src/ZF/Constructible/Wellorderings.thy
changeset 61798 27f3c10b0b50
parent 60770 240563fbf41d
child 67443 3abf6a722518
equal deleted inserted replaced
61797:458b4e3720ab 61798:27f3c10b0b50
     7 theory Wellorderings imports Relative begin
     7 theory Wellorderings imports Relative begin
     8 
     8 
     9 text\<open>We define functions analogous to @{term ordermap} @{term ordertype} 
     9 text\<open>We define functions analogous to @{term ordermap} @{term ordertype} 
    10       but without using recursion.  Instead, there is a direct appeal
    10       but without using recursion.  Instead, there is a direct appeal
    11       to Replacement.  This will be the basis for a version relativized
    11       to Replacement.  This will be the basis for a version relativized
    12       to some class @{text M}.  The main result is Theorem I 7.6 in Kunen,
    12       to some class \<open>M\<close>.  The main result is Theorem I 7.6 in Kunen,
    13       page 17.\<close>
    13       page 17.\<close>
    14 
    14 
    15 
    15 
    16 subsection\<open>Wellorderings\<close>
    16 subsection\<open>Wellorderings\<close>
    17 
    17 
    30     "linear_rel(M,A,r) == 
    30     "linear_rel(M,A,r) == 
    31         \<forall>x[M]. x\<in>A \<longrightarrow> (\<forall>y[M]. y\<in>A \<longrightarrow> <x,y>\<in>r | x=y | <y,x>\<in>r)"
    31         \<forall>x[M]. x\<in>A \<longrightarrow> (\<forall>y[M]. y\<in>A \<longrightarrow> <x,y>\<in>r | x=y | <y,x>\<in>r)"
    32 
    32 
    33 definition
    33 definition
    34   wellfounded :: "[i=>o,i]=>o" where
    34   wellfounded :: "[i=>o,i]=>o" where
    35     --\<open>EVERY non-empty set has an @{text r}-minimal element\<close>
    35     \<comment>\<open>EVERY non-empty set has an \<open>r\<close>-minimal element\<close>
    36     "wellfounded(M,r) == 
    36     "wellfounded(M,r) == 
    37         \<forall>x[M]. x\<noteq>0 \<longrightarrow> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
    37         \<forall>x[M]. x\<noteq>0 \<longrightarrow> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
    38 definition
    38 definition
    39   wellfounded_on :: "[i=>o,i,i]=>o" where
    39   wellfounded_on :: "[i=>o,i,i]=>o" where
    40     --\<open>every non-empty SUBSET OF @{text A} has an @{text r}-minimal element\<close>
    40     \<comment>\<open>every non-empty SUBSET OF \<open>A\<close> has an \<open>r\<close>-minimal element\<close>
    41     "wellfounded_on(M,A,r) == 
    41     "wellfounded_on(M,A,r) == 
    42         \<forall>x[M]. x\<noteq>0 \<longrightarrow> x\<subseteq>A \<longrightarrow> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
    42         \<forall>x[M]. x\<noteq>0 \<longrightarrow> x\<subseteq>A \<longrightarrow> (\<exists>y[M]. y\<in>x & ~(\<exists>z[M]. z\<in>x & <z,y> \<in> r))"
    43 
    43 
    44 definition
    44 definition
    45   wellordered :: "[i=>o,i,i]=>o" where
    45   wellordered :: "[i=>o,i,i]=>o" where
    46     --\<open>linear and wellfounded on @{text A}\<close>
    46     \<comment>\<open>linear and wellfounded on \<open>A\<close>\<close>
    47     "wellordered(M,A,r) == 
    47     "wellordered(M,A,r) == 
    48         transitive_rel(M,A,r) & linear_rel(M,A,r) & wellfounded_on(M,A,r)"
    48         transitive_rel(M,A,r) & linear_rel(M,A,r) & wellfounded_on(M,A,r)"
    49 
    49 
    50 
    50 
    51 subsubsection \<open>Trivial absoluteness proofs\<close>
    51 subsubsection \<open>Trivial absoluteness proofs\<close>