120   proof -
       
   121     have "p - 1 = int(card(\<Union>(SetS a p)))"
       
   122       by (auto simp add: assms MultInvPair_prop2 SRStar_card)
       
   123     also have "... = int (sum card (SetS a p))"
       
   124       by (auto simp add: assms SetS_finite SetS_elems_finite
       
   125         MultInvPair_prop1c [of p a] card_Union_disjoint)
       
   126     also have "... = int(sum (%x.2) (SetS a p))"
       
   127       using assms by (auto simp add: SetS_elems_card SetS_finite SetS_elems_finite
       
   128         card_sum_aux simp del: sum_constant)
       
   129     also have "... = 2 * int(card( SetS a p))"
       
   130       by (auto simp add: assms SetS_finite sum_const2)
       
   131     finally show ?thesis .
       
   132   qed
       
   133   then show ?thesis by auto
       
   134 qed
       
   135 
       
   136 lemma SetS_prod_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p));
       
   137                               ~(QuadRes p a); x \<in> (SetS a p) |] ==> 
       
   138                           [\<Prod>x = a] (mod p)"
       
   139   apply (auto simp add: SetS_def MultInvPair_def)
       
   140   apply (frule StandardRes_SRStar_prop1a)
       
   141   apply hypsubst_thin
       
   142   apply (subgoal_tac "StandardRes p x \<noteq> StandardRes p (a * MultInv p x)")
       
   143   apply (auto simp add: StandardRes_prop2 MultInvPair_distinct)
       
   144   apply (frule_tac m = p and x = x and y = "(a * MultInv p x)" in 
       
   145     StandardRes_prop4)
       
   146   apply (subgoal_tac "[x * (a * MultInv p x) = a * (x * MultInv p x)] (mod p)")
       
   147   apply (drule_tac a = "StandardRes p x * StandardRes p (a * MultInv p x)" and
       
   148                    b = "x * (a * MultInv p x)" and
       
   149                    c = "a * (x * MultInv p x)" in  zcong_trans, force)
       
   150   apply (frule_tac p = p and x = x in MultInv_prop2, auto)
       
   151 apply (metis StandardRes_SRStar_prop3 mult_1_right mult.commute zcong_sym zcong_zmult_prop1)
       
   152   apply (auto simp add: ac_simps)
       
   153   done
       
   154 
       
   155 lemma aux1: "[| 0 < x; (x::int) < a; x \<noteq> (a - 1) |] ==> x < a - 1"
       
   156   by arith
       
   157 
       
   158 lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
       
   159   by auto
       
   160 
       
   161 lemma d22set_induct_old: "(\<And>a::int. 1 < a \<longrightarrow> P (a - 1) \<Longrightarrow> P a) \<Longrightarrow> P x"
       
   162 using d22set.induct by blast
       
   163 
       
   164 lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
       
   165   apply (induct p rule: d22set_induct_old)
       
   166   apply auto
       
   167   apply (simp add: SRStar_def d22set.simps)
       
   168   apply (simp add: SRStar_def d22set.simps, clarify)
       
   169   apply (frule aux1)
       
   170   apply (frule aux2, auto)
       
   171   apply (simp_all add: SRStar_def)
       
   172   apply (simp add: d22set.simps)
       
   173   apply (frule d22set_le)
       
   174   apply (frule d22set_g_1, auto)
       
   175   done
       
   176 
       
   177 lemma Union_SetS_prod_prop1:
       
   178   assumes "zprime p" and "2 < p" and "~([a = 0] (mod p))" and
       
   179     "~(QuadRes p a)"
       
   180   shows "[\<Prod>(\<Union>(SetS a p)) = a ^ nat ((p - 1) div 2)] (mod p)"
       
   181 proof -
       
   182   from assms have "[\<Prod>(\<Union>(SetS a p)) = prod (prod (%x. x)) (SetS a p)] (mod p)"
       
   183     by (auto simp add: SetS_finite SetS_elems_finite
       
   184       MultInvPair_prop1c prod.Union_disjoint)
       
   185   also have "[prod (prod (%x. x)) (SetS a p) = 
       
   186       prod (%x. a) (SetS a p)] (mod p)"
       
   187     by (rule prod_same_function_zcong)
       
   188       (auto simp add: assms SetS_prod_prop SetS_finite)
       
   189   also (zcong_trans) have "[prod (%x. a) (SetS a p) = 
       
   190       a^(card (SetS a p))] (mod p)"
       
   191     by (auto simp add: assms SetS_finite prod_constant)
       
   192   finally (zcong_trans) show ?thesis
       
   193     apply (rule zcong_trans)
       
   194     apply (subgoal_tac "card(SetS a p) = nat((p - 1) div 2)", auto)
       
   195     apply (subgoal_tac "nat(int(card(SetS a p))) = nat((p - 1) div 2)", force)
       
   196     apply (auto simp add: assms SetS_card)
       
   197     done
       
   198 qed
       
   199 
       
   200 lemma Union_SetS_prod_prop2:
       
   201   assumes "zprime p" and "2 < p" and "~([a = 0](mod p))"
       
   202   shows "\<Prod>(\<Union>(SetS a p)) = zfact (p - 1)"
       
   203 proof -
       
   204   from assms have "\<Prod>(\<Union>(SetS a p)) = \<Prod>(SRStar p)"
       
   205     by (auto simp add: MultInvPair_prop2)
       
   206   also have "... = \<Prod>({1} \<union> (d22set (p - 1)))"
       
   207     by (auto simp add: assms SRStar_d22set_prop)
       
   208   also have "... = zfact(p - 1)"
       
   209   proof -
       
   210     have "~(1 \<in> d22set (p - 1)) & finite( d22set (p - 1))"
       
   211       by (metis d22set_fin d22set_g_1 linorder_neq_iff)
       
   212     then have "\<Prod>({1} \<union> (d22set (p - 1))) = \<Prod>(d22set (p - 1))"
       
   213       by auto
       
   214     then show ?thesis
       
   215       by (auto simp add: d22set_prod_zfact)
       
   216   qed
       
   217   finally show ?thesis .
       
   218 qed
       
   219 
       
   220 lemma zfact_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
       
   221                    [zfact (p - 1) = a ^ nat ((p - 1) div 2)] (mod p)"
       
   222   apply (frule Union_SetS_prod_prop1) 
       
   223   apply (auto simp add: Union_SetS_prod_prop2)
       
   224   done
       
   225 
       
   226 text \<open>\medskip Prove the first part of Euler's Criterion:\<close>
       
   227 
       
   228 lemma Euler_part1: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
       
   229     ~(QuadRes p x) |] ==> 
       
   230       [x^(nat (((p) - 1) div 2)) = -1](mod p)"
       
   231   by (metis Wilson_Russ zcong_sym zcong_trans zfact_prop)
       
   232 
       
   233 text \<open>\medskip Prove another part of Euler Criterion:\<close>
       
   234 
       
   235 lemma aux_1: "0 < p ==> (a::int) ^ nat (p) = a * a ^ (nat (p) - 1)"
       
   236 proof -
       
   237   assume "0 < p"
       
   238   then have "a ^ (nat p) =  a ^ (1 + (nat p - 1))"
       
   239     by (auto simp add: diff_add_assoc)
       
   240   also have "... = (a ^ 1) * a ^ (nat(p) - 1)"
       
   241     by (simp only: power_add)
       
   242   also have "... = a * a ^ (nat(p) - 1)"
       
   243     by auto
       
   244   finally show ?thesis .
       
   245 qed
       
   246 
       
   247 lemma aux_2: "[| (2::int) < p; p \<in> zOdd |] ==> 0 < ((p - 1) div 2)"
       
   248 proof -
       
   249   assume "2 < p" and "p \<in> zOdd"
       
   250   then have "(p - 1):zEven"
       
   251     by (auto simp add: zEven_def zOdd_def)
       
   252   then have aux_1: "2 * ((p - 1) div 2) = (p - 1)"
       
   253     by (auto simp add: even_div_2_prop2)
       
   254   with \<open>2 < p\<close> have "1 < (p - 1)"
       
   255     by auto
       
   256   then have " 1 < (2 * ((p - 1) div 2))"
       
   257     by (auto simp add: aux_1)
       
   258   then have "0 < (2 * ((p - 1) div 2)) div 2"
       
   259     by auto
       
   260   then show ?thesis by auto
       
   261 qed
       
   262 
       
   263 lemma Euler_part2:
       
   264     "[| 2 < p; zprime p; [a = 0] (mod p) |] ==> [0 = a ^ nat ((p - 1) div 2)] (mod p)"
       
   265   apply (frule zprime_zOdd_eq_grt_2)
       
   266   apply (frule aux_2, auto)
       
   267   apply (frule_tac a = a in aux_1, auto)
       
   268   apply (frule zcong_zmult_prop1, auto)
       
   269   done
       
   270 
       
   271 text \<open>\medskip Prove the final part of Euler's Criterion:\<close>
       
   272 
       
   273 lemma aux__1: "[| ~([x = 0] (mod p)); [y\<^sup>2 = x] (mod p)|] ==> ~(p dvd y)"
       
   274   by (metis dvdI power2_eq_square zcong_sym zcong_trans zcong_zero_equiv_div dvd_trans)
       
   275 
       
   276 lemma aux__2: "2 * nat((p - 1) div 2) =  nat (2 * ((p - 1) div 2))"
       
   277   by (auto simp add: nat_mult_distrib)
       
   278 
       
   279 lemma Euler_part3: "[| 2 < p; zprime p; ~([x = 0](mod p)); QuadRes p x |] ==> 
       
   280                       [x^(nat (((p) - 1) div 2)) = 1](mod p)"
       
   281   apply (subgoal_tac "p \<in> zOdd")
       
   282   apply (auto simp add: QuadRes_def)
       
   283    prefer 2 
       
   284    apply (metis zprime_zOdd_eq_grt_2)
       
   285   apply (frule aux__1, auto)
       
   286   apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower)
       
   287   apply (auto simp add: power_mult [symmetric]) 
       
   288   apply (rule zcong_trans)
       
   289   apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"])
       
   290   apply (metis Little_Fermat even_div_2_prop2 odd_minus_one_even mult_1 aux__2)
       
   291   done
       
   292 
       
   293 
       
   294 text \<open>\medskip Finally show Euler's Criterion:\<close>
       
   295 
       
   296 theorem Euler_Criterion: "[| 2 < p; zprime p |] ==> [(Legendre a p) =
       
   297     a^(nat (((p) - 1) div 2))] (mod p)"
       
   298   apply (auto simp add: Legendre_def Euler_part2)
       
   299   apply (frule Euler_part3, auto simp add: zcong_sym)[]
       
   300   apply (frule Euler_part1, auto simp add: zcong_sym)[]
       
   301   done
       
   302 
       
   303 end