src/HOL/Multivariate_Analysis/normarith.ML
changeset 36938 278029c8a462
parent 36937 a30e50d4aeeb
child 36939 897ee863885d
equal deleted inserted replaced
36937:a30e50d4aeeb 36938:278029c8a462
     1 (* Title:      Library/normarith.ML
     1 (*  Title:      Library/normarith.ML
     2    Author:     Amine Chaieb, University of Cambridge
     2     Author:     Amine Chaieb, University of Cambridge
     3    Description: A simple decision procedure for linear problems in euclidean space
     3 
       
     4 Simple decision procedure for linear problems in Euclidean space.
     4 *)
     5 *)
     5 
     6 
     6   (* Now the norm procedure for euclidean spaces *)
     7 signature NORM_ARITH =
     7 
       
     8 
       
     9 signature NORM_ARITH = 
       
    10 sig
     8 sig
    11  val norm_arith : Proof.context -> conv
     9  val norm_arith : Proof.context -> conv
    12  val norm_arith_tac : Proof.context -> int -> tactic
    10  val norm_arith_tac : Proof.context -> int -> tactic
    13 end
    11 end
    14 
    12 
    15 structure NormArith : NORM_ARITH = 
    13 structure NormArith : NORM_ARITH =
    16 struct
    14 struct
    17 
    15 
    18  open Conv;
    16  open Conv;
    19  val bool_eq = op = : bool *bool -> bool
    17  val bool_eq = op = : bool *bool -> bool
    20   fun dest_ratconst t = case term_of t of
    18   fun dest_ratconst t = case term_of t of
    21    Const(@{const_name divide}, _)$a$b => Rat.rat_of_quotient(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd)
    19    Const(@{const_name divide}, _)$a$b => Rat.rat_of_quotient(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd)
    22  | Const(@{const_name inverse}, _)$a => Rat.rat_of_quotient(1, HOLogic.dest_number a |> snd)
    20  | Const(@{const_name inverse}, _)$a => Rat.rat_of_quotient(1, HOLogic.dest_number a |> snd)
    23  | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd)
    21  | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd)
    24  fun is_ratconst t = can dest_ratconst t
    22  fun is_ratconst t = can dest_ratconst t
    25  fun augment_norm b t acc = case term_of t of 
    23  fun augment_norm b t acc = case term_of t of
    26      Const(@{const_name norm}, _) $ _ => insert (eq_pair bool_eq (op aconvc)) (b,Thm.dest_arg t) acc
    24      Const(@{const_name norm}, _) $ _ => insert (eq_pair bool_eq (op aconvc)) (b,Thm.dest_arg t) acc
    27    | _ => acc
    25    | _ => acc
    28  fun find_normedterms t acc = case term_of t of
    26  fun find_normedterms t acc = case term_of t of
    29     @{term "op + :: real => _"}$_$_ =>
    27     @{term "op + :: real => _"}$_$_ =>
    30             find_normedterms (Thm.dest_arg1 t) (find_normedterms (Thm.dest_arg t) acc)
    28             find_normedterms (Thm.dest_arg1 t) (find_normedterms (Thm.dest_arg t) acc)
    31       | @{term "op * :: real => _"}$_$n =>
    29       | @{term "op * :: real => _"}$_$n =>
    32             if not (is_ratconst (Thm.dest_arg1 t)) then acc else
    30             if not (is_ratconst (Thm.dest_arg1 t)) then acc else
    33             augment_norm (dest_ratconst (Thm.dest_arg1 t) >=/ Rat.zero) 
    31             augment_norm (dest_ratconst (Thm.dest_arg1 t) >=/ Rat.zero)
    34                       (Thm.dest_arg t) acc
    32                       (Thm.dest_arg t) acc
    35       | _ => augment_norm true t acc 
    33       | _ => augment_norm true t acc
    36 
    34 
    37  val cterm_lincomb_neg = FuncUtil.Ctermfunc.map Rat.neg
    35  val cterm_lincomb_neg = FuncUtil.Ctermfunc.map Rat.neg
    38  fun cterm_lincomb_cmul c t = 
    36  fun cterm_lincomb_cmul c t =
    39     if c =/ Rat.zero then FuncUtil.Ctermfunc.empty else FuncUtil.Ctermfunc.map (fn x => x */ c) t
    37     if c =/ Rat.zero then FuncUtil.Ctermfunc.empty else FuncUtil.Ctermfunc.map (fn x => x */ c) t
    40  fun cterm_lincomb_add l r = FuncUtil.Ctermfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r
    38  fun cterm_lincomb_add l r = FuncUtil.Ctermfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r
    41  fun cterm_lincomb_sub l r = cterm_lincomb_add l (cterm_lincomb_neg r)
    39  fun cterm_lincomb_sub l r = cterm_lincomb_add l (cterm_lincomb_neg r)
    42  fun cterm_lincomb_eq l r = FuncUtil.Ctermfunc.is_empty (cterm_lincomb_sub l r)
    40  fun cterm_lincomb_eq l r = FuncUtil.Ctermfunc.is_empty (cterm_lincomb_sub l r)
    43 
    41 
    44  val int_lincomb_neg = FuncUtil.Intfunc.map Rat.neg
    42  val int_lincomb_neg = FuncUtil.Intfunc.map Rat.neg
    45  fun int_lincomb_cmul c t = 
    43  fun int_lincomb_cmul c t =
    46     if c =/ Rat.zero then FuncUtil.Intfunc.empty else FuncUtil.Intfunc.map (fn x => x */ c) t
    44     if c =/ Rat.zero then FuncUtil.Intfunc.empty else FuncUtil.Intfunc.map (fn x => x */ c) t
    47  fun int_lincomb_add l r = FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r
    45  fun int_lincomb_add l r = FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r
    48  fun int_lincomb_sub l r = int_lincomb_add l (int_lincomb_neg r)
    46  fun int_lincomb_sub l r = int_lincomb_add l (int_lincomb_neg r)
    49  fun int_lincomb_eq l r = FuncUtil.Intfunc.is_empty (int_lincomb_sub l r)
    47  fun int_lincomb_eq l r = FuncUtil.Intfunc.is_empty (int_lincomb_sub l r)
    50 
    48 
    51 fun vector_lincomb t = case term_of t of 
    49 fun vector_lincomb t = case term_of t of
    52    Const(@{const_name plus}, _) $ _ $ _ =>
    50    Const(@{const_name plus}, _) $ _ $ _ =>
    53     cterm_lincomb_add (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t))
    51     cterm_lincomb_add (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t))
    54  | Const(@{const_name minus}, _) $ _ $ _ =>
    52  | Const(@{const_name minus}, _) $ _ $ _ =>
    55     cterm_lincomb_sub (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t))
    53     cterm_lincomb_sub (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t))
    56  | Const(@{const_name scaleR}, _)$_$_ =>
    54  | Const(@{const_name scaleR}, _)$_$_ =>
    57     cterm_lincomb_cmul (dest_ratconst (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t))
    55     cterm_lincomb_cmul (dest_ratconst (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t))
    58  | Const(@{const_name uminus}, _)$_ =>
    56  | Const(@{const_name uminus}, _)$_ =>
    59      cterm_lincomb_neg (vector_lincomb (Thm.dest_arg t))
    57      cterm_lincomb_neg (vector_lincomb (Thm.dest_arg t))
    60 (* FIXME: how should we handle numerals?
    58 (* FIXME: how should we handle numerals?
    61  | Const(@ {const_name vec},_)$_ => 
    59  | Const(@ {const_name vec},_)$_ =>
    62    let 
    60    let
    63      val b = ((snd o HOLogic.dest_number o term_of o Thm.dest_arg) t = 0 
    61      val b = ((snd o HOLogic.dest_number o term_of o Thm.dest_arg) t = 0
    64                handle TERM _=> false)
    62                handle TERM _=> false)
    65    in if b then FuncUtil.Ctermfunc.onefunc (t,Rat.one)
    63    in if b then FuncUtil.Ctermfunc.onefunc (t,Rat.one)
    66       else FuncUtil.Ctermfunc.empty
    64       else FuncUtil.Ctermfunc.empty
    67    end
    65    end
    68 *)
    66 *)
    69  | _ => FuncUtil.Ctermfunc.onefunc (t,Rat.one)
    67  | _ => FuncUtil.Ctermfunc.onefunc (t,Rat.one)
    70 
    68 
    71  fun vector_lincombs ts =
    69  fun vector_lincombs ts =
    72   fold_rev 
    70   fold_rev
    73    (fn t => fn fns => case AList.lookup (op aconvc) fns t of
    71    (fn t => fn fns => case AList.lookup (op aconvc) fns t of
    74      NONE => 
    72      NONE =>
    75        let val f = vector_lincomb t 
    73        let val f = vector_lincomb t
    76        in case find_first (fn (_,f') => cterm_lincomb_eq f f') fns of
    74        in case find_first (fn (_,f') => cterm_lincomb_eq f f') fns of
    77            SOME (_,f') => (t,f') :: fns
    75            SOME (_,f') => (t,f') :: fns
    78          | NONE => (t,f) :: fns 
    76          | NONE => (t,f) :: fns
    79        end
    77        end
    80    | SOME _ => fns) ts []
    78    | SOME _ => fns) ts []
    81 
    79 
    82 fun replacenegnorms cv t = case term_of t of 
    80 fun replacenegnorms cv t = case term_of t of
    83   @{term "op + :: real => _"}$_$_ => binop_conv (replacenegnorms cv) t
    81   @{term "op + :: real => _"}$_$_ => binop_conv (replacenegnorms cv) t
    84 | @{term "op * :: real => _"}$_$_ => 
    82 | @{term "op * :: real => _"}$_$_ =>
    85     if dest_ratconst (Thm.dest_arg1 t) </ Rat.zero then arg_conv cv t else reflexive t
    83     if dest_ratconst (Thm.dest_arg1 t) </ Rat.zero then arg_conv cv t else reflexive t
    86 | _ => reflexive t
    84 | _ => reflexive t
    87 fun flip v eq = 
    85 fun flip v eq =
    88   if FuncUtil.Ctermfunc.defined eq v 
    86   if FuncUtil.Ctermfunc.defined eq v
    89   then FuncUtil.Ctermfunc.update (v, Rat.neg (FuncUtil.Ctermfunc.apply eq v)) eq else eq
    87   then FuncUtil.Ctermfunc.update (v, Rat.neg (FuncUtil.Ctermfunc.apply eq v)) eq else eq
    90 fun allsubsets s = case s of 
    88 fun allsubsets s = case s of
    91   [] => [[]]
    89   [] => [[]]
    92 |(a::t) => let val res = allsubsets t in
    90 |(a::t) => let val res = allsubsets t in
    93                map (cons a) res @ res end
    91                map (cons a) res @ res end
    94 fun evaluate env lin =
    92 fun evaluate env lin =
    95  FuncUtil.Intfunc.fold (fn (x,c) => fn s => s +/ c */ (FuncUtil.Intfunc.apply env x)) 
    93  FuncUtil.Intfunc.fold (fn (x,c) => fn s => s +/ c */ (FuncUtil.Intfunc.apply env x))
    96    lin Rat.zero
    94    lin Rat.zero
    97 
    95 
    98 fun solve (vs,eqs) = case (vs,eqs) of
    96 fun solve (vs,eqs) = case (vs,eqs) of
    99   ([],[]) => SOME (FuncUtil.Intfunc.onefunc (0,Rat.one))
    97   ([],[]) => SOME (FuncUtil.Intfunc.onefunc (0,Rat.one))
   100  |(_,eq::oeqs) => 
    98  |(_,eq::oeqs) =>
   101    (case filter (member (op =) vs) (FuncUtil.Intfunc.dom eq) of (*FIXME use find_first here*)
    99    (case filter (member (op =) vs) (FuncUtil.Intfunc.dom eq) of (*FIXME use find_first here*)
   102      [] => NONE
   100      [] => NONE
   103     | v::_ => 
   101     | v::_ =>
   104        if FuncUtil.Intfunc.defined eq v 
   102        if FuncUtil.Intfunc.defined eq v
   105        then 
   103        then
   106         let 
   104         let
   107          val c = FuncUtil.Intfunc.apply eq v
   105          val c = FuncUtil.Intfunc.apply eq v
   108          val vdef = int_lincomb_cmul (Rat.neg (Rat.inv c)) eq
   106          val vdef = int_lincomb_cmul (Rat.neg (Rat.inv c)) eq
   109          fun eliminate eqn = if not (FuncUtil.Intfunc.defined eqn v) then eqn 
   107          fun eliminate eqn = if not (FuncUtil.Intfunc.defined eqn v) then eqn
   110                              else int_lincomb_add (int_lincomb_cmul (FuncUtil.Intfunc.apply eqn v) vdef) eqn
   108                              else int_lincomb_add (int_lincomb_cmul (FuncUtil.Intfunc.apply eqn v) vdef) eqn
   111         in (case solve (remove (op =) v vs, map eliminate oeqs) of
   109         in (case solve (remove (op =) v vs, map eliminate oeqs) of
   112             NONE => NONE
   110             NONE => NONE
   113           | SOME soln => SOME (FuncUtil.Intfunc.update (v, evaluate soln (FuncUtil.Intfunc.delete_safe v vdef)) soln))
   111           | SOME soln => SOME (FuncUtil.Intfunc.update (v, evaluate soln (FuncUtil.Intfunc.delete_safe v vdef)) soln))
   114         end
   112         end
   115        else NONE)
   113        else NONE)
   116 
   114 
   117 fun combinations k l = if k = 0 then [[]] else
   115 fun combinations k l = if k = 0 then [[]] else
   118  case l of 
   116  case l of
   119   [] => []
   117   [] => []
   120 | h::t => map (cons h) (combinations (k - 1) t) @ combinations k t
   118 | h::t => map (cons h) (combinations (k - 1) t) @ combinations k t
   121 
   119 
   122 
   120 
   123 fun forall2 p l1 l2 = case (l1,l2) of 
   121 fun forall2 p l1 l2 = case (l1,l2) of
   124    ([],[]) => true
   122    ([],[]) => true
   125  | (h1::t1,h2::t2) => p h1 h2 andalso forall2 p t1 t2
   123  | (h1::t1,h2::t2) => p h1 h2 andalso forall2 p t1 t2
   126  | _ => false;
   124  | _ => false;
   127 
   125 
   128 
   126 
   129 fun vertices vs eqs =
   127 fun vertices vs eqs =
   130  let 
   128  let
   131   fun vertex cmb = case solve(vs,cmb) of
   129   fun vertex cmb = case solve(vs,cmb) of
   132     NONE => NONE
   130     NONE => NONE
   133    | SOME soln => SOME (map (fn v => FuncUtil.Intfunc.tryapplyd soln v Rat.zero) vs)
   131    | SOME soln => SOME (map (fn v => FuncUtil.Intfunc.tryapplyd soln v Rat.zero) vs)
   134   val rawvs = map_filter vertex (combinations (length vs) eqs)
   132   val rawvs = map_filter vertex (combinations (length vs) eqs)
   135   val unset = filter (forall (fn c => c >=/ Rat.zero)) rawvs 
   133   val unset = filter (forall (fn c => c >=/ Rat.zero)) rawvs
   136  in fold_rev (insert (uncurry (forall2 (curry op =/)))) unset [] 
   134  in fold_rev (insert (uncurry (forall2 (curry op =/)))) unset []
   137  end 
   135  end
   138 
   136 
   139 fun subsumes l m = forall2 (fn x => fn y => Rat.abs x <=/ Rat.abs y) l m 
   137 fun subsumes l m = forall2 (fn x => fn y => Rat.abs x <=/ Rat.abs y) l m
   140 
   138 
   141 fun subsume todo dun = case todo of
   139 fun subsume todo dun = case todo of
   142  [] => dun
   140  [] => dun
   143 |v::ovs => 
   141 |v::ovs =>
   144    let val dun' = if exists (fn w => subsumes w v) dun then dun
   142    let val dun' = if exists (fn w => subsumes w v) dun then dun
   145                   else v::(filter (fn w => not(subsumes v w)) dun) 
   143                   else v::(filter (fn w => not(subsumes v w)) dun)
   146    in subsume ovs dun' 
   144    in subsume ovs dun'
   147    end;
   145    end;
   148 
   146 
   149 fun match_mp PQ P = P RS PQ;
   147 fun match_mp PQ P = P RS PQ;
   150 
   148 
   151 fun cterm_of_rat x = 
   149 fun cterm_of_rat x =
   152 let val (a, b) = Rat.quotient_of_rat x
   150 let val (a, b) = Rat.quotient_of_rat x
   153 in 
   151 in
   154  if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a
   152  if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a
   155   else Thm.capply (Thm.capply @{cterm "op / :: real => _"} 
   153   else Thm.capply (Thm.capply @{cterm "op / :: real => _"}
   156                    (Numeral.mk_cnumber @{ctyp "real"} a))
   154                    (Numeral.mk_cnumber @{ctyp "real"} a))
   157         (Numeral.mk_cnumber @{ctyp "real"} b)
   155         (Numeral.mk_cnumber @{ctyp "real"} b)
   158 end;
   156 end;
   159 
   157 
   160 fun norm_cmul_rule c th = instantiate' [] [SOME (cterm_of_rat c)] (th RS @{thm norm_cmul_rule_thm});
   158 fun norm_cmul_rule c th = instantiate' [] [SOME (cterm_of_rat c)] (th RS @{thm norm_cmul_rule_thm});
   161 
   159 
   162 fun norm_add_rule th1 th2 = [th1, th2] MRS @{thm norm_add_rule_thm};
   160 fun norm_add_rule th1 th2 = [th1, th2] MRS @{thm norm_add_rule_thm};
   163 
   161 
   164   (* I think here the static context should be sufficient!! *)
   162   (* I think here the static context should be sufficient!! *)
   165 fun inequality_canon_rule ctxt = 
   163 fun inequality_canon_rule ctxt =
   166  let 
   164  let
   167   (* FIXME : Should be computed statically!! *)
   165   (* FIXME : Should be computed statically!! *)
   168   val real_poly_conv = 
   166   val real_poly_conv =
   169     Semiring_Normalizer.semiring_normalize_wrapper ctxt
   167     Semiring_Normalizer.semiring_normalize_wrapper ctxt
   170      (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"}))
   168      (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"}))
   171  in fconv_rule (arg_conv ((rewr_conv @{thm ge_iff_diff_ge_0}) then_conv arg_conv (Numeral_Simprocs.field_comp_conv then_conv real_poly_conv)))
   169  in fconv_rule (arg_conv ((rewr_conv @{thm ge_iff_diff_ge_0}) then_conv arg_conv (Numeral_Simprocs.field_comp_conv then_conv real_poly_conv)))
   172 end;
   170 end;
   173 
   171 
   174  fun absc cv ct = case term_of ct of 
   172  fun absc cv ct = case term_of ct of
   175  Abs (v,_, _) => 
   173  Abs (v,_, _) =>
   176   let val (x,t) = Thm.dest_abs (SOME v) ct
   174   let val (x,t) = Thm.dest_abs (SOME v) ct
   177   in Thm.abstract_rule ((fst o dest_Free o term_of) x) x (cv t)
   175   in Thm.abstract_rule ((fst o dest_Free o term_of) x) x (cv t)
   178   end
   176   end
   179  | _ => all_conv ct;
   177  | _ => all_conv ct;
   180 
   178 
   181 fun sub_conv cv ct = (comb_conv cv else_conv absc cv) ct;
   179 fun sub_conv cv ct = (comb_conv cv else_conv absc cv) ct;
   182 fun botc1 conv ct = 
   180 fun botc1 conv ct =
   183   ((sub_conv (botc1 conv)) then_conv (conv else_conv all_conv)) ct;
   181   ((sub_conv (botc1 conv)) then_conv (conv else_conv all_conv)) ct;
   184 
   182 
   185  val apply_pth1 = rewr_conv @{thm pth_1};
   183  val apply_pth1 = rewr_conv @{thm pth_1};
   186  val apply_pth2 = rewr_conv @{thm pth_2};
   184  val apply_pth2 = rewr_conv @{thm pth_2};
   187  val apply_pth3 = rewr_conv @{thm pth_3};
   185  val apply_pth3 = rewr_conv @{thm pth_3};
   194  val apply_ptha = rewr_conv @{thm pth_a};
   192  val apply_ptha = rewr_conv @{thm pth_a};
   195  val apply_pthb = rewrs_conv @{thms pth_b};
   193  val apply_pthb = rewrs_conv @{thms pth_b};
   196  val apply_pthc = rewrs_conv @{thms pth_c};
   194  val apply_pthc = rewrs_conv @{thms pth_c};
   197  val apply_pthd = try_conv (rewr_conv @{thm pth_d});
   195  val apply_pthd = try_conv (rewr_conv @{thm pth_d});
   198 
   196 
   199 fun headvector t = case t of 
   197 fun headvector t = case t of
   200   Const(@{const_name plus}, _)$
   198   Const(@{const_name plus}, _)$
   201    (Const(@{const_name scaleR}, _)$l$v)$r => v
   199    (Const(@{const_name scaleR}, _)$l$v)$r => v
   202  | Const(@{const_name scaleR}, _)$l$v => v
   200  | Const(@{const_name scaleR}, _)$l$v => v
   203  | _ => error "headvector: non-canonical term"
   201  | _ => error "headvector: non-canonical term"
   204 
   202 
   205 fun vector_cmul_conv ct =
   203 fun vector_cmul_conv ct =
   206    ((apply_pth5 then_conv arg1_conv Numeral_Simprocs.field_comp_conv) else_conv
   204    ((apply_pth5 then_conv arg1_conv Numeral_Simprocs.field_comp_conv) else_conv
   207     (apply_pth6 then_conv binop_conv vector_cmul_conv)) ct
   205     (apply_pth6 then_conv binop_conv vector_cmul_conv)) ct
   208 
   206 
   209 fun vector_add_conv ct = apply_pth7 ct 
   207 fun vector_add_conv ct = apply_pth7 ct
   210  handle CTERM _ => 
   208  handle CTERM _ =>
   211   (apply_pth8 ct 
   209   (apply_pth8 ct
   212    handle CTERM _ => 
   210    handle CTERM _ =>
   213     (case term_of ct of 
   211     (case term_of ct of
   214      Const(@{const_name plus},_)$lt$rt =>
   212      Const(@{const_name plus},_)$lt$rt =>
   215       let 
   213       let
   216        val l = headvector lt 
   214        val l = headvector lt
   217        val r = headvector rt
   215        val r = headvector rt
   218       in (case Term_Ord.fast_term_ord (l,r) of
   216       in (case Term_Ord.fast_term_ord (l,r) of
   219          LESS => (apply_pthb then_conv arg_conv vector_add_conv 
   217          LESS => (apply_pthb then_conv arg_conv vector_add_conv
   220                   then_conv apply_pthd) ct
   218                   then_conv apply_pthd) ct
   221         | GREATER => (apply_pthc then_conv arg_conv vector_add_conv 
   219         | GREATER => (apply_pthc then_conv arg_conv vector_add_conv
   222                      then_conv apply_pthd) ct 
   220                      then_conv apply_pthd) ct
   223         | EQUAL => (apply_pth9 then_conv 
   221         | EQUAL => (apply_pth9 then_conv
   224                 ((apply_ptha then_conv vector_add_conv) else_conv 
   222                 ((apply_ptha then_conv vector_add_conv) else_conv
   225               arg_conv vector_add_conv then_conv apply_pthd)) ct)
   223               arg_conv vector_add_conv then_conv apply_pthd)) ct)
   226       end
   224       end
   227      | _ => reflexive ct))
   225      | _ => reflexive ct))
   228 
   226 
   229 fun vector_canon_conv ct = case term_of ct of
   227 fun vector_canon_conv ct = case term_of ct of
   230  Const(@{const_name plus},_)$_$_ =>
   228  Const(@{const_name plus},_)$_$_ =>
   231   let 
   229   let
   232    val ((p,l),r) = Thm.dest_comb ct |>> Thm.dest_comb
   230    val ((p,l),r) = Thm.dest_comb ct |>> Thm.dest_comb
   233    val lth = vector_canon_conv l 
   231    val lth = vector_canon_conv l
   234    val rth = vector_canon_conv r
   232    val rth = vector_canon_conv r
   235    val th = Drule.binop_cong_rule p lth rth 
   233    val th = Drule.binop_cong_rule p lth rth
   236   in fconv_rule (arg_conv vector_add_conv) th end
   234   in fconv_rule (arg_conv vector_add_conv) th end
   237 
   235 
   238 | Const(@{const_name scaleR}, _)$_$_ =>
   236 | Const(@{const_name scaleR}, _)$_$_ =>
   239   let 
   237   let
   240    val (p,r) = Thm.dest_comb ct
   238    val (p,r) = Thm.dest_comb ct
   241    val rth = Drule.arg_cong_rule p (vector_canon_conv r) 
   239    val rth = Drule.arg_cong_rule p (vector_canon_conv r)
   242   in fconv_rule (arg_conv (apply_pth4 else_conv vector_cmul_conv)) rth
   240   in fconv_rule (arg_conv (apply_pth4 else_conv vector_cmul_conv)) rth
   243   end
   241   end
   244 
   242 
   245 | Const(@{const_name minus},_)$_$_ => (apply_pth2 then_conv vector_canon_conv) ct
   243 | Const(@{const_name minus},_)$_$_ => (apply_pth2 then_conv vector_canon_conv) ct
   246 
   244 
   247 | Const(@{const_name uminus},_)$_ => (apply_pth3 then_conv vector_canon_conv) ct
   245 | Const(@{const_name uminus},_)$_ => (apply_pth3 then_conv vector_canon_conv) ct
   248 
   246 
   249 (* FIXME
   247 (* FIXME
   250 | Const(@{const_name vec},_)$n => 
   248 | Const(@{const_name vec},_)$n =>
   251   let val n = Thm.dest_arg ct
   249   let val n = Thm.dest_arg ct
   252   in if is_ratconst n andalso not (dest_ratconst n =/ Rat.zero) 
   250   in if is_ratconst n andalso not (dest_ratconst n =/ Rat.zero)
   253      then reflexive ct else apply_pth1 ct
   251      then reflexive ct else apply_pth1 ct
   254   end
   252   end
   255 *)
   253 *)
   256 | _ => apply_pth1 ct
   254 | _ => apply_pth1 ct
   257 
   255 
   261 
   259 
   262 fun fold_rev2 f [] [] z = z
   260 fun fold_rev2 f [] [] z = z
   263  | fold_rev2 f (x::xs) (y::ys) z = f x y (fold_rev2 f xs ys z)
   261  | fold_rev2 f (x::xs) (y::ys) z = f x y (fold_rev2 f xs ys z)
   264  | fold_rev2 f _ _ _ = raise UnequalLengths;
   262  | fold_rev2 f _ _ _ = raise UnequalLengths;
   265 
   263 
   266 fun int_flip v eq = 
   264 fun int_flip v eq =
   267   if FuncUtil.Intfunc.defined eq v 
   265   if FuncUtil.Intfunc.defined eq v
   268   then FuncUtil.Intfunc.update (v, Rat.neg (FuncUtil.Intfunc.apply eq v)) eq else eq;
   266   then FuncUtil.Intfunc.update (v, Rat.neg (FuncUtil.Intfunc.apply eq v)) eq else eq;
   269 
   267 
   270 local
   268 local
   271  val pth_zero = @{thm norm_zero}
   269  val pth_zero = @{thm norm_zero}
   272  val tv_n = (ctyp_of_term o Thm.dest_arg o Thm.dest_arg1 o Thm.dest_arg o cprop_of)
   270  val tv_n = (ctyp_of_term o Thm.dest_arg o Thm.dest_arg1 o Thm.dest_arg o cprop_of)
   273              pth_zero
   271              pth_zero
   274  val concl = Thm.dest_arg o cprop_of 
   272  val concl = Thm.dest_arg o cprop_of
   275  fun real_vector_combo_prover ctxt translator (nubs,ges,gts) = 
   273  fun real_vector_combo_prover ctxt translator (nubs,ges,gts) =
   276   let 
   274   let
   277    (* FIXME: Should be computed statically!!*)
   275    (* FIXME: Should be computed statically!!*)
   278    val real_poly_conv = 
   276    val real_poly_conv =
   279       Semiring_Normalizer.semiring_normalize_wrapper ctxt
   277       Semiring_Normalizer.semiring_normalize_wrapper ctxt
   280        (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"}))
   278        (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"}))
   281    val sources = map (Thm.dest_arg o Thm.dest_arg1 o concl) nubs
   279    val sources = map (Thm.dest_arg o Thm.dest_arg1 o concl) nubs
   282    val rawdests = fold_rev (find_normedterms o Thm.dest_arg o concl) (ges @ gts) [] 
   280    val rawdests = fold_rev (find_normedterms o Thm.dest_arg o concl) (ges @ gts) []
   283    val _ = if not (forall fst rawdests) then error "real_vector_combo_prover: Sanity check" 
   281    val _ = if not (forall fst rawdests) then error "real_vector_combo_prover: Sanity check"
   284            else ()
   282            else ()
   285    val dests = distinct (op aconvc) (map snd rawdests)
   283    val dests = distinct (op aconvc) (map snd rawdests)
   286    val srcfuns = map vector_lincomb sources
   284    val srcfuns = map vector_lincomb sources
   287    val destfuns = map vector_lincomb dests 
   285    val destfuns = map vector_lincomb dests
   288    val vvs = fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom) (srcfuns @ destfuns) []
   286    val vvs = fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom) (srcfuns @ destfuns) []
   289    val n = length srcfuns
   287    val n = length srcfuns
   290    val nvs = 1 upto n
   288    val nvs = 1 upto n
   291    val srccombs = srcfuns ~~ nvs
   289    val srccombs = srcfuns ~~ nvs
   292    fun consider d =
   290    fun consider d =
   293     let 
   291     let
   294      fun coefficients x =
   292      fun coefficients x =
   295       let 
   293       let
   296        val inp = if FuncUtil.Ctermfunc.defined d x then FuncUtil.Intfunc.onefunc (0, Rat.neg(FuncUtil.Ctermfunc.apply d x))
   294        val inp = if FuncUtil.Ctermfunc.defined d x then FuncUtil.Intfunc.onefunc (0, Rat.neg(FuncUtil.Ctermfunc.apply d x))
   297                       else FuncUtil.Intfunc.empty 
   295                       else FuncUtil.Intfunc.empty
   298       in fold_rev (fn (f,v) => fn g => if FuncUtil.Ctermfunc.defined f x then FuncUtil.Intfunc.update (v, FuncUtil.Ctermfunc.apply f x) g else g) srccombs inp 
   296       in fold_rev (fn (f,v) => fn g => if FuncUtil.Ctermfunc.defined f x then FuncUtil.Intfunc.update (v, FuncUtil.Ctermfunc.apply f x) g else g) srccombs inp
   299       end
   297       end
   300      val equations = map coefficients vvs
   298      val equations = map coefficients vvs
   301      val inequalities = map (fn n => FuncUtil.Intfunc.onefunc (n,Rat.one)) nvs
   299      val inequalities = map (fn n => FuncUtil.Intfunc.onefunc (n,Rat.one)) nvs
   302      fun plausiblevertices f =
   300      fun plausiblevertices f =
   303       let 
   301       let
   304        val flippedequations = map (fold_rev int_flip f) equations
   302        val flippedequations = map (fold_rev int_flip f) equations
   305        val constraints = flippedequations @ inequalities
   303        val constraints = flippedequations @ inequalities
   306        val rawverts = vertices nvs constraints
   304        val rawverts = vertices nvs constraints
   307        fun check_solution v =
   305        fun check_solution v =
   308         let 
   306         let
   309           val f = fold_rev2 (curry FuncUtil.Intfunc.update) nvs v (FuncUtil.Intfunc.onefunc (0, Rat.one))
   307           val f = fold_rev2 (curry FuncUtil.Intfunc.update) nvs v (FuncUtil.Intfunc.onefunc (0, Rat.one))
   310         in forall (fn e => evaluate f e =/ Rat.zero) flippedequations
   308         in forall (fn e => evaluate f e =/ Rat.zero) flippedequations
   311         end
   309         end
   312        val goodverts = filter check_solution rawverts
   310        val goodverts = filter check_solution rawverts
   313        val signfixups = map (fn n => if member (op =) f n then ~1 else 1) nvs 
   311        val signfixups = map (fn n => if member (op =) f n then ~1 else 1) nvs
   314       in map (map2 (fn s => fn c => Rat.rat_of_int s */ c) signfixups) goodverts
   312       in map (map2 (fn s => fn c => Rat.rat_of_int s */ c) signfixups) goodverts
   315       end
   313       end
   316      val allverts = fold_rev append (map plausiblevertices (allsubsets nvs)) [] 
   314      val allverts = fold_rev append (map plausiblevertices (allsubsets nvs)) []
   317     in subsume allverts []
   315     in subsume allverts []
   318     end
   316     end
   319    fun compute_ineq v =
   317    fun compute_ineq v =
   320     let 
   318     let
   321      val ths = map_filter (fn (v,t) => if v =/ Rat.zero then NONE 
   319      val ths = map_filter (fn (v,t) => if v =/ Rat.zero then NONE
   322                                      else SOME(norm_cmul_rule v t))
   320                                      else SOME(norm_cmul_rule v t))
   323                             (v ~~ nubs) 
   321                             (v ~~ nubs)
   324      fun end_itlist f xs = split_last xs |> uncurry (fold_rev f)
   322      fun end_itlist f xs = split_last xs |> uncurry (fold_rev f)
   325     in inequality_canon_rule ctxt (end_itlist norm_add_rule ths)
   323     in inequality_canon_rule ctxt (end_itlist norm_add_rule ths)
   326     end
   324     end
   327    val ges' = map_filter (try compute_ineq) (fold_rev (append o consider) destfuns []) @
   325    val ges' = map_filter (try compute_ineq) (fold_rev (append o consider) destfuns []) @
   328                  map (inequality_canon_rule ctxt) nubs @ ges
   326                  map (inequality_canon_rule ctxt) nubs @ ges
   332   in fst (RealArith.real_linear_prover translator
   330   in fst (RealArith.real_linear_prover translator
   333         (map (fn t => instantiate ([(tv_n, ctyp_of_term t)],[]) pth_zero)
   331         (map (fn t => instantiate ([(tv_n, ctyp_of_term t)],[]) pth_zero)
   334             zerodests,
   332             zerodests,
   335         map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv
   333         map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv
   336                        arg_conv (arg_conv real_poly_conv))) ges',
   334                        arg_conv (arg_conv real_poly_conv))) ges',
   337         map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv 
   335         map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv
   338                        arg_conv (arg_conv real_poly_conv))) gts))
   336                        arg_conv (arg_conv real_poly_conv))) gts))
   339   end
   337   end
   340 in val real_vector_combo_prover = real_vector_combo_prover
   338 in val real_vector_combo_prover = real_vector_combo_prover
   341 end;
   339 end;
   342 
   340 
   344  val pth = @{thm norm_imp_pos_and_ge}
   342  val pth = @{thm norm_imp_pos_and_ge}
   345  val norm_mp = match_mp pth
   343  val norm_mp = match_mp pth
   346  val concl = Thm.dest_arg o cprop_of
   344  val concl = Thm.dest_arg o cprop_of
   347  fun conjunct1 th = th RS @{thm conjunct1}
   345  fun conjunct1 th = th RS @{thm conjunct1}
   348  fun conjunct2 th = th RS @{thm conjunct2}
   346  fun conjunct2 th = th RS @{thm conjunct2}
   349 fun real_vector_ineq_prover ctxt translator (ges,gts) = 
   347 fun real_vector_ineq_prover ctxt translator (ges,gts) =
   350  let 
   348  let
   351 (*   val _ = error "real_vector_ineq_prover: pause" *)
   349 (*   val _ = error "real_vector_ineq_prover: pause" *)
   352   val ntms = fold_rev find_normedterms (map (Thm.dest_arg o concl) (ges @ gts)) []
   350   val ntms = fold_rev find_normedterms (map (Thm.dest_arg o concl) (ges @ gts)) []
   353   val lctab = vector_lincombs (map snd (filter (not o fst) ntms))
   351   val lctab = vector_lincombs (map snd (filter (not o fst) ntms))
   354   val (fxns, ctxt') = Variable.variant_fixes (replicate (length lctab) "x") ctxt
   352   val (fxns, ctxt') = Variable.variant_fixes (replicate (length lctab) "x") ctxt
   355   fun instantiate_cterm' ty tms = Drule.cterm_rule (Drule.instantiate' ty tms)
   353   fun instantiate_cterm' ty tms = Drule.cterm_rule (Drule.instantiate' ty tms)
   362        fold_rev (fn th => fn ths => conjunct1(norm_mp th)::ths)
   360        fold_rev (fn th => fn ths => conjunct1(norm_mp th)::ths)
   363               asl (map replace_rule ges)
   361               asl (map replace_rule ges)
   364   val gts' = map replace_rule gts
   362   val gts' = map replace_rule gts
   365   val nubs = map (conjunct2 o norm_mp) asl
   363   val nubs = map (conjunct2 o norm_mp) asl
   366   val th1 = real_vector_combo_prover ctxt' translator (nubs,ges',gts')
   364   val th1 = real_vector_combo_prover ctxt' translator (nubs,ges',gts')
   367   val shs = filter (member (fn (t,th) => t aconvc cprop_of th) asl) (#hyps (crep_thm th1)) 
   365   val shs = filter (member (fn (t,th) => t aconvc cprop_of th) asl) (#hyps (crep_thm th1))
   368   val th11 = hd (Variable.export ctxt' ctxt [fold implies_intr shs th1])
   366   val th11 = hd (Variable.export ctxt' ctxt [fold implies_intr shs th1])
   369   val cps = map (swap o Thm.dest_equals) (cprems_of th11)
   367   val cps = map (swap o Thm.dest_equals) (cprems_of th11)
   370   val th12 = instantiate ([], cps) th11
   368   val th12 = instantiate ([], cps) th11
   371   val th13 = fold Thm.elim_implies (map (reflexive o snd) cps) th12;
   369   val th13 = fold Thm.elim_implies (map (reflexive o snd) cps) th12;
   372  in hd (Variable.export ctxt' ctxt [th13])
   370  in hd (Variable.export ctxt' ctxt [th13])
   373  end 
   371  end
   374 in val real_vector_ineq_prover = real_vector_ineq_prover
   372 in val real_vector_ineq_prover = real_vector_ineq_prover
   375 end;
   373 end;
   376 
   374 
   377 local
   375 local
   378  val rawrule = fconv_rule (arg_conv (rewr_conv @{thm real_eq_0_iff_le_ge_0}))
   376  val rawrule = fconv_rule (arg_conv (rewr_conv @{thm real_eq_0_iff_le_ge_0}))
   379  fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2})
   377  fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2})
   380  fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS;
   378  fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS;
   381   (* FIXME: Lookup in the context every time!!! Fix this !!!*)
   379   (* FIXME: Lookup in the context every time!!! Fix this !!!*)
   382  fun splitequation ctxt th acc =
   380  fun splitequation ctxt th acc =
   383   let 
   381   let
   384    val real_poly_neg_conv = #neg
   382    val real_poly_neg_conv = #neg
   385        (Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt
   383        (Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt
   386         (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) simple_cterm_ord)
   384         (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) simple_cterm_ord)
   387    val (th1,th2) = conj_pair(rawrule th)
   385    val (th1,th2) = conj_pair(rawrule th)
   388   in th1::fconv_rule (arg_conv (arg_conv real_poly_neg_conv)) th2::acc
   386   in th1::fconv_rule (arg_conv (arg_conv real_poly_neg_conv)) th2::acc
   390 in fun real_vector_prover ctxt _ translator (eqs,ges,gts) =
   388 in fun real_vector_prover ctxt _ translator (eqs,ges,gts) =
   391      (real_vector_ineq_prover ctxt translator
   389      (real_vector_ineq_prover ctxt translator
   392          (fold_rev (splitequation ctxt) eqs ges,gts), RealArith.Trivial)
   390          (fold_rev (splitequation ctxt) eqs ges,gts), RealArith.Trivial)
   393 end;
   391 end;
   394 
   392 
   395   fun init_conv ctxt = 
   393   fun init_conv ctxt =
   396    Simplifier.rewrite (Simplifier.context ctxt 
   394    Simplifier.rewrite (Simplifier.context ctxt
   397      (HOL_basic_ss addsimps ([(*@{thm vec_0}, @{thm vec_1},*) @{thm dist_norm}, @{thm diff_0_right}, @{thm right_minus}, @{thm diff_self}, @{thm norm_zero}] @ @{thms arithmetic_simps} @ @{thms norm_pths})))
   395      (HOL_basic_ss addsimps ([(*@{thm vec_0}, @{thm vec_1},*) @{thm dist_norm}, @{thm diff_0_right}, @{thm right_minus}, @{thm diff_self}, @{thm norm_zero}] @ @{thms arithmetic_simps} @ @{thms norm_pths})))
   398    then_conv Numeral_Simprocs.field_comp_conv 
   396    then_conv Numeral_Simprocs.field_comp_conv
   399    then_conv nnf_conv
   397    then_conv nnf_conv
   400 
   398 
   401  fun pure ctxt = fst o RealArith.gen_prover_real_arith ctxt (real_vector_prover ctxt);
   399  fun pure ctxt = fst o RealArith.gen_prover_real_arith ctxt (real_vector_prover ctxt);
   402  fun norm_arith ctxt ct = 
   400  fun norm_arith ctxt ct =
   403   let 
   401   let
   404    val ctxt' = Variable.declare_term (term_of ct) ctxt
   402    val ctxt' = Variable.declare_term (term_of ct) ctxt
   405    val th = init_conv ctxt' ct
   403    val th = init_conv ctxt' ct
   406   in equal_elim (Drule.arg_cong_rule @{cterm Trueprop} (symmetric th)) 
   404   in equal_elim (Drule.arg_cong_rule @{cterm Trueprop} (symmetric th))
   407                 (pure ctxt' (Thm.rhs_of th))
   405                 (pure ctxt' (Thm.rhs_of th))
   408  end
   406  end
   409 
   407 
   410  fun norm_arith_tac ctxt = 
   408  fun norm_arith_tac ctxt =
   411    clarify_tac HOL_cs THEN'
   409    clarify_tac HOL_cs THEN'
   412    Object_Logic.full_atomize_tac THEN'
   410    Object_Logic.full_atomize_tac THEN'
   413    CSUBGOAL ( fn (p,i) => rtac (norm_arith ctxt (Thm.dest_arg p )) i);
   411    CSUBGOAL ( fn (p,i) => rtac (norm_arith ctxt (Thm.dest_arg p )) i);
   414 
   412 
   415 end;
   413 end;