src/HOL/Old_Number_Theory/Fib.thy
changeset 64282 261d42f0bfac
parent 64281 bfc2e92d9b4c
child 64283 979cdfdf7a79
equal deleted inserted replaced
64281:bfc2e92d9b4c 64282:261d42f0bfac
     1 (*  Title:      HOL/Old_Number_Theory/Fib.thy
       
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     3     Copyright   1997  University of Cambridge
       
     4 *)
       
     5 
       
     6 section \<open>The Fibonacci function\<close>
       
     7 
       
     8 theory Fib
       
     9 imports Primes
       
    10 begin
       
    11 
       
    12 text \<open>
       
    13   Fibonacci numbers: proofs of laws taken from:
       
    14   R. L. Graham, D. E. Knuth, O. Patashnik.  Concrete Mathematics.
       
    15   (Addison-Wesley, 1989)
       
    16 
       
    17   \bigskip
       
    18 \<close>
       
    19 
       
    20 fun fib :: "nat \<Rightarrow> nat"
       
    21 where
       
    22   "fib 0 = 0"
       
    23 | "fib (Suc 0) = 1"
       
    24 | fib_2: "fib (Suc (Suc n)) = fib n + fib (Suc n)"
       
    25 
       
    26 text \<open>
       
    27   \medskip The difficulty in these proofs is to ensure that the
       
    28   induction hypotheses are applied before the definition of @{term
       
    29   fib}.  Towards this end, the @{term fib} equations are not declared
       
    30   to the Simplifier and are applied very selectively at first.
       
    31 \<close>
       
    32 
       
    33 text\<open>We disable \<open>fib.fib_2fib_2\<close> for simplification ...\<close>
       
    34 declare fib_2 [simp del]
       
    35 
       
    36 text\<open>...then prove a version that has a more restrictive pattern.\<close>
       
    37 lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
       
    38   by (rule fib_2)
       
    39 
       
    40 text \<open>\medskip Concrete Mathematics, page 280\<close>
       
    41 
       
    42 lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n"
       
    43 proof (induct n rule: fib.induct)
       
    44   case 1 show ?case by simp
       
    45 next
       
    46   case 2 show ?case  by (simp add: fib_2)
       
    47 next
       
    48   case 3 thus ?case by (simp add: fib_2 add_mult_distrib2)
       
    49 qed
       
    50 
       
    51 lemma fib_Suc_neq_0: "fib (Suc n) \<noteq> 0"
       
    52   apply (induct n rule: fib.induct)
       
    53     apply (simp_all add: fib_2)
       
    54   done
       
    55 
       
    56 lemma fib_Suc_gr_0: "0 < fib (Suc n)"
       
    57   by (insert fib_Suc_neq_0 [of n], simp)  
       
    58 
       
    59 lemma fib_gr_0: "0 < n ==> 0 < fib n"
       
    60   by (case_tac n, auto simp add: fib_Suc_gr_0) 
       
    61 
       
    62 
       
    63 text \<open>
       
    64   \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
       
    65   much easier using integers, not natural numbers!
       
    66 \<close>
       
    67 
       
    68 lemma fib_Cassini_int:
       
    69  "int (fib (Suc (Suc n)) * fib n) =
       
    70   (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1
       
    71    else int (fib (Suc n) * fib (Suc n)) + 1)"
       
    72 proof(induct n rule: fib.induct)
       
    73   case 1 thus ?case by (simp add: fib_2)
       
    74 next
       
    75   case 2 thus ?case by (simp add: fib_2 mod_Suc)
       
    76 next 
       
    77   case (3 x) 
       
    78   have "Suc 0 \<noteq> x mod 2 \<longrightarrow> x mod 2 = 0" by presburger
       
    79   with "3.hyps" show ?case by (simp add: fib.simps add_mult_distrib add_mult_distrib2)
       
    80 qed
       
    81 
       
    82 text\<open>We now obtain a version for the natural numbers via the coercion 
       
    83    function @{term int}.\<close>
       
    84 theorem fib_Cassini:
       
    85  "fib (Suc (Suc n)) * fib n =
       
    86   (if n mod 2 = 0 then fib (Suc n) * fib (Suc n) - 1
       
    87    else fib (Suc n) * fib (Suc n) + 1)"
       
    88   apply (rule of_nat_eq_iff [where 'a = int, THEN iffD1]) 
       
    89   using fib_Cassini_int apply (auto simp add: Suc_leI fib_Suc_gr_0 of_nat_diff)
       
    90   done
       
    91 
       
    92 
       
    93 text \<open>\medskip Toward Law 6.111 of Concrete Mathematics\<close>
       
    94 
       
    95 lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (Suc n)) = Suc 0"
       
    96   apply (induct n rule: fib.induct)
       
    97     prefer 3
       
    98     apply (simp add: gcd_commute fib_Suc3)
       
    99    apply (simp_all add: fib_2)
       
   100   done
       
   101 
       
   102 lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)"
       
   103   apply (simp add: gcd_commute [of "fib m"])
       
   104   apply (case_tac m)
       
   105    apply simp 
       
   106   apply (simp add: fib_add)
       
   107   apply (simp add: add.commute gcd_non_0 [OF fib_Suc_gr_0])
       
   108   apply (simp add: gcd_non_0 [OF fib_Suc_gr_0, symmetric])
       
   109   apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel)
       
   110   done
       
   111 
       
   112 lemma gcd_fib_diff: "m \<le> n ==> gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
       
   113   by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) 
       
   114 
       
   115 lemma gcd_fib_mod: "0 < m ==> gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
       
   116 proof (induct n rule: less_induct)
       
   117   case (less n)
       
   118   from less.prems have pos_m: "0 < m" .
       
   119   show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
       
   120   proof (cases "m < n")
       
   121     case True note m_n = True
       
   122     then have m_n': "m \<le> n" by auto
       
   123     with pos_m have pos_n: "0 < n" by auto
       
   124     with pos_m m_n have diff: "n - m < n" by auto
       
   125     have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
       
   126     by (simp add: mod_if [of n]) (insert m_n, auto)
       
   127     also have "\<dots> = gcd (fib m) (fib (n - m))" by (simp add: less.hyps diff pos_m)
       
   128     also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff m_n')
       
   129     finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
       
   130   next
       
   131     case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
       
   132     by (cases "m = n") auto
       
   133   qed
       
   134 qed
       
   135 
       
   136 lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)"  \<comment> \<open>Law 6.111\<close>
       
   137   apply (induct m n rule: gcd_induct)
       
   138   apply (simp_all add: gcd_non_0 gcd_commute gcd_fib_mod)
       
   139   done
       
   140 
       
   141 theorem fib_mult_eq_sum:
       
   142     "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
       
   143   apply (induct n rule: fib.induct)
       
   144     apply (auto simp add: atMost_Suc fib_2)
       
   145   apply (simp add: add_mult_distrib add_mult_distrib2)
       
   146   done
       
   147 
       
   148 end